Search results for: learning goal orientation
6425 State of the Science: Digital Therapies in Pediatric Mental Health
Authors: Billy Zou
Abstract:
Statement of the Problem: The burden of mental illness and problem behaviors in adolescence has risen worldwide. While less than 50% of teens have access to traditional mental health care, more than 73% have smartphones. Internet-based interventions offer advantages such as cost-effectiveness, availability, and flexibility. Methodology & Theoretical Orientation: A literature review was done using a PubMed search with the words mental health app yielding 2113 results. 103 articles that met inclusion criteria were reviewed, and findings were then described and synthesized. Findings: 1. Computer-based CBT was found to be effective for OCD, depression, social phobia, and panic disorder. 2. Web-based psychoeducation reduced problem behavior and improved parental well-being. 3. There is limited evidence for mobile-phone-based apps, but preliminary results suggest computer-based interventions are transferrable to mobile apps. 4. Adherence to app-based treatment was correlated with impressions about the user interface Conclusion & Significance: There is evidence for the effectiveness of computer-based programs in filling the significant gaps that currently exist in mental health delivery in the United States and internationally. There is also potential and theoretical validity for mobile-based apps to do the same, though more data is needed.Keywords: children's mental health, mental health app, child and adolecent psychiatry, digital therapy
Procedia PDF Downloads 766424 Deep Graph Embeddings for the Analysis of Short Heartbeat Interval Time Series
Authors: Tamas Madl
Abstract:
Sudden cardiac death (SCD) constitutes a large proportion of cardiovascular mortalities, provides little advance warning, and the risk is difficult to recognize based on ubiquitous, low cost medical equipment such as the standard, 12-lead, ten second ECG. Autonomic abnormalities have been shown to be strongly predictive of SCD risk; yet current methods are not trivially applicable to the brevity and low temporal and electrical resolution of standard ECGs. Here, we build horizontal visibility graph representations of very short inter-beat interval time series, and perform unsuper- vised representation learning in order to convert these variable size objects into fixed-length vectors preserving similarity rela- tions. We show that such representations facilitate classification into healthy vs. at-risk patients on two different datasets, the Mul- tiparameter Intelligent Monitoring in Intensive Care II and the PhysioNet Sudden Cardiac Death Holter Database. Our results suggest that graph representation learning of heartbeat interval time series facilitates robust classification even in sequences as short as ten seconds.Keywords: sudden cardiac death, heart rate variability, ECG analysis, time series classification
Procedia PDF Downloads 2386423 Intercultural Initiatives and Canadian Bilingualism
Authors: Muna Shafiq
Abstract:
Growth in international immigration is a reflection of increased migration patterns in Canada and in other parts of the world. Canada continues to promote itself as a bilingual country, yet the bilingual French and English population numbers do not reflect this platform. Each province’s integration policies focus only on second language learning of either English or French. Moreover, since English Canadians outnumber French Canadians, maintaining, much less increasing, English-French bilingualism appears unrealistic. One solution to increasing Canadian bilingualism requires creating intercultural communication initiatives between youth in Quebec and the rest of Canada. Specifically, the focus is on active, experiential learning, where intercultural competencies develop outside traditional classroom settings. The target groups are Generation Y Millennials and Generation Z Linksters, the next generations in the career and parenthood lines. Today, Canada’s education system, like many others, must continually renegotiate lines between programs it offers its immigrant and native communities. While some purists or right-wing nationalists would disagree, the survival of bilingualism in Canada has little to do with reducing immigration. Children and youth immigrants play a valuable role in increasing Canada’s French and English speaking communities. For instance, a focus on more immersion, over core French education programs for immigrant children and youth would not only increase bilingual rates; it would develop meaningful intercultural attachments between Canadians. Moreover, a vigilant increase of funding in French immersion programs is critical, as are new initiatives that focus on experiential language learning for students in French and English language programs. A favorable argument supports the premise that other than French-speaking students in Québec and elsewhere in Canada, second and third generation immigrant students are excellent ambassadors to promote bilingualism in Canada. Most already speak another language at home and understand the value of speaking more than one language in their adopted communities. Their dialogue and participation in experiential language exchange workshops are necessary. If the proposed exchanges take place inter-provincially, the momentum to increase collective regional voices increases. This regional collectivity can unite Canadians differently than nation-targeted initiatives. The results from an experiential youth exchange organized in 2017 between students at the crossroads of Generation Y and Generation Z in Vancouver and Quebec City respectively offer a promising starting point in assessing the strength of bringing together different regional voices to promote bilingualism. Code-switching between standard, international French Vancouver students, learn in the classroom versus more regional forms of Quebec French spoken locally created regional connectivity between students. The exchange was equally rewarding for both groups. Increasing their appreciation for each other’s regional differences allowed them to contribute actively to their social and emotional development. Within a sociolinguistic frame, this proposed model of experiential learning does not focus on hands-on work experience. However, the benefits of such exchanges are as valuable as work experience initiatives developed in experiential education. Students who actively code switch between French and English in real, not simulated contexts appreciate bilingualism more meaningfully and experience its value in concrete terms.Keywords: experiential learning, intercultural communication, social and emotional learning, sociolinguistic code-switching
Procedia PDF Downloads 1436422 Meitu and the Case of the AI Art Movement
Authors: Taliah Foudah, Sana Masri, Jana Al Ghamdi, Rimaz Alzaaqi
Abstract:
This research project explores the creative works of the app Metui, which allows consumers to edit their photos and use the new and popular AI feature, which turns any photo into a cartoon-like animated image with beautified enhancements. Studying this AI app demonstrates the significance of the ability in which AI can develop intricate designs which verily replicate the human mind. Our goal was to investigate the Metui app by asking our audience certain questions about its functionality and their personal feelings about its credibility as well as their beliefs as to how this app will add to the future of the AI generation, both positively and negatively. Their responses were further explored by analyzing the questions and responses thoroughly and calculating the results through pie charts. Overall, it was concluded that the Metui app is a powerful step forward for AI by replicating the intelligence of humans and its creativity to either benefit society or do the opposite.Keywords: AI Art, Meitu, application, photo editing
Procedia PDF Downloads 746421 Effects of Artificial Intelligence and Machine Learning on Social Media for Health Organizations
Authors: Ricky Leung
Abstract:
Artificial intelligence (AI) and machine learning (ML) have revolutionized the way health organizations approach social media. The sheer volume of data generated through social media can be overwhelming, but AI and ML can help organizations effectively manage this information to improve the health and well-being of individuals and communities. One way AI can be used to enhance social media in health organizations is through sentiment analysis. This involves analyzing the emotions expressed in social media posts to better understand public opinion and respond accordingly. This can help organizations gauge the impact of their campaigns, track the spread of misinformation, and improve communication with the public. While social media is a useful tool, researchers and practitioners have expressed fear that it will be used for the spread of misinformation, which can have serious consequences for public health. Health organizations must work to ensure that AI systems are transparent, trustworthy, and unbiased so they can help minimize the spread of misinformation. In conclusion, AI and ML have the potential to greatly enhance the use of social media in health organizations. These technologies can help organizations effectively manage large amounts of data and understand stakeholders' sentiments. However, it is important to carefully consider the potential consequences and ensure that these systems are carefully designed to minimize the spread of misinformation.Keywords: AI, ML, social media, health organizations
Procedia PDF Downloads 946420 Communication Anxiety in Nigerian Students Studying English as a Foreign Language: Evidence from Colleges of Education Sector
Authors: Yasàlu Haruna
Abstract:
In every transaction, the use of language is central regardless of form or complexity if any meaning is expected to be harvested therefrom. Students constituting a population group in the learning landscape of Nigeria occupy a central position with a propensity to excel or otherwise in the context of communication, especially in the learning process and social interaction. The nature or quantum of anxiety or confidence in speaking a second language is not only peculiar to societies where the second language is not an official language but to a degree, the linguistic gap created by adoption and adaptation syndrome manifests in created anxiety or lack of confidence especially where mastery of a spoken language becomes a major challenge. This paper explores the manner in which linguistic complexity and cultural barriers combine to widen the adaptation and adoption gap. In much the same way, typical issues of pronouncement, intonation and accent difficulties are vital variables that explain the root cause of anxiety. Using a combination of primary and secondary sources of data expressed in questionnaires, key informant interviews and other available data, the paper concludes that the non-integration of anxiety possibility into the education delivery framework has left a lot to be needed in cultivating second language speakers among students of Nigerian Colleges of Education. In addition, cultural barriers and the absence of integration interfaces in the course of learning within and outside the classroom contribute to further widening the gap. Again, colleagues/mates/conversation partners' mastery of a second language remains a contributory factor largely due to the quality of the preparatory school system in many parts of the country. The paper recommends that national policies and frameworks must be reviewed to consider integration windows where culture and conversation partner deficiencies can be remedied through educational events such as debates, quizzes and symposia; improvements can be attained while commercial advertisements are tailored towards seeking for adoption of second language in commerce and major cultural activities.Keywords: cultural barriers, integration, college of education and adaptation, second language
Procedia PDF Downloads 966419 Flexural Analysis of Symmetric Laminated Composite Timoshenko Beams under Harmonic Forces: An Analytical Solution
Authors: Mohammed Ali Hjaji, A.K. El-Senussi, Said H. Eshtewi
Abstract:
The flexural dynamic response of symmetric laminated composite beams subjected to general transverse harmonic forces is investigated. The dynamic equations of motion and associated boundary conditions based on the first order shear deformation are derived through the use of Hamilton’s principle. The influences of shear deformation, rotary inertia, Poisson’s ratio and fibre orientation are incorporated in the present formulation. The resulting governing flexural equations for symmetric composite Timoshenko beams are exactly solved and the closed form solutions for steady state flexural response are then obtained for cantilever and simply supported boundary conditions. The applicability of the analytical closed-form solution is demonstrated via several examples with various transverse harmonic loads and symmetric cross-ply and angle-ply laminates. Results based on the present solution are assessed and validated against other well established finite element solutions and exact solutions available in the literature.Keywords: analytical solution, flexural response, harmonic forces, symmetric laminated beams, steady state response
Procedia PDF Downloads 4916418 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel
Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler
Abstract:
Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process
Procedia PDF Downloads 1396417 The Effect of Catastrophic Losses on Insurance Cycle: Case of Croatia
Authors: Drago Jakovčević, Maja Mihelja Žaja
Abstract:
This paper provides an analysis of the insurance cycle in the Republic of Croatia and whether they are affected by catastrophic losses on a global level. In general, it is considered that insurance cycles are particularly pronounced in periods of financial crisis, but are also affected by the growing number of catastrophic losses. They cause the change of insurance cycle and premium growth and intensification and narrowing of the coverage conditions, so these variables move in the same direction and these phenomena point to a new cycle. The main goal of this paper is to determine the existence of insurance cycle in the Republic of Croatia and investigate whether catastrophic losses have an influence on insurance cycles.Keywords: catastrophic loss, insurance cycle, premium, Republic of Croatia
Procedia PDF Downloads 3566416 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization
Authors: Soheila Sadeghi
Abstract:
Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction
Procedia PDF Downloads 656415 An Architectural Approach for the Dynamic Adaptation of Services-Based Software
Authors: Mohhamed Yassine Baroudi, Abdelkrim Benammar, Fethi Tarik Bendimerad
Abstract:
This paper proposes software architecture for dynamical service adaptation. The services are constituted by reusable software components. The adaptation’s goal is to optimize the service function of their execution context. For a first step, the context will take into account just the user needs but other elements will be added. A particular feature in our proposition is the profiles that are used not only to describe the context’s elements but also the components itself. An adapter analyzes the compatibility between all these profiles and detects the points where the profiles are not compatibles. The same Adapter search and apply the possible adaptation solutions: component customization, insertion, extraction or replacement.Keywords: adaptative service, software component, service, dynamic adaptation
Procedia PDF Downloads 3046414 Organizational Innovations of the 20th Century as High Tech of the 21st: Evidence from Patent Data
Authors: Valery Yakubovich, Shuping wu
Abstract:
Organization theorists have long claimed that organizational innovations are nontechnological, in part because they are unpatentable. The claim rests on the assumption that organizational innovations are abstract ideas embodied in persons and contexts rather than in context-free practical tools. However, over the last three decades, organizational knowledge has been increasingly embodied in digital tools which, in principle, can be patented. To provide the first empirical evidence regarding the patentability of organizational innovations, we trained two machine learning algorithms to identify a population of 205,434 patent applications for organizational technologies (OrgTech) and, among them, 141,285 applications that use organizational innovations accumulated over the 20th century. Our event history analysis of the probability of patenting an OrgTech invention shows that ideas from organizational innovations decrease the probability of patent allowance unless they describe a practical tool. We conclude that the present-day digital transformation places organizational innovations in the realm of high tech and turns the debate about organizational technologies into the challenge of designing practical organizational tools that embody big ideas about organizing. We outline an agenda for patent-based research on OrgTech as an emerging phenomenon.Keywords: organizational innovation, organizational technology, high tech, patents, machine learning
Procedia PDF Downloads 1266413 Adaption to Climate Change as a Challenge for the Manufacturing Industry: Finding Business Strategies by Game-Based Learning
Authors: Jan Schmitt, Sophie Fischer
Abstract:
After the Corona pandemic, climate change is a further, long-lasting challenge the society must deal with. An ongoing climate change need to be prevented. Nevertheless, the adoption tothe already changed climate conditionshas to be focused in many sectors. Recently, the decisive role of the economic sector with high value added can be seen in the Corona crisis. Hence, manufacturing industry as such a sector, needs to be prepared for climate change and adaption. Several examples from the manufacturing industry show the importance of a strategic effort in this field: The outsourcing of a major parts of the value chain to suppliers in other countries and optimizing procurement logistics in a time-, storage- and cost-efficient manner within a network of global value creation, can lead vulnerable impacts due to climate-related disruptions. E.g. the total damage costs after the 2011 flood disaster in Thailand, including costs for delivery failures, were estimated at 45 billion US dollars worldwide. German car manufacturers were also affected by supply bottlenecks andhave close its plant in Thailand for a short time. Another OEM must reduce the production output. In this contribution, a game-based learning approach is presented, which should enable manufacturing companies to derive their own strategies for climate adaption out of a mix of different actions. Based on data from a regional study of small, medium and large manufacturing companies in Mainfranken, a strongly industrialized region of northern Bavaria (Germany) the game-based learning approach is designed. Out of this, the actual state of efforts due to climate adaption is evaluated. First, the results are used to collect single actions for manufacturing companies and second, further actions can be identified. Then, a variety of climate adaption activities can be clustered according to the scope of activity of the company. The combination of different actions e.g. the renewal of the building envelope with regard to thermal insulation, its benefits and drawbacks leads to a specific strategy for climate adaption for each company. Within the game-based approach, the players take on different roles in a fictionalcompany and discuss the order and the characteristics of each action taken into their climate adaption strategy. Different indicators such as economic, ecologic and stakeholder satisfaction compare the success of the respective measures in a competitive format with other virtual companies deriving their own strategy. A "play through" climate change scenarios with targeted adaptation actions illustrate the impact of different actions and their combination onthefictional company.Keywords: business strategy, climate change, climate adaption, game-based learning
Procedia PDF Downloads 2116412 Behavioural-Orientation and Continuity of Informality in Ghana
Authors: Yvonne Ayerki Lamptey
Abstract:
The expanding informal sector in developing countries and in Ghana in particular from the 1980s has now been aggravated by the growing population and downsizing in both the public and private sectors, with displaced workers finding alternative livelihoods in the informal sector. Youth and graduate unemployment also swell the numbers and further promote the continuity of the sector. Formal workers and institutions facilitate the growth and complicate demarcations between informality within the formal and informal sectors. In spite of its growth and increasing importance, the informal economy does not feature in policy debates and has often been neglected by the Ghana government. The phenomenon has evolved with modernity into myriad unimaginable forms. Indeed, actors within the sector often clash with the interventions provided by policy makers - because neither the operatives nor the activities they perform can be clearly defined. This study uses in-depth interviews to explore the behavioural nature of the informal workers in Ghana to understand how the operatives describe and perceive the sector, and to identify the factors that influence their drive to stay within the sector. This paper concludes that the operatives clearly distinguish between the formal and informal sectors and identify the characteristics and conditions that constitute the informal sector. Other workers are trapped between formality and informality. The findings also enumerate the push and pull factors contributing to the growth of the sector.Keywords: informal employment, informal sector, informal work, informality
Procedia PDF Downloads 3056411 Dialogic Approaches to Writing Pedagogy
Authors: Yael Leibovitch
Abstract:
Teaching academic writing is a source of concern for secondary schools. Many students struggle to meet the basic standards of literacy while teacher confidence in this arena remains low. These issues are compounded by the conventionally prescriptive character of writing instruction, which fails to engage student writers. At the same time, a growing body of research on dialogic teaching has highlighted the powerful role of talk in student learning. With the intent of enhancing pedagogical capability, this paper shares finding from a co-inquiry case study that investigated how teachers think about and negotiate classroom discourse to position students as effective academic writers and thinkers. Using a range of qualitative methods, this project closely documents the iterative collaboration of educators as they sought to create more opportunities for dialogic engagement. More specifically, it triangulates both teacher and student data regarding the efficacy of interdependent thinking and collaborative reasoning as organizing principals for literacy learning. Findings indicate that a dialogic teaching repertoire helps to develop the cognitive and metacognitive skills of adolescent writers. In addition, they underscore the importance of sustained professional collaboration to the uptake of new writing pedagogies.Keywords: dialogic teaching, writing, teacher professional development, student literacy
Procedia PDF Downloads 2166410 Support Services in Open and Distance Education: An Integrated Model of Open Universities
Authors: Evrim Genc Kumtepe, Elif Toprak, Aylin Ozturk, Gamze Tuna, Hakan Kilinc, Irem Aydin Menderis
Abstract:
Support services are very significant elements for all educational institutions in general; however, for distance learners, these services are more essential than traditional (face-to-face) counterparts. One of the most important reasons for this is that learners and instructors do not share the same physical environment and that distance learning settings generally require intrapersonal interactions rather than interpersonal ones. Some learners in distance learning programs feel isolated. Furthermore, some fail to feel a sense of belonging to the institution because of lack of self-management skills, lack of motivation levels, and the need of being socialized, so that they are more likely to fail or drop out of an online class. In order to overcome all these problems, support services have emerged as a critical element for an effective and sustainable distance education system. Within the context of distance education support services, it is natural to include technology-based and web-based services and also the related materials. Moreover, institutions in education sector are expected to use information and communication technologies effectively in order to be successful in educational activities and programs. In terms of the sustainability of the system, an institution should provide distance education services through ICT enabled processes to support all stakeholders in the system, particularly distance learners. In this study, it is envisaged to develop a model based on the current support services literature in the field of open and distance learning and the applications of the distance higher education institutions. Specifically, content analysis technique is used to evaluate the existing literature in the distance education support services, the information published on websites, and applications of distance higher education institutions across the world. A total of 60 institutions met the inclusion criteria which are language option (English) and availability of materials in the websites. The six field experts contributed to brainstorming process to develop and extract codes for the coding scheme. During the coding process, these preset and emergent codes are used to conduct analyses. Two coders independently reviewed and coded each assigned website to ensure that all coders are interpreting the data the same way and to establish inter-coder reliability. Once each web page is included in descriptive and relational analysis, a model of support services is developed by examining the generated codes and themes. It is believed that such a model would serve as a quality guide for future institutions, as well as the current ones.Keywords: support services, open education, distance learning, support model
Procedia PDF Downloads 2076409 Ensemble of Deep CNN Architecture for Classifying the Source and Quality of Teff Cereal
Authors: Belayneh Matebie, Michael Melese
Abstract:
The study focuses on addressing the challenges in classifying and ensuring the quality of Eragrostis Teff, a small and round grain that is the smallest cereal grain. Employing a traditional classification method is challenging because of its small size and the similarity of its environmental characteristics. To overcome this, this study employs a machine learning approach to develop a source and quality classification system for Teff cereal. Data is collected from various production areas in the Amhara regions, considering two types of cereal (high and low quality) across eight classes. A total of 5,920 images are collected, with 740 images for each class. Image enhancement techniques, including scaling, data augmentation, histogram equalization, and noise removal, are applied to preprocess the data. Convolutional Neural Network (CNN) is then used to extract relevant features and reduce dimensionality. The dataset is split into 80% for training and 20% for testing. Different classifiers, including FVGG16, FINCV3, QSCTC, EMQSCTC, SVM, and RF, are employed for classification, achieving accuracy rates ranging from 86.91% to 97.72%. The ensemble of FVGG16, FINCV3, and QSCTC using the Max-Voting approach outperforms individual algorithms.Keywords: Teff, ensemble learning, max-voting, CNN, SVM, RF
Procedia PDF Downloads 596408 Use of Computer and Machine Learning in Facial Recognition
Authors: Neha Singh, Ananya Arora
Abstract:
Facial expression measurement plays a crucial role in the identification of emotion. Facial expression plays a key role in psychophysiology, neural bases, and emotional disorder, to name a few. The Facial Action Coding System (FACS) has proven to be the most efficient and widely used of the various systems used to describe facial expressions. Coders can manually code facial expressions with FACS and, by viewing video-recorded facial behaviour at a specified frame rate and slow motion, can decompose into action units (AUs). Action units are the most minor visually discriminable facial movements. FACS explicitly differentiates between facial actions and inferences about what the actions mean. Action units are the fundamental unit of FACS methodology. It is regarded as the standard measure for facial behaviour and finds its application in various fields of study beyond emotion science. These include facial neuromuscular disorders, neuroscience, computer vision, computer graphics and animation, and face encoding for digital processing. This paper discusses the conceptual basis for FACS, a numerical listing of discrete facial movements identified by the system, the system's psychometric evaluation, and the software's recommended training requirements.Keywords: facial action, action units, coding, machine learning
Procedia PDF Downloads 1106407 Illuminating Human Identity in Theology and Islamic Philosophy
Authors: Khan Shahid, Shahid Zakia
Abstract:
The article demonstrates how Theology and Islamic Philosophy can be illuminated and enhanced through the application of the SOUL framework (Sincere act, Optimization effort, Ultimate goal, Law compliance). The study explores historical development using a phenomenological approach and integrates the SOUL framework to enrich Theology and Islamic Philosophy. The proposed framework highlights the significance of these elements, ultimately leading to a deeper understanding of Theology and Islamic Philosophy.Keywords: SOUL framework, illuminating human identity, theology, Islamic Philosophy, sincerity act, optimization effort, ultimate goals, law compliance
Procedia PDF Downloads 946406 Gas Aggregation and Nanobubbles Stability on Substrates Influenced by Surface Wettability: A Molecular Dynamics Study
Authors: Tsu-Hsu Yen
Abstract:
The interfacial gas adsorption presents a frequent challenge and opportunity for micro-/nano-fluidic operation. In this study, we investigate the wettability, gas accumulation, and nanobubble formation on various homogeneous surface conditions by using MD simulation, including a series of 3D and quasi-2D argon-water-solid systems simulation. To precisely determine the wettability on various substrates, several indicators were calculated. Among these wettability indicators, the water PMF (potential of mean force) has the most correlation tendency with interfacial water molecular orientation than depletion layer width and droplet contact angle. The results reveal that the aggregation of argon molecules on substrates not only depending on the level of hydrophobicity but also determined by the competition between gas-solid and water-solid interaction as well as water molecular structure near the surface. In addition, the surface nanobubble is always observed coexisted with the gas enrichment layer. The water structure adjacent to water-gas and water-solid interfaces also plays an important factor in gas out-flux and gas aggregation, respectively. The quasi-2D simulation shows that only a slight difference in the curved argon-water interface from the plane interface which suggests no noticeable obstructing effect on gas outflux from the gas-water interfacial water networks.Keywords: gas aggregation, interfacial nanobubble, molecular dynamics simulation, wettability
Procedia PDF Downloads 1196405 Understanding English Language in Career Development of Academics in Non-English Speaking HEIs: A Systematic Literature Review
Authors: Ricardo Pinto Mario Covele, Patricio V. Langa, Patrick Swanzy
Abstract:
The English language has been recognized as a universal medium of instruction in academia, especially in Higher Education Institutions (HEIs) hence exerting enormous influence within the context of research and publication. By extension, the English Language has been embraced by scholars from non-English speaking countries. The purpose of this review was to synthesize the discussions using four databases. Discussion in the English language in the career development of academics, particularly in non-English speaking universities, is largely less visible. This paper seeks to fill this gap and to improve the visibility of the English language in the career development of academics focusing on non-English language speaking universities by undertaking a systematic literature review. More specifically, the paper addresses the language policy, English language learning model as a second language, sociolinguistic field and career development, methods, as well as its main findings. This review analyzed 75 relevant resources sourced from Western Cape’s Library, Scopus, Google scholar, and web of science databases from November 2020 to July 2021 using the PQRS framework as an analytical lens. The paper’s findings demonstrate that, while higher education continues to be under-challenges of English language usage, literature targeting non-English speaking universities remains less discussed than it is often described. The findings also demonstrate the dominance of English language policy, both for knowledge production and dissemination of literature challenging emerging scholars from non-English speaking HEIs. Hence, the paper argues for the need to reconsider the context of non-English language speakers in the English language in the career development of academics’ research, both as empirical fields and as emerging knowledge producers. More importantly, the study reveals two bodies of literature: (1) the instrumentalist approach to English Language learning and (2) Intercultural approach to the English Language for career opportunities, classified as the appropriate to explain the English language learning process and how is it perceived towards scholars’ academic careers in HEIs.Keywords: English language, public and private universities, language policy, career development, non-English speaking countries
Procedia PDF Downloads 1616404 A Smart Contract Project: Peer-to-Peer Energy Trading with Price Forecasting in Microgrid
Authors: Şakir Bingöl, Abdullah Emre Aydemir, Abdullah Saado, Ahmet Akıl, Elif Canbaz, Feyza Nur Bulgurcu, Gizem Uzun, Günsu Bilge Dal, Muhammedcan Pirinççi
Abstract:
Smart contracts, which can be applied in many different areas, from financial applications to the internet of things, come to the fore with their security, low cost, and self-executing features. In this paper, it is focused on peer-to-peer (P2P) energy trading and the implementation of the smart contract on the Ethereum blockchain. It is assumed a microgrid consists of consumers and prosumers that can produce solar and wind energy. The proposed architecture is a system where the prosumer makes the purchase or sale request in the smart contract and the maximum price obtained through the distribution system operator (DSO) by forecasting. It is aimed to forecast the hourly maximum unit price of energy by using deep learning instead of a fixed pricing. In this way, it will make the system more reliable as there will be more dynamic and accurate pricing. For this purpose, Istanbul's energy generation, energy consumption and market clearing price data were used. The consistency of the available data and forecasting results is observed and discussed with graphs.Keywords: energy trading smart contract, deep learning, microgrid, forecasting, Ethereum, peer to peer
Procedia PDF Downloads 1436403 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: big data, k-NN, machine learning, traffic speed prediction
Procedia PDF Downloads 3676402 The Governance of Islamic Banks in Morocco: Meaning, Strategic Vision and Purposes Attributed to the Governance System
Authors: Lalla Nezha Lakmiti, Abdelkahar Zahid
Abstract:
Due to the setbacks on the international scene and the wave of cacophonic financial scandals affecting large international groups, the new Islamic finance industry is not immune despite its initial resistance. The purpose of this paper is to understand and analyze the meaning of the Corporate Governance (CG) concept in Moroccan Islamic banking systems with specific reference to their institutions. The research objective is to identify also the path taken and adopted by these banks recently set up in Morocco. The foundation is rooted in shari'a, in particular, no stakeholder (the shareholding approach) must be harmed, and the ethical value is reflected into these parties’ behavior. We chose a qualitative method, semi-structured interviews where six managers provided answers about their banking systems. Since these respondents held a senior position (directors) within their organizations, it is felt that they are well placed and have the necessary knowledge to provide us with information to answer the questions asked. The results identified the orientation of participating banks and assessing how governance works, while determining which party is fovoured: shareholders, stakeholders or both. This study discusses the favorable condition to the harmonization of the regulations and therefore a better integration between Islamic finance and conventional ones in the economic context of Morocco.Keywords: corporate governance, Islamic Banks, stakeholders, shareholders
Procedia PDF Downloads 1166401 Sustainable Enterprise Theory: A Starting Point for Reporting Sustainable Business Values
Authors: Arne Fagerstrom, Gary Cunningham, Fredrik Hartwig
Abstract:
In this paper, a theory of sustainable enterprises, sustainable enterprise theory (SET), is developed. The sustainable enterprise theory can only be a valid theory if knowledge about life and nature is complete. Knowledge limitations should not stop enterprises from doing business with a goal of better long-term life on earth. Life demands stewardship of the resources used during one’s lifetime. This paper develops a model influenced by (the classical) enterprise theory and resource theory that includes more than money in the business activities of an enterprise. The sustainable enterprise theory is then used in an analysis of accountability and in discussions about sustainable businesses.Keywords: sustainable business, sustainability reporting, sustainable values, theory of the firm
Procedia PDF Downloads 5856400 Learning the Most Common Causes of Major Industrial Accidents and Apply Best Practices to Prevent Such Accidents
Authors: Rajender Dahiya
Abstract:
Investigation outcomes of major process incidents have been consistent for decades and validate that the causes and consequences are often identical. The debate remains as we continue to experience similar process incidents even with enormous development of new tools, technologies, industry standards, codes, regulations, and learning processes? The objective of this paper is to investigate the most common causes of major industrial incidents and reveal industry challenges and best practices to prevent such incidents. The author, in his current role, performs audits and inspections of a variety of high-hazard industries in North America, including petroleum refineries, chemicals, petrochemicals, manufacturing, etc. In this paper, he shares real life scenarios, examples, and case studies from high hazards operating facilities including key challenges and best practices. This case study will provide a clear understanding of the importance of near miss incident investigation. The incident was a Safe operating limit excursion. The case describes the deficiencies in management programs, the competency of employees, and the culture of the corporation that includes hazard identification and risk assessment, maintaining the integrity of safety-critical equipment, operating discipline, learning from process safety near misses, process safety competency, process safety culture, audits, and performance measurement. Failure to identify the hazards and manage the risks of highly hazardous materials and processes is one of the primary root-causes of an incident, and failure to learn from past incidents is the leading cause of the recurrence of incidents. Several investigations of major incidents discovered that each showed several warning signs before occurring, and most importantly, all were preventable. The author will discuss why preventable incidents were not prevented and review the mutual causes of learning failures from past major incidents. The leading causes of past incidents are summarized below. Management failure to identify the hazard and/or mitigate the risk of hazardous processes or materials. This process starts early in the project stage and continues throughout the life cycle of the facility. For example, a poorly done hazard study such as HAZID, PHA, or LOPA is one of the leading causes of the failure. If this step is performed correctly, then the next potential cause is. Management failure to maintain the integrity of safety critical systems and equipment. In most of the incidents, mechanical integrity of the critical equipment was not maintained, safety barriers were either bypassed, disabled, or not maintained. The third major cause is Management failure to learn and/or apply learning from the past incidents. There were several precursors before those incidents. These precursors were either ignored altogether or not taken seriously. This paper will conclude by sharing how a well-implemented operating management system, good process safety culture, and competent leaders and staff contributed to managing the risks to prevent major incidents.Keywords: incident investigation, risk management, loss prevention, process safety, accident prevention
Procedia PDF Downloads 626399 Promoting Students' Worldview Through Integrative Education in the Process of Teaching Biology in Grades 11 and 12 of High School
Authors: Saule Shazhanbayeva, Denise van der Merwe
Abstract:
Study hypothesis: Nazarbayev Intellectual School of Kyzylorda’s Biology teachers can use STEM-integrated learning to improve students' problem-solving ability and responsibility as global citizens. The significance of this study is to indicate how the use of STEM integrative learning during Biology lessons could contribute to forming globally-minded students who are responsible community members. For the purposes of this study, worldview is defined as a view that is broader than the country of Kazakhstan, allowing students to see the significance of their scientific contributions to the world as global citizens. The context of worldview specifically indicates that most students have never traveled outside of their city or region within Kazakhstan. In order to broaden student understanding, it is imperative that students are exposed to different world views and contrasting ideas within the educational setting of Biology as the science being used for the research. This exposure promulgates students understanding of the significance they have as global citizens alongside the obligations which would rest on them as scientifically minded global citizens. Integrative learning should be Biological Science - with Technology and engineering in the form of problem-solving, and Mathematics to allow improved problem-solving skills to develop within the students of Nazarbayev Intellectual School (NIS) of Kyzylorda. The school's vision is to allow students to realise their role as global citizens and become responsible community members. STEM allows integrations by combining four subject skills to solve topical problems designed by educators. The methods used are based on qualitative analysis: for students’ performance during a problem-solution scenario; and Biology teacher interviews to ascertain their understanding of STEM implementation and willingness to integrate it into current lessons. The research indicated that NIS is ready for a shift into STEM lessons to promote globally responsible students. The only additional need is for proper STEM integrative lesson method training for teachers.Keywords: global citizen, STEM, Biology, high-school
Procedia PDF Downloads 746398 Comparison of the Response of TLD-100 and TLD-100H Dosimeters in Diagnostic Radiology
Authors: S. Sina, B. Zeinali, M. Karimipourfard, F. Lotfalizadeh, M. Sadeghi, E. Zamani, M. Zehtabian, R. Faghihi
Abstract:
Proper dosimetery is very essential in diagnostic radiology. The goal of this study is to verify the application of LiF:Mg, Cu, P (TLD100H) in obtaining the entrance skin dose (ESD) of patients undergoing diagnostic radiology. The results of dosimetry performed by TLD-100H were compared with those obtained by TLD100, which is a common dosimeter in diagnostic radiology. The results show a close agreement between the dose measured by the two dosimeters. According to the results of this study, the TLD-100H dosimeters have higher sensitivities (i.e. signal(nc)/dose) than TLD-100. Therefore, it is suggested that the TLD-100H are effective dosimeters for dosimetry in low dose fields.Keywords: entrance skin dose, TLD, diagnostic radiology, dosimeter
Procedia PDF Downloads 4786397 The Effectiveness of Homeschooling: A Stakeholder's Perception in East London Education District
Authors: N. M. Zukani, E. O. Adu
Abstract:
Homeschooling has been a primary method for parents to educate their children. It has become a growing educational phenomenon across the globe. However, homeschooling is, therefore, an alternative form of education in which children are instructed at home rather than in mainstream schools. This study evaluated the effectiveness of homeschooling in East London Education District, looking at the stakeholder’s perceptions, reviewing issues that impact on this as reflected in literature. This is a qualitative study done in selected homeschools. Semi structured interviews were used as a form of collecting data. Data was scrutinized and grouped into themes. The study revealed the importance of differentiation of instruction, and the need for flexibility in the process of homeschooling for children who faced difficulties, special needs in learning in mainstream schooling. It is therefore concluded that the participants in the study clearly showed that homeschooling is an educational choice for parents who have concerns about the quality of education of their children. Furthermore, homeschooling has the potential to be the most learner centered, nurturing educational approach. It was recommended that an effective homeschooling practice mainly, the practice should consider attention to children-parent’s goals and learning structure. Although homeschooling looks at how to overcome the drawbacks of mainstream schooling, there are also cases that reflected, the incompetency of parents or tutors conducting the homeschooling and also a need for the support material and other educational supports from the government.Keywords: homeschooling, effectiveness, stakeholders, parents, perception
Procedia PDF Downloads 1446396 Diabetes Diagnosis Model Using Rough Set and K- Nearest Neighbor Classifier
Authors: Usiobaifo Agharese Rosemary, Osaseri Roseline Oghogho
Abstract:
Diabetes is a complex group of disease with a variety of causes; it is a disorder of the body metabolism in the digestion of carbohydrates food. The application of machine learning in the field of medical diagnosis has been the focus of many researchers and the use of recognition and classification model as a decision support tools has help the medical expert in diagnosis of diseases. Considering the large volume of medical data which require special techniques, experience, and high diagnostic skill in the diagnosis of diseases, the application of an artificial intelligent system to assist medical personnel in order to enhance their efficiency and accuracy in diagnosis will be an invaluable tool. In this study will propose a diabetes diagnosis model using rough set and K-nearest Neighbor classifier algorithm. The system consists of two modules: the feature extraction module and predictor module, rough data set is used to preprocess the attributes while K-nearest neighbor classifier is used to classify the given data. The dataset used for this model was taken for University of Benin Teaching Hospital (UBTH) database. Half of the data was used in the training while the other half was used in testing the system. The proposed model was able to achieve over 80% accuracy.Keywords: classifier algorithm, diabetes, diagnostic model, machine learning
Procedia PDF Downloads 339