Search results for: multi-stage learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7331

Search results for: multi-stage learning

2921 Hierarchical Clustering Algorithms in Data Mining

Authors: Z. Abdullah, A. R. Hamdan

Abstract:

Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the areas in data mining and it can be classified into partition, hierarchical, density based, and grid-based. Therefore, in this paper, we do a survey and review for four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON, and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems, as well as deriving more robust and scalable algorithms for clustering.

Keywords: clustering, unsupervised learning, algorithms, hierarchical

Procedia PDF Downloads 885
2920 Tip60 Histone Acetyltransferase Activators as Neuroepigenetic Therapeutic Modulators for Alzheimer’s Disease

Authors: Akanksha Bhatnagar, Sandhya Kortegare, Felice Elefant

Abstract:

Context: Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by progressive cognitive decline and memory loss. The cause of AD is not fully understood, but it is thought to be caused by a combination of genetic, environmental, and lifestyle factors. One of the hallmarks of AD is the loss of neurons in the hippocampus, a brain region that is important for memory and learning. This loss of neurons is thought to be caused by a decrease in histone acetylation, which is a process that regulates gene expression. Research Aim: The research aim of the study was to develop mall molecule compounds that can enhance the activity of Tip60, a histone acetyltransferase that is important for memory and learning. Methodology/Analysis: The researchers used in silico structural modeling and a pharmacophore-based virtual screening approach to design and synthesize small molecule compounds strongly predicted to target and enhance Tip60’s HAT activity. The compounds were then tested in vitro and in vivo to assess their ability to enhance Tip60 activity and rescue cognitive deficits in AD models. Findings: The researchers found that several of the compounds were able to enhance Tip60 activity and rescue cognitive deficits in AD models. The compounds were also developed to cross the blood-brain barrier, which is an important factor for the development of potential AD therapeutics. Theoretical Importance: The findings of this study suggest that Tip60 HAT activators have the potential to be developed as therapeutic agents for AD. The compounds are specific to Tip60, which suggests that they may have fewer side effects than other HDAC inhibitors. Additionally, the compounds are able to cross the blood-brain barrier, which is a major hurdle for the development of AD therapeutics. Data Collection: The study collected data from a variety of sources, including in vitro assays and animal models. The in vitro assays assessed the ability of compounds to enhance Tip60 activity using histone acetyltransferase (HAT) enzyme assays and chromatin immunoprecipitation assays. Animal models were used to assess the ability of the compounds to rescue cognitive deficits in AD models using a variety of behavioral tests, including locomotor ability, sensory learning, and recognition tasks. The human clinical trials will be used to assess the safety and efficacy of the compounds in humans. Questions: The question addressed by this study was whether Tip60 HAT activators could be developed as therapeutic agents for AD. Conclusions: The findings of this study suggest that Tip60 HAT activators have the potential to be developed as therapeutic agents for AD. The compounds are specific to Tip60, which suggests that they may have fewer side effects than other HDAC inhibitors. Additionally, the compounds are able to cross the blood-brain barrier, which is a major hurdle for the development of AD therapeutics. Further research is needed to confirm the safety and efficacy of these compounds in humans.

Keywords: Alzheimer's disease, cognition, neuroepigenetics, drug discovery

Procedia PDF Downloads 75
2919 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection

Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young

Abstract:

Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.

Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving

Procedia PDF Downloads 251
2918 A Longitudinal Case Study of Greek as a Second Language

Authors: M. Vassou, A. Karasimos

Abstract:

A primary concern in the field of Second Language Acquisition (SLA) research is to determine the innate mechanisms of second language learning and acquisition through the systematic study of a learner's interlanguage. Errors emerge while a learner attempts to communicate using the target-language and can be seen either as the observable linguistic product of the latent cognitive and language process of mental representations or as an indispensable learning mechanism. Therefore, the study of the learner’s erroneous forms may depict the various strategies and mechanisms that take place during the language acquisition process resulting in deviations from the target-language norms and difficulties in communication. Mapping the erroneous utterances of a late adult learner in the process of acquiring Greek as a second language constitutes one of the main aims of this study. For our research purposes, we created an error-tagged learner corpus composed of the participant’s written texts produced throughout a period of a 4- year instructed language acquisition. Error analysis and interlanguage theory constitute the methodological and theoretical framework, respectively. The research questions pertain to the learner's most frequent errors per linguistic category and per year as well as his choices concerning the Greek Article System. According to the quantitative analysis of the data, the most frequent errors are observed in the categories of the stress system and syntax, whereas a significant fluctuation and/or gradual reduction throughout the 4 years of instructed acquisition indicate the emergence of developmental stages. The findings with regard to the article usage bespeak fossilization of erroneous structures in certain contexts. In general, our results point towards the existence and further development of an established learner’s (inter-) language system governed not only by mother- tongue and target-language influences but also by the learner’s assumptions and set of rules as the result of a complex cognitive process. It is expected that this study will contribute not only to the knowledge in the field of Greek as a second language and SLA generally, but it will also provide an insight into the cognitive mechanisms and strategies developed by multilingual learners of late adulthood.

Keywords: Greek as a second language, error analysis, interlanguage, late adult learner

Procedia PDF Downloads 128
2917 The Moderating Role of Perceived University Environment in the Formation of Entrepreneurial Intention among Creative Industries Students

Authors: Patrick Ebong Ebewo

Abstract:

The trend of high unemployment levels globally is a growing concern, which suggests that university students especially those studying the creative industries are most likely to face unemployment upon completion of their studies. Therefore the effort of university in fostering entrepreneurial knowledge is equally important to the development of student’s soft skill. The purpose of this paper is to assess the significance of perceived university environment and perceived educational support that influencing University students’ intention in starting their own business in the future. Thus, attempting to answer the question 'How does perceived university environment affect students’ attitude towards entrepreneurship as a career option, perceived entrepreneurial abilities, subjective norm and entrepreneurial intentions?' The study is based on the Theory of Planned Behaviour model adapted from previous studies and empirically tested on graduates at the Tshwane University of Technology. A sample of 150 graduates from the Arts and Design graduates took part in the study and data collected were analysed using structural equation modelling (SEM). Our findings seem to suggest the indirect impact of perceived university environment on entrepreneurial intention through perceived environment support and perceived entrepreneurial abilities. Thus, any increase in perceived university environment might influence students to become entrepreneurs. Based on these results, it is recommended that: (a) Tshwane University of Technology and other universities of technology should establish an ‘Entrepreneurship Internship Programme’ as a tool for stimulated work integrated learning. Post-graduation intervention could be implemented by the development of a ‘Graduate Entrepreneurship Program’ which should be embedded in the Bachelor of Technology (B-Tech now Advance Diploma) and Postgraduate courses; (b) Policymakers should consider the development of a coherent national policy framework that addresses entrepreneurship for the Arts/creative industries sector. This would create the enabling environment for the evolution of Higher Education Institutions from merely Teaching, Learning & Research to becoming drivers for creative entrepreneurship.

Keywords: business venture, entrepreneurship education, entrepreneurial intent, university environment

Procedia PDF Downloads 336
2916 The Impacts of an Adapted Literature Circle Model on Reading Comprehension, Engagement, and Cooperation in an EFL Reading Course

Authors: Tiantian Feng

Abstract:

There is a dearth of research on the literary circle as a teaching strategy in English as a Foreign Language (EFL) classes in Chinese colleges and universities and even fewer empirical studies on its impacts. In this one-quarter, design-based project, the researcher aims to increase students’ engagement, cooperation, and, on top of that, reading comprehension performance by utilizing a researcher-developed, adapted reading circle model in an EFL reading course at a Chinese college. The model also integrated team-based learning and portfolio assessment, with an emphasis on the specialization of individual responsibilities, contributions, and outcomes in reading projects, with the goal of addressing current issues in EFL classes at Chinese colleges, such as passive learning, test orientation, ineffective and uncooperative teamwork, and lack of dynamics. In this quasi-experimental research, two groups of students enrolled in the course were invited to participate in four in-class team projects, with the intervention class following the adapted literature circle model and team members rotating as Leader, Coordinator, Brain trust, and Reporter. The researcher/instructor used a sequential explanatory mixed-methods approach to quantitatively analyze the final grades for the pre-and post-tests, as well as individual scores for team projects and will code students' artifacts in the next step, with the results to be reported in a subsequent paper(s). Initial analysis showed that both groups saw an increase in final grades, but the intervention group enjoyed a more significant boost, suggesting that the adapted reading circle model is effective in improving students’ reading comprehension performance. This research not only closes the empirical research gap of literature circles in college EFL classes in China but also adds to the pool of effective ways to optimize reading comprehension performance and class performance in college EFL classes.

Keywords: literature circle, EFL teaching, college english reading, reading comprehension

Procedia PDF Downloads 100
2915 Improving Subjective Bias Detection Using Bidirectional Encoder Representations from Transformers and Bidirectional Long Short-Term Memory

Authors: Ebipatei Victoria Tunyan, T. A. Cao, Cheol Young Ock

Abstract:

Detecting subjectively biased statements is a vital task. This is because this kind of bias, when present in the text or other forms of information dissemination media such as news, social media, scientific texts, and encyclopedias, can weaken trust in the information and stir conflicts amongst consumers. Subjective bias detection is also critical for many Natural Language Processing (NLP) tasks like sentiment analysis, opinion identification, and bias neutralization. Having a system that can adequately detect subjectivity in text will boost research in the above-mentioned areas significantly. It can also come in handy for platforms like Wikipedia, where the use of neutral language is of importance. The goal of this work is to identify the subjectively biased language in text on a sentence level. With machine learning, we can solve complex AI problems, making it a good fit for the problem of subjective bias detection. A key step in this approach is to train a classifier based on BERT (Bidirectional Encoder Representations from Transformers) as upstream model. BERT by itself can be used as a classifier; however, in this study, we use BERT as data preprocessor as well as an embedding generator for a Bi-LSTM (Bidirectional Long Short-Term Memory) network incorporated with attention mechanism. This approach produces a deeper and better classifier. We evaluate the effectiveness of our model using the Wiki Neutrality Corpus (WNC), which was compiled from Wikipedia edits that removed various biased instances from sentences as a benchmark dataset, with which we also compare our model to existing approaches. Experimental analysis indicates an improved performance, as our model achieved state-of-the-art accuracy in detecting subjective bias. This study focuses on the English language, but the model can be fine-tuned to accommodate other languages.

Keywords: subjective bias detection, machine learning, BERT–BiLSTM–Attention, text classification, natural language processing

Procedia PDF Downloads 130
2914 An Approach on Intelligent Tolerancing of Car Body Parts Based on Historical Measurement Data

Authors: Kai Warsoenke, Maik Mackiewicz

Abstract:

To achieve a high quality of assembled car body structures, tolerancing is used to ensure a geometric accuracy of the single car body parts. There are two main techniques to determine the required tolerances. The first is tolerance analysis which describes the influence of individually tolerated input values on a required target value. Second is tolerance synthesis to determine the location of individual tolerances to achieve a target value. Both techniques are based on classical statistical methods, which assume certain probability distributions. To ensure competitiveness in both saturated and dynamic markets, production processes in vehicle manufacturing must be flexible and efficient. The dimensional specifications selected for the individual body components and the resulting assemblies have a major influence of the quality of the process. For example, in the manufacturing of forming tools as operating equipment or in the higher level of car body assembly. As part of the metrological process monitoring, manufactured individual parts and assemblies are recorded and the measurement results are stored in databases. They serve as information for the temporary adjustment of the production processes and are interpreted by experts in order to derive suitable adjustments measures. In the production of forming tools, this means that time-consuming and costly changes of the tool surface have to be made, while in the body shop, uncertainties that are difficult to control result in cost-intensive rework. The stored measurement results are not used to intelligently design tolerances in future processes or to support temporary decisions based on real-world geometric data. They offer potential to extend the tolerancing methods through data analysis and machine learning models. The purpose of this paper is to examine real-world measurement data from individual car body components, as well as assemblies, in order to develop an approach for using the data in short-term actions and future projects. For this reason, the measurement data will be analyzed descriptively in the first step in order to characterize their behavior and to determine possible correlations. In the following, a database is created that is suitable for developing machine learning models. The objective is to create an intelligent way to determine the position and number of measurement points as well as the local tolerance range. For this a number of different model types are compared and evaluated. The models with the best result are used to optimize equally distributed measuring points on unknown car body part geometries and to assign tolerance ranges to them. The current results of this investigation are still in progress. However, there are areas of the car body parts which behave more sensitively compared to the overall part and indicate that intelligent tolerancing is useful here in order to design and control preceding and succeeding processes more efficiently.

Keywords: automotive production, machine learning, process optimization, smart tolerancing

Procedia PDF Downloads 117
2913 Application of MALDI-MS to Differentiate SARS-CoV-2 and Non-SARS-CoV-2 Symptomatic Infections in the Early and Late Phases of the Pandemic

Authors: Dmitriy Babenko, Sergey Yegorov, Ilya Korshukov, Aidana Sultanbekova, Valentina Barkhanskaya, Tatiana Bashirova, Yerzhan Zhunusov, Yevgeniya Li, Viktoriya Parakhina, Svetlana Kolesnichenko, Yeldar Baiken, Aruzhan Pralieva, Zhibek Zhumadilova, Matthew S. Miller, Gonzalo H. Hortelano, Anar Turmuhambetova, Antonella E. Chesca, Irina Kadyrova

Abstract:

Introduction: The rapidly evolving COVID-19 pandemic, along with the re-emergence of pathogens causing acute respiratory infections (ARI), has necessitated the development of novel diagnostic tools to differentiate various causes of ARI. MALDI-MS, due to its wide usage and affordability, has been proposed as a potential instrument for diagnosing SARS-CoV-2 versus non-SARS-CoV-2 ARI. The aim of this study was to investigate the potential of MALDI-MS in conjunction with a machine learning model to accurately distinguish between symptomatic infections caused by SARS-CoV-2 and non-SARS-CoV-2 during both the early and later phases of the pandemic. Furthermore, this study aimed to analyze mass spectrometry (MS) data obtained from nasal swabs of healthy individuals. Methods: We gathered mass spectra from 252 samples, comprising 108 SARS-CoV-2-positive samples obtained in 2020 (Covid 2020), 7 SARS-CoV- 2-positive samples obtained in 2023 (Covid 2023), 71 samples from symptomatic individuals without SARS-CoV-2 (Control non-Covid ARVI), and 66 samples from healthy individuals (Control healthy). All the samples were subjected to RT-PCR testing. For data analysis, we employed the caret R package to train and test seven machine-learning algorithms: C5.0, KNN, NB, RF, SVM-L, SVM-R, and XGBoost. We conducted a training process using a five-fold (outer) nested repeated (five times) ten-fold (inner) cross-validation with a randomized stratified splitting approach. Results: In this study, we utilized the Covid 2020 dataset as a case group and the non-Covid ARVI dataset as a control group to train and test various machine learning (ML) models. Among these models, XGBoost and SVM-R demonstrated the highest performance, with accuracy values of 0.97 [0.93, 0.97] and 0.95 [0.95; 0.97], specificity values of 0.86 [0.71; 0.93] and 0.86 [0.79; 0.87], and sensitivity values of 0.984 [0.984; 1.000] and 1.000 [0.968; 1.000], respectively. When examining the Covid 2023 dataset, the Naive Bayes model achieved the highest classification accuracy of 43%, while XGBoost and SVM-R achieved accuracies of 14%. For the healthy control dataset, the accuracy of the models ranged from 0.27 [0.24; 0.32] for k-nearest neighbors to 0.44 [0.41; 0.45] for the Support Vector Machine with a radial basis function kernel. Conclusion: Therefore, ML models trained on MALDI MS of nasopharyngeal swabs obtained from patients with Covid during the initial phase of the pandemic, as well as symptomatic non-Covid individuals, showed excellent classification performance, which aligns with the results of previous studies. However, when applied to swabs from healthy individuals and a limited sample of patients with Covid in the late phase of the pandemic, ML models exhibited lower classification accuracy.

Keywords: SARS-CoV-2, MALDI-TOF MS, ML models, nasopharyngeal swabs, classification

Procedia PDF Downloads 108
2912 Nurturing Scientific Minds: Enhancing Scientific Thinking in Children (Ages 5-9) through Experiential Learning in Kids Science Labs (STEM)

Authors: Aliya K. Salahova

Abstract:

Scientific thinking, characterized by purposeful knowledge-seeking and the harmonization of theory and facts, holds a crucial role in preparing young minds for an increasingly complex and technologically advanced world. This abstract presents a research study aimed at fostering scientific thinking in early childhood, focusing on children aged 5 to 9 years, through experiential learning in Kids Science Labs (STEM). The study utilized a longitudinal exploration design, spanning 240 weeks from September 2018 to April 2023, to evaluate the effectiveness of the Kids Science Labs program in developing scientific thinking skills. Participants in the research comprised 72 children drawn from local schools and community organizations. Through a formative psychology-pedagogical experiment, the experimental group engaged in weekly STEM activities carefully designed to stimulate scientific thinking, while the control group participated in daily art classes for comparison. To assess the scientific thinking abilities of the participants, a registration table with evaluation criteria was developed. This table included indicators such as depth of questioning, resource utilization in research, logical reasoning in hypotheses, procedural accuracy in experiments, and reflection on research processes. The data analysis revealed dynamic fluctuations in the number of children at different levels of scientific thinking proficiency. While the development was not uniform across all participants, a main leading factor emerged, indicating that the Kids Science Labs program and formative experiment exerted a positive impact on enhancing scientific thinking skills in children within this age range. The study's findings support the hypothesis that systematic implementation of STEM activities effectively promotes and nurtures scientific thinking in children aged 5-9 years. Enriching education with a specially planned STEM program, tailoring scientific activities to children's psychological development, and implementing well-planned diagnostic and corrective measures emerged as essential pedagogical conditions for enhancing scientific thinking abilities in this age group. The results highlight the significant and positive impact of the systematic-activity approach in developing scientific thinking, leading to notable progress and growth in children's scientific thinking abilities over time. These findings have promising implications for educators and researchers, emphasizing the importance of incorporating STEM activities into educational curricula to foster scientific thinking from an early age. This study contributes valuable insights to the field of science education and underscores the potential of STEM-based interventions in shaping the future scientific minds of young children.

Keywords: Scientific thinking, education, STEM, intervention, Psychology, Pedagogy, collaborative learning, longitudinal study

Procedia PDF Downloads 61
2911 The Impact of the Use of Some Multiple Intelligence-Based Teaching Strategies on Developing Moral Intelligence and Inferential Jurisprudential Thinking among Secondary School Female Students in Saudi Arabia

Authors: Sameerah A. Al-Hariri Al-Zahrani

Abstract:

The current study aims at getting acquainted with the impact of the use of some multiple intelligence-based teaching strategies on developing moral intelligence and inferential jurisprudential thinking among secondary school female students. The study has endeavored to answer the following questions: What is the impact of the use of some multiple intelligence-based teaching strategies on developing inferential jurisprudential thinking and moral intelligence among first-year secondary school female students? In the frame of this main research question, the study seeks to answer the following sub-questions: (i) What are the inferential jurisprudential thinking skills among first-year secondary school female students? (ii) What are the components of moral intelligence among first year secondary school female students? (iii) What is the impact of the use of some multiple intelligence‐based teaching strategies (such as the strategies of analyzing values, modeling, Socratic discussion, collaborative learning, peer collaboration, collective stories, building emotional moments, role play, one-minute observation) on moral intelligence among first-year secondary school female students? (iv) What is the impact of the use of some multiple intelligence‐based teaching strategies (such as the strategies of analyzing values, modeling, Socratic discussion, collaborative learning, peer collaboration, collective stories, building emotional moments, role play, one-minute observation) on developing the capacity for inferential jurisprudential thinking of juristic rules among first-year secondary school female students? The study has used the descriptive-analytical methodology in surveying, analyzing, and reviewing the literature on previous studies in order to benefit from them in building the tools of the study and the materials of experimental treatment. The study has also used the experimental method to study the impact of the independent variable (multiple intelligence strategies) on the two dependent variables (moral intelligence and inferential jurisprudential thinking) in first-year secondary school female students’ learning. The sample of the study is made up of 70 female students that have been divided into two groups: an experimental group consisting of 35 students who have been taught through multiple intelligence strategies, and a control group consisting of the other 35 students who have been taught normally. The two tools of the study (inferential jurisprudential thinking test and moral intelligence scale) have been implemented on the two groups as a pre-test. The female researcher taught the experimental group and implemented the two tools of the study. After the experiment, which lasted eight weeks, was over, the study showed the following results: (i) The existence of significant statistical differences (0.05) between the mean average of the control group and that of the experimental group in the inferential jurisprudential thinking test (recognition of the evidence of jurisprudential rule, recognition of the motive for the jurisprudential rule, jurisprudential inferencing, analogical jurisprudence) in favor of the experimental group. (ii) The existence of significant statistical differences (0.05) between the mean average of the control group and that of the experimental group in the components of the moral intelligence scale (sympathy, conscience, moral wisdom, tolerance, justice, respect) in favor of the experimental group. The study has, thus, demonstrated the impact of the use of some multiple intelligence-based teaching strategies on developing moral intelligence and inferential jurisprudential thinking.

Keywords: moral intelligence, teaching, inferential jurisprudential thinking, secondary school

Procedia PDF Downloads 159
2910 Confidence Building Strategies Adopted in an EAP Speaking Course at METU and Their Effectiveness: A Case Study

Authors: Canan Duzan

Abstract:

For most language learners, mastery of the speaking skill is the proof of the mastery of the foreign language. On the other hand, the speaking skill is considered as the most difficult aspect of language learning to develop for both learners and teachers. Especially in countries like Turkey where exposure to the target language is minimum and resources and opportunities provided for language practice are scarce, teaching and learning to speak the language become a real struggle for teachers and learners alike. Data collected from students, instructors, faculty members and the business sector in needs analysis studies conducted previously at Middle East Technical University (METU) consistently revealed the need for addressing the problem of lack of confidence in speaking English. Action was taken during the design of the only EAP speaking course offered in Modern Languages Department since lack of confidence is considered to be a serious barrier for effective communication and causes learners to suffer from insecurity, uncertainty and fear. “Confidence building” served as the guiding principle in the syllabus design, nature of the tasks created for the course and the assessment procedures to help learners become more confident speakers of English. In order to see the effectiveness of the decisions made during the design phase of the course and whether students become more confident speakers upon completion of the course, a case study was carried out with 100 students at METU. A questionnaire including both Likert-Scale and open-ended items were administered to students to collect data and this data were analyzed using the SPSS program. Group interviews were also carried out to gain more insight into the effectiveness of the course in terms of building speaking confidence. This presentation will explore the specific actions taken to develop students’ confidence based on the findings of program evaluation studies and to what extent the students believe these actions to be effective in improving their confidence. The unique design of this course and strategies adopted for confidence building are highly applicable in other EAP contexts and may yield similar positive results.

Keywords: confidence, EAP, speaking, strategy

Procedia PDF Downloads 401
2909 Reading and Writing Memories in Artificial and Human Reasoning

Authors: Ian O'Loughlin

Abstract:

Memory networks aim to integrate some of the recent successes in machine learning with a dynamic memory base that can be updated and deployed in artificial reasoning tasks. These models involve training networks to identify, update, and operate over stored elements in a large memory array in order, for example, to ably perform question and answer tasks parsing real-world and simulated discourses. This family of approaches still faces numerous challenges: the performance of these network models in simulated domains remains considerably better than in open, real-world domains, wide-context cues remain elusive in parsing words and sentences, and even moderately complex sentence structures remain problematic. This innovation, employing an array of stored and updatable ‘memory’ elements over which the system operates as it parses text input and develops responses to questions, is a compelling one for at least two reasons: first, it addresses one of the difficulties that standard machine learning techniques face, by providing a way to store a large bank of facts, offering a way forward for the kinds of long-term reasoning that, for example, recurrent neural networks trained on a corpus have difficulty performing. Second, the addition of a stored long-term memory component in artificial reasoning seems psychologically plausible; human reasoning appears replete with invocations of long-term memory, and the stored but dynamic elements in the arrays of memory networks are deeply reminiscent of the way that human memory is readily and often characterized. However, this apparent psychological plausibility is belied by a recent turn in the study of human memory in cognitive science. In recent years, the very notion that there is a stored element which enables remembering, however dynamic or reconstructive it may be, has come under deep suspicion. In the wake of constructive memory studies, amnesia and impairment studies, and studies of implicit memory—as well as following considerations from the cognitive neuroscience of memory and conceptual analyses from the philosophy of mind and cognitive science—researchers are now rejecting storage and retrieval, even in principle, and instead seeking and developing models of human memory wherein plasticity and dynamics are the rule rather than the exception. In these models, storage is entirely avoided by modeling memory using a recurrent neural network designed to fit a preconceived energy function that attains zero values only for desired memory patterns, so that these patterns are the sole stable equilibrium points in the attractor network. So although the array of long-term memory elements in memory networks seem psychologically appropriate for reasoning systems, they may actually be incurring difficulties that are theoretically analogous to those that older, storage-based models of human memory have demonstrated. The kind of emergent stability found in the attractor network models more closely fits our best understanding of human long-term memory than do the memory network arrays, despite appearances to the contrary.

Keywords: artificial reasoning, human memory, machine learning, neural networks

Procedia PDF Downloads 271
2908 Translanguaging as a Decolonial Move in South African Bilingual Classrooms

Authors: Malephole Philomena Sefotho

Abstract:

Nowadays, it is a fact that the majority of people, worldwide, are bilingual rather than monolingual due to the surge of globalisation and mobility. Consequently, bilingual education is a topical issue of discussion among researchers. Several studies that have focussed on it have highlighted the importance and need for incorporating learners’ linguistic repertoires in multilingual classrooms and move away from the colonial approach which is a monolingual bias – one language at a time. Researchers pointed out that a systematic approach that involves the concurrent use of languages and not a separation of languages must be implemented in bilingual classroom settings. Translanguaging emerged as a systematic approach that assists learners to make meaning of their world and it involves allowing learners to utilize all their linguistic resources in their classrooms. The South African language policy also room for diverse languages use in bi/multilingual classrooms. This study, therefore, sought to explore how teachers apply translanguaging in bilingual classrooms in incorporating learners’ linguistic repertoires. It further establishes teachers’ perspectives in the use of more than one language in teaching and learning. The participants for this study were language teachers who teach at bilingual primary schools in Johannesburg in South Africa. Semi-structured interviews were conducted to establish their perceptions on the concurrent use of languages. Qualitative research design was followed in analysing data. The findings showed that teachers were reluctant to allow translanguaging to take place in their classrooms even though they realise the importance thereof. Not allowing bilingual learners to use their linguistic repertoires has resulted in learners’ negative attitude towards their languages and contributed in learners’ loss of their identity. This article, thus recommends a drastic change to decolonised approaches in teaching and learning in multilingual settings and translanguaging as a decolonial move where learners are allowed to translanguage freely in their classroom settings for better comprehension and making meaning of concepts and/or related ideas. It further proposes continuous conversations be encouraged to bring eminent cultural and linguistic genocide to a halt.

Keywords: bilingualism, decolonisation, linguistic repertoires, translanguaging

Procedia PDF Downloads 180
2907 A Case Study on Theme-Based Approach in Health Technology Engineering Education: Customer Oriented Software Applications

Authors: Mikael Soini, Kari Björn

Abstract:

Metropolia University of Applied Sciences (MUAS) Information and Communication Technology (ICT) Degree Programme provides full-time Bachelor-level undergraduate studies. ICT Degree Programme has seven different major options; this paper focuses on Health Technology. In Health Technology, a significant curriculum change in 2014 enabled transition from fragmented curriculum including dozens of courses to a new integrated curriculum built around three 30 ECTS themes. This paper focuses especially on the second theme called Customer Oriented Software Applications. From students’ point of view, the goal of this theme is to get familiar with existing health related ICT solutions and systems, understand business around health technology, recognize social and healthcare operating principles and services, and identify customers and users and their special needs and perspectives. This also acts as a background for health related web application development. Built web application is tested, developed and evaluated with real users utilizing versatile user centred development methods. This paper presents experiences obtained from the first implementation of Customer Oriented Software Applications theme. Student feedback was gathered with two questionnaires, one in the middle of the theme and other at the end of the theme. Questionnaires had qualitative and quantitative parts. Similar questionnaire was implemented in the first theme; this paper evaluates how the theme-based integrated curriculum has progressed in Health Technology major by comparing results between theme 1 and 2. In general, students were satisfied for the implementation, timing and synchronization of the courses, and the amount of work. However there is still room for development. Student feedback and teachers’ observations have been and will be used to develop the content and operating principles of the themes and whole curriculum.

Keywords: engineering education, integrated curriculum, learning and teaching methods, learning experience

Procedia PDF Downloads 321
2906 Effects of Merging Personal and Social Responsibility with Sports Education Model on Students' Game Performance and Responsibility

Authors: Yi-Hsiang Pan, Chen-Hui Huang, Wei-Ting Hsu

Abstract:

The purposes of the study were to understand these topics as follows: 1. To explore the effect of merging teaching personal and social responsibility (TPSR) with sports education model on students' game performance and responsibility. 2. To explore the effect of sports education model on students' game performance and responsibility. 3. To compare the difference between "merging TPSR with sports education model" and "sports education model" on students' game performance and responsibility. The participants include three high school physical education teachers and six physical education classes. Every teacher teaches an experimental group and a control group. The participants had 121 students, including 65 students in the experimental group and 56 students in the control group. The research methods had game performance assessment, questionnaire investigation, interview, focus group meeting. The research instruments include personal and social responsibility questionnaire and game performance assessment instrument. Paired t-test test and MANCOVA were used to test the difference between "merging TPSR with sports education model" and "sports education model" on students' learning performance. 1) "Merging TPSR with sports education model" showed significant improvements in students' game performance, and responsibilities with self-direction, helping others, cooperation. 2) "Sports education model" also had significant improvements in students' game performance, and responsibilities with effort, self-direction, helping others. 3.) There was no significant difference in game performance and responsibilities between "merging TPSR with sports education model" and "sports education model". 4)."Merging TPSR with sports education model" significantly improve learning atmosphere and peer relationships, it may be developed in the physical education curriculum. The conclusions were as follows: Both "Merging TPSR with sports education model" and "sports education model" can help improve students' responsibility and game performance. However, "Merging TPSR with sports education model" can reduce the competitive atmosphere in highly intensive games between students. The curricular projects of hybrid TPSR-Sport Education model is a good approach for moral character education.

Keywords: curriculum and teaching model, sports self-efficacy, sport enthusiastic, character education

Procedia PDF Downloads 313
2905 BFDD-S: Big Data Framework to Detect and Mitigate DDoS Attack in SDN Network

Authors: Amirreza Fazely Hamedani, Muzzamil Aziz, Philipp Wieder, Ramin Yahyapour

Abstract:

Software-defined networking in recent years came into the sight of so many network designers as a successor to the traditional networking. Unlike traditional networks where control and data planes engage together within a single device in the network infrastructure such as switches and routers, the two planes are kept separated in software-defined networks (SDNs). All critical decisions about packet routing are made on the network controller, and the data level devices forward the packets based on these decisions. This type of network is vulnerable to DDoS attacks, degrading the overall functioning and performance of the network by continuously injecting the fake flows into it. This increases substantial burden on the controller side, and the result ultimately leads to the inaccessibility of the controller and the lack of network service to the legitimate users. Thus, the protection of this novel network architecture against denial of service attacks is essential. In the world of cybersecurity, attacks and new threats emerge every day. It is essential to have tools capable of managing and analyzing all this new information to detect possible attacks in real-time. These tools should provide a comprehensive solution to automatically detect, predict and prevent abnormalities in the network. Big data encompasses a wide range of studies, but it mainly refers to the massive amounts of structured and unstructured data that organizations deal with on a regular basis. On the other hand, it regards not only the volume of the data; but also that how data-driven information can be used to enhance decision-making processes, security, and the overall efficiency of a business. This paper presents an intelligent big data framework as a solution to handle illegitimate traffic burden on the SDN network created by the numerous DDoS attacks. The framework entails an efficient defence and monitoring mechanism against DDoS attacks by employing the state of the art machine learning techniques.

Keywords: apache spark, apache kafka, big data, DDoS attack, machine learning, SDN network

Procedia PDF Downloads 169
2904 Student Participation in Higher Education Quality Assurance Processes

Authors: Tomasz Zarebski

Abstract:

A very important element of the education system is its evaluation procedure. Each education system should be systematically evaluated and improved. Among the criteria subject to evaluation, attention should be paid to the following: structure of the study programme, implementation of the study programme, admission to studies, verification of learning outcomes achievement by students, giving credit for individual semesters and years, and awarding diplomas, competence, experience, qualifications and the number of staff providing education, staff development, and in-service training, education infrastructure, cooperation with social and economic stakeholders on the development, conditions for and methods of improving the internationalisation of education provided as part of the degree programme, supporting learning, social, academic or professional development of students and their entry on the labour market, public access to information about the study programme and quality assurance policy. Concerning the assessment process and the individual assessment indicators, the participation of students in these processes is essential. The purpose of this paper is to analyse the rules of student participation in accreditation processes on the example of individual countries in Europe. The rules of students' participation in the work of accreditation committees and their influence on the final grade of the committee were analysed. Most of the higher education institutions follow similar rules for accreditation. The general model gives the individual institution freedom to organize its own quality assurance, as long as the system lives up to the criteria for quality and relevance laid down in the particular provisions. This point also applies to students. The regulations of the following countries were examined in the legal-comparative aspect: Poland (Polish Accreditation Committee), Denmark (The Danish Accreditation Institution), France (High Council for the Evaluation of Research and Higher Education), Germany (Agency for Quality Assurance through Accreditation of Study Programmes) and Italy (National Agency for the Evaluation of Universities and Research Institutes).

Keywords: accreditation, student, study programme, quality assurance in higher education

Procedia PDF Downloads 171
2903 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background

Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong

Abstract:

Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.

Keywords: deep learning, image fusion, image generation, layout analysis

Procedia PDF Downloads 157
2902 Machine Learning Analysis of Eating Disorders Risk, Physical Activity and Psychological Factors in Adolescents: A Community Sample Study

Authors: Marc Toutain, Pascale Leconte, Antoine Gauthier

Abstract:

Introduction: Eating Disorders (ED), such as anorexia, bulimia, and binge eating, are psychiatric illnesses that mostly affect young people. The main symptoms concern eating (restriction, excessive food intake) and weight control behaviors (laxatives, vomiting). Psychological comorbidities (depression, executive function disorders, etc.) and problematic behaviors toward physical activity (PA) are commonly associated with ED. Acquaintances on ED risk factors are still lacking, and more community sample studies are needed to improve prevention and early detection. To our knowledge, studies are needed to specifically investigate the link between ED risk level, PA, and psychological risk factors in a community sample of adolescents. The aim of this study is to assess the relation between ED risk level, exercise (type, frequency, and motivations for engaging in exercise), and psychological factors based on the Jacobi risk factors model. We suppose that a high risk of ED will be associated with the practice of high caloric cost PA, motivations oriented to weight and shape control, and psychological disturbances. Method: An online survey destined for students has been sent to several middle schools and colleges in northwest France. This survey combined several questionnaires, the Eating Attitude Test-26 assessing ED risk; the Exercise Motivation Inventory–2 assessing motivations toward PA; the Hospital Anxiety and Depression Scale assessing anxiety and depression, the Contour Drawing Rating Scale; and the Body Esteem Scale assessing body dissatisfaction, Rosenberg Self-esteem Scale assessing self-esteem, the Exercise Dependence Scale-Revised assessing PA dependence, the Multidimensional Assessment of Interoceptive Awareness assessing interoceptive awareness and the Frost Multidimensional Perfectionism Scale assessing perfectionism. Machine learning analysis will be performed in order to constitute groups with a tree-based model clustering method, extract risk profile(s) with a bootstrap method comparison, and predict ED risk with a prediction method based on a decision tree-based model. Expected results: 1044 complete records have already been collected, and the survey will be closed at the end of May 2022. Records will be analyzed with a clustering method and a bootstrap method in order to reveal risk profile(s). Furthermore, a predictive tree decision method will be done to extract an accurate predictive model of ED risk. This analysis will confirm typical main risk factors and will give more data on presumed strong risk factors such as exercise motivations and interoceptive deficit. Furthermore, it will enlighten particular risk profiles with a strong level of proof and greatly contribute to improving the early detection of ED and contribute to a better understanding of ED risk factors.

Keywords: eating disorders, risk factors, physical activity, machine learning

Procedia PDF Downloads 83
2901 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 78
2900 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis

Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy

Abstract:

Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.

Keywords: associated cervical cancer, data mining, random forest, logistic regression

Procedia PDF Downloads 84
2899 Identification and Classification of Medicinal Plants of Indian Himalayan Region Using Hyperspectral Remote Sensing and Machine Learning Techniques

Authors: Kishor Chandra Kandpal, Amit Kumar

Abstract:

The Indian Himalaya region harbours approximately 1748 plants of medicinal importance, and as per International Union for Conservation of Nature (IUCN), the 112 plant species among these are threatened and endangered. To ease the pressure on these plants, the government of India is encouraging its in-situ cultivation. The Saussurea costus, Valeriana jatamansi, and Picrorhiza kurroa have also been prioritized for large scale cultivation owing to their market demand, conservation value and medicinal properties. These species are found from 1000 m to 4000 m elevation ranges in the Indian Himalaya. Identification of these plants in the field requires taxonomic skills, which is one of the major bottleneck in the conservation and management of these plants. In recent years, Hyperspectral remote sensing techniques have been precisely used for the discrimination of plant species with the help of their unique spectral signatures. In this background, a spectral library of the above 03 medicinal plants was prepared by collecting the spectral data using a handheld spectroradiometer (325 to 1075 nm) from farmer’s fields of Himachal Pradesh and Uttarakhand states of Indian Himalaya. The Random forest (RF) model was implied on the spectral data for the classification of the medicinal plants. The 80:20 standard split ratio was followed for training and validation of the RF model, which resulted in training accuracy of 84.39 % (kappa coefficient = 0.72) and testing accuracy of 85.29 % (kappa coefficient = 0.77). This RF classifier has identified green (555 to 598 nm), red (605 nm), and near-infrared (725 to 840 nm) wavelength regions suitable for the discrimination of these species. The findings of this study have provided a technique for rapid and onsite identification of the above medicinal plants in the field. This will also be a key input for the classification of hyperspectral remote sensing images for mapping of these species in farmer’s field on a regional scale. This is a pioneer study in the Indian Himalaya region for medicinal plants in which the applicability of hyperspectral remote sensing has been explored.

Keywords: himalaya, hyperspectral remote sensing, machine learning; medicinal plants, random forests

Procedia PDF Downloads 204
2898 Teachers' Accessibility to and Utilization of Electronic Media for Teaching Basic Science and Technology in Ilorin Metropolis, Kwara, Nigeria

Authors: Taibat Busari

Abstract:

Electronic media has created new options for enhancing education. It has long been providing innovative methods for arousing students’ attention in learning and improves teachers’ performance in disseminating instructional contents. However, the advancement of electronic media has increased the flexibility, availability, accessibility and improved communications among students-students, students-teacher, and teacher-students. This study investigated: (i) teachers’ accessibility to, and utilization of electronic media for teaching basic science and technology in Ilorin metropolis; (ii) the influence of school proprietorship on teachers’ access to and utilization of electronic media for teaching and; the influence of teachers’ gender on the use of electronic media. The research was a descriptive design using the survey method. The study sample was drawn for private and public secondary schools in Ilorin Metropolis. The respondents were 285 basic science and technology teachers, which comprised of 146 males and 139 females. A structured researcher designed questionnaire was used to gather data for the study. Pilot study was carried out on mini sample of 20 basic science and technology teachers in five schools which are not part of the study’s population. It was then subjected to Cronbach’s Alpha and yielded the values 0.794 for availability, 0.730 for accessibility and 0.84 for utilization of electronic media. The research questions were answered using mean and percentage while research hypotheses one and two was tested using t- test. The findings of the study showed that: (i) electronic media are available for teaching basic science and technology; (ii) teachers’ had access to electronic media for teaching; (iii) teachers’ utilized electronic media for teaching basic science and technology; (iv) there was no significant difference between teachers’ utilization of electronic media for teaching; (v) there was no significant difference between teachers’ utilization of electronic media for teaching based on school proprietorship. The study, therefore, concluded that teachers’ had access to electronic media and utilized it for teaching purposes. Gender had no influence on teachers’ access to and utilization on electronic media for teaching and also, school proprietorship had no influence on access and utilization of electronic media for teaching. Based on findings it was recommended that electronic media should be made available and utilized in all schools across the nation to improve the learning rate of the students.

Keywords: electronic media, basic science and technology, teachers' accessibility, Nigeria

Procedia PDF Downloads 156
2897 Evaluation of Teaching Performance in Higher Education: From the Students' Responsibility to Their Evaluative Competence

Authors: Natacha Jesus-Silva, Carla S. Pereira, Natercia Durao, Maria Das Dores Formosinho, Cristina Costa-Lobo

Abstract:

Any assessment process, by its very nature, raises a wide range of doubts, uncertainties, and insecurities of all kinds. The evaluation process should be ethically irreproachable, treating each and every one of the evaluated according to a conduct that ensures that the process is fair, contributing to all recognize and feel well with the processes and results of the evaluation. This is a very important starting point and implies that positive and constructive conceptions and attitudes are developed regarding the evaluation of teaching performance, where students' responsibility is desired. It is not uncommon to find teachers feeling threatened at various levels, in particular as regards their autonomy and their professional dignity. Evaluation must be useful in that it should enable decisions to be taken to improve teacher performance, the quality of teaching or the learning climate of the school. This study is part of a research project whose main objective is to identify, select, evaluate and synthesize the available evidence on Quality Indicators in Higher Education. In this work, the 01 parameters resulting from pedagogical surveys in a Portuguese higher education institution in the north of the country will be presented, surveys for the 2015/2016 school year, presented to 1751 students, in a total of 11 degrees and 18 master's degrees. It has analyzed the evaluation made by students with respect to the performance of a group of 68 teachers working full time. This paper presents the lessons learned in the last three academic years, allowing for the identification of the effects on the following areas: teaching strategies and methodologies, capacity of systematization, learning climate, creation of conditions for active student participation. This paper describes the procedures resulting from the descriptive analysis (frequency analysis, descriptive measures and association measures) and inferential analysis (ANOVA one-way, MANOVA one-way, MANOVA two-way and correlation analysis).

Keywords: teaching performance, higher education, students responsibility, indicators of teaching management

Procedia PDF Downloads 277
2896 Improving Numeracy Standards for UK Pharmacy Students

Authors: Luke Taylor, Samantha J. Hall, Kenneth I. Cumming, Jakki Bardsley, Scott S. P. Wildman

Abstract:

Medway School of Pharmacy, as part of an Equality Diversity and Inclusivity (EDI) initiative run by the University of Kent, decided to take steps to try and negate disparities in numeracy competencies within students undertaking the Master of Pharmacy degree in order to combat a trend in pharmacy students’ numerical abilities upon entry. This included a research driven project 1) to identify if pharmacy students are aware of weaknesses in their numeracy capabilities, and 2) recognise where their numeracy skillset is lacking. In addition to gaining this student perspective, a number of actions have been implemented to support students in improving their numeracy competencies. Reflective and quantitative analysis has shown promising improvements for the final year cohort of 2014/15 when compared to previous years. The method of involving student feedback into the structure of numeracy teaching/support has proven to be extremely beneficial to both students and teaching staff alike. Students have felt empowered and in control of their own learning requirements, leading to increased engagement and attainment. School teaching staff have received quality data to help improve existing initiatives and to innovate further in the area of numeracy teaching. In light of the recognised improvements, further actions are currently being trialled in the area of numeracy support. This involves utilising Virtual Learning Environment platforms to provide individualised support as a supplement to the increased numeracy mentoring (staff and peer) provided to students. Mentors who provide group or one-to-one sessions are now given significant levels of training in dealing with situations that commonly arise from mentoring schemes. They are also provided with continued support throughout the life of their degree. Following results from this study, Medway School of Pharmacy hopes to drive increasing numeracy standards within Pharmacy (primarily through championing peer mentoring) as well as other healthcare professions including Midwifery and Nursing.

Keywords: attainment, ethnicity, numeracy, pharmacy, support

Procedia PDF Downloads 236
2895 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model

Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis

Abstract:

Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).

Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry

Procedia PDF Downloads 225
2894 Role of Consultancy in Engineering Education

Authors: V. Nalina, P. Jayarekha

Abstract:

Consultancy by an engineering faculty member of an institution undertakes consulting assignments to provide professional or technical solutions to specific fields. Consulting is providing an opportunity for the engineering faculty to share their insights for the real world problems. It is a dynamic learning process with respect to students and faculty as it increases the teaching and research activities. In this paper, we discuss the need for consultancy in engineering education with faculty contribution towards consultancy and advantages of consultancy to institutions. Balance the workload of the faculty consulting with the responsibilities of academics defined by the universities.

Keywords: consultancy, academic consulting, engineering consultancy, faculty consulting

Procedia PDF Downloads 439
2893 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India

Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit

Abstract:

Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.

Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique

Procedia PDF Downloads 127
2892 Effects of a Cluster Grouping of Gifted and Twice Exceptional Students on Academic Motivation, Socio-emotional Adjustment, and Life Satisfaction

Authors: Line Massé, Claire Baudry, Claudia Verret, Marie-France Nadeau, Anne Brault-Labbé

Abstract:

Little research has been conducted on educational services adapted for twice exceptional students. Within an action research, a cluster grouping was set up in an elementary school in Quebec, bringing together gifted or doubly exceptional (2E) students (n = 11) and students not identified as gifted (n = 8) within a multilevel class (3ᵣ𝒹 and 4ₜₕ years). 2E students had either attention deficit hyperactivity disorder (n = 8, including 3 with specific learning disability) or autism spectrum disorder (n = 2). Differentiated instructions strategies were implemented, including the possibility of progressing at their own pace of learning, independent study or research projects, flexible accommodation, tutoring with older students and the development of socio-emotional learning. A specialized educator also supported the teacher in the class for behavioural and socio-affective aspects. Objectives: The study aimed to assess the impacts of the grouping on all students, their academic motivation, and their socio-emotional adaptation. Method: A mixed method was used, combining a qualitative approach with a quantitative approach. Semi-directed interviews were conducted with students (N = 18, 4 girls and 14 boys aged 8 to 9) and one of their parents (N = 18) at the end of the school year. Parents and students completed two questionnaires at the beginning and end of the school year: the Behavior Assessment System for Children-3, children or parents versions (BASC-3, Reynolds and Kampus, 2015) and the Academic Motivation in Education (Vallerand et al., 1993). Parents also completed the Multidimensional Student Life Satisfaction Scale (Huebner, 1994, adapted by Fenouillet et al., 2014) comprising three domains (school, friendships, and motivation). Mixed thematic analyzes were carried out on the data from the interviews using the N'Vivo software. Related-samples Wilcoxon rank-sums tests were conducted for the data from the questionnaires. Results: Different themes emerge from the students' comments, including a positive impact on school motivation or attitude toward school, improved school results, reduction of their behavioural difficulties and improvement of their social relations. These remarks were more frequent among 2E students. Most 2E students also noted an improvement in their academic performance. Most parents reported improvements in attitudes toward school and reductions in disruptive behaviours in the classroom. Some parents also observed changes in behaviours at home or in the socio-emotional well-being of their children, here again, particularly parents of 2E children. Analysis of questionnaires revealed significant differences at the end of the school year, more specifically pertaining to extrinsic motivation identified, problems of conduct, attention, emotional self-control, executive functioning, negative emotions, functional deficiencies, and satisfaction regarding friendships. These results indicate that this approach could benefit not only gifted and doubly exceptional students but also students not identified as gifted.

Keywords: Cluster grouping, elementary school, giftedness, mixed methods, twice exceptional students

Procedia PDF Downloads 74