Search results for: real-coded genetic algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4771

Search results for: real-coded genetic algorithm

421 In vitro Evaluation of Immunogenic Properties of Oral Application of Rabies Virus Surface Glycoprotein Antigen Conjugated to Beta-Glucan Nanoparticles in a Mouse Model

Authors: Narges Bahmanyar, Masoud Ghorbani

Abstract:

Rabies is caused by several species of the genus Lyssavirus in the Rhabdoviridae family. The disease is deadly encephalitis transmitted from warm-blooded animals to humans, and domestic and wild carnivores play the most crucial role in its transmission. The prevalence of rabies in poor areas of developing salinities is constantly posed as a global threat to public health. According to the World Health Organization, approximately 60,000 people die yearly from rabies. Of these, 60% of deaths are related to the Middle East. Although rabies encephalitis is incurable to date, awareness of the disease and the use of vaccines is the best way to combat the disease. Although effective vaccines are available, there is a high cost involved in vaccine production and management to combat rabies. Increasing the prevalence and discovery of new strains of rabies virus requires the need for safe, effective, and as inexpensive vaccines as possible. One of the approaches considered to achieve the quality and quantity expressed through the manufacture of recombinant types of rabies vaccine. Currently, livestock rabies vaccines are used only in inactivated or live attenuated vaccines, the process of inactivation of which pays attention to considerations. The rabies virus contains a negatively polarized single-stranded RNA genome that encodes the five major structural genes (N, P, M, G, L) from '3 to '5 . Rabies virus glycoprotein G, the major antigen, can produce the virus-neutralizing antibody. N-antigen is another candidate for developing recombinant vaccines. However, because it is within the RNP complex of the virus, the possibility of genetic diversity based on different geographical locations is very high. Glycoprotein G is structurally and antigenically more protected than other genes. Protection at the level of its nucleotide sequence is about 90% and at the amino acid level is 96%. Recombinant vaccines, consisting of a pathogenic subunit, contain fragments of the protein or polysaccharide of the pathogen that have been carefully studied to determine which of these molecules elicits a stronger and more effective immune response. These vaccines minimize the risk of side effects by limiting the immune system's access to the pathogen. Such vaccines are relatively inexpensive, easy to produce, and more stable than vaccines containing viruses or whole bacteria. The problem with these vaccines is that the pathogenic subunits may elicit a weak immune response in the body or may be destroyed before they reach the immune cells, which requires nanoparticles to overcome. Suitable for use as an adjuvant. Among these, biodegradable nanoparticles with functional levels are good candidates as adjuvants for the vaccine. In this study, we intend to use beta-glucan nanoparticles as adjuvants. The surface glycoprotein of the rabies virus (G) is responsible for identifying and binding the virus to the target cell. This glycoprotein is the major protein in the structure of the virus and induces an antibody response in the host. In this study, we intend to use rabies virus surface glycoprotein conjugated with beta-glucan nanoparticles to produce vaccines.

Keywords: rabies, vaccines, beta glucan, nanoprticles, adjuvant, recombinant protein

Procedia PDF Downloads 23
420 Influence of Hydrophobic Surface on Flow Past Square Cylinder

Authors: S. Ajith Kumar, Vaisakh S. Rajan

Abstract:

In external flows, vortex shedding behind the bluff bodies causes to experience unsteady loads on a large number of engineering structures, resulting in structural failure. Vortex shedding can even turn out to be disastrous like the Tacoma Bridge failure incident. We need to have control over vortex shedding to get rid of this untoward condition by reducing the unsteady forces acting on the bluff body. In circular cylinders, hydrophobic surface in an otherwise no-slip surface is found to be delaying separation and minimizes the effects of vortex shedding drastically. Flow over square cylinder stands different from this behavior as separation can takes place from either of the two corner separation points (front or rear). An attempt is made in this study to numerically elucidate the effect of hydrophobic surface in flow over a square cylinder. A 2D numerical simulation has been done to understand the effects of the slip surface on the flow past square cylinder. The details of the numerical algorithm will be presented at the time of the conference. A non-dimensional parameter, Knudsen number is defined to quantify the slip on the cylinder surface based on Maxwell’s equation. The slip surface condition of the wall affects the vorticity distribution around the cylinder and the flow separation. In the numerical analysis, we observed that the hydrophobic surface enhances the shedding frequency and damps down the amplitude of oscillations of the square cylinder. We also found that the slip has a negative effect on aerodynamic force coefficients such as the coefficient of lift (CL), coefficient of drag (CD) etc. and hence replacing the no slip surface by a hydrophobic surface can be treated as an effective drag reduction strategy and the introduction of hydrophobic surface could be utilized for reducing the vortex induced vibrations (VIV) and is found as an effective method in controlling VIV thereby controlling the structural failures.

Keywords: drag reduction, flow past square cylinder, flow control, hydrophobic surfaces, vortex shedding

Procedia PDF Downloads 379
419 Improved Distance Estimation in Dynamic Environments through Multi-Sensor Fusion with Extended Kalman Filter

Authors: Iffat Ara Ebu, Fahmida Islam, Mohammad Abdus Shahid Rafi, Mahfuzur Rahman, Umar Iqbal, John Ball

Abstract:

The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an extended Kalman filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS) to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative (visualization of fused data vs ground truth) and quantitative metrics (RMSE, MAE) are employed for performance assessment. Initial results with simulated data demonstrate accurate distance estimation compared to individual sensors. The optimal sensor measurement noise variance and plant noise variance parameters within the EKF are identified, and the algorithm is validated with real-world data from a Chevrolet Blazer. In summary, this research demonstrates that multi-sensor fusion with an EKF significantly improves distance estimation accuracy in dynamic environments. This is supported by comprehensive evaluation metrics, with validation transitioning from simulated to real-world data, paving the way for safer and more reliable autonomous vehicle control.

Keywords: sensor fusion, EKF, MATLAB, MAVS, autonomous vehicle, ADAS

Procedia PDF Downloads 52
418 Hedgerow Detection and Characterization Using Very High Spatial Resolution SAR DATA

Authors: Saeid Gharechelou, Stuart Green, Fiona Cawkwell

Abstract:

Hedgerow has an important role for a wide range of ecological habitats, landscape, agriculture management, carbon sequestration, wood production. Hedgerow detection accurately using satellite imagery is a challenging problem in remote sensing techniques, because in the special approach it is very similar to line object like a road, from a spectral viewpoint, a hedge is very similar to a forest. Remote sensors with very high spatial resolution (VHR) recently enable the automatic detection of hedges by the acquisition of images with enough spectral and spatial resolution. Indeed, recently VHR remote sensing data provided the opportunity to detect the hedgerow as line feature but still remain difficulties in monitoring the characterization in landscape scale. In this research is used the TerraSAR-x Spotlight and Staring mode with 3-5 m resolution in wet and dry season in the test site of Fermoy County, Ireland to detect the hedgerow by acquisition time of 2014-2015. Both dual polarization of Spotlight data in HH/VV is using for detection of hedgerow. The varied method of SAR image technique with try and error way by integration of classification algorithm like texture analysis, support vector machine, k-means and random forest are using to detect hedgerow and its characterization. We are applying the Shannon entropy (ShE) and backscattering analysis in single and double bounce in polarimetric analysis for processing the object-oriented classification and finally extracting the hedgerow network. The result still is in progress and need to apply the other method as well to find the best method in study area. Finally, this research is under way to ahead to get the best result and here just present the preliminary work that polarimetric image of TSX potentially can detect the hedgerow.

Keywords: TerraSAR-X, hedgerow detection, high resolution SAR image, dual polarization, polarimetric analysis

Procedia PDF Downloads 234
417 Safeguarding the Construction Industry: Interrogating and Mitigating Emerging Risks from AI in Construction

Authors: Abdelrhman Elagez, Rolla Monib

Abstract:

This empirical study investigates the observed risks associated with adopting Artificial Intelligence (AI) technologies in the construction industry and proposes potential mitigation strategies. While AI has transformed several industries, the construction industry is slowly adopting advanced technologies like AI, introducing new risks that lack critical analysis in the current literature. A comprehensive literature review identified a research gap, highlighting the lack of critical analysis of risks and the need for a framework to measure and mitigate the risks of AI implementation in the construction industry. Consequently, an online survey was conducted with 24 project managers and construction professionals, possessing experience ranging from 1 to 30 years (with an average of 6.38 years), to gather industry perspectives and concerns relating to AI integration. The survey results yielded several significant findings. Firstly, respondents exhibited a moderate level of familiarity (66.67%) with AI technologies, while the industry's readiness for AI deployment and current usage rates remained low at 2.72 out of 5. Secondly, the top-ranked barriers to AI adoption were identified as lack of awareness, insufficient knowledge and skills, data quality concerns, high implementation costs, absence of prior case studies, and the uncertainty of outcomes. Thirdly, the most significant risks associated with AI use in construction were perceived to be a lack of human control (decision-making), accountability, algorithm bias, data security/privacy, and lack of legislation and regulations. Additionally, the participants acknowledged the value of factors such as education, training, organizational support, and communication in facilitating AI integration within the industry. These findings emphasize the necessity for tailored risk assessment frameworks, guidelines, and governance principles to address the identified risks and promote the responsible adoption of AI technologies in the construction sector.

Keywords: risk management, construction, artificial intelligence, technology

Procedia PDF Downloads 113
416 Tool for Maxillary Sinus Quantification in Computed Tomography Exams

Authors: Guilherme Giacomini, Ana Luiza Menegatti Pavan, Allan Felipe Fattori Alves, Marcela de Oliveira, Fernando Antonio Bacchim Neto, José Ricardo de Arruda Miranda, Seizo Yamashita, Diana Rodrigues de Pina

Abstract:

The maxillary sinus (MS), part of the paranasal sinus complex, is one of the most enigmatic structures in modern humans. The literature has suggested that MSs function as olfaction accessories, to heat or humidify inspired air, for thermoregulation, to impart resonance to the voice and others. Thus, the real function of the MS is still uncertain. Furthermore, the MS anatomy is complex and varies from person to person. Many diseases may affect the development process of sinuses. The incidence of rhinosinusitis and other pathoses in the MS is comparatively high, so, volume analysis has clinical value. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure, which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust, and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression, and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to quantify MS volume proved to be robust, fast, and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to automatically quantify MS volume proved to be robust, fast and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases.

Keywords: maxillary sinus, support vector machine, region growing, volume quantification

Procedia PDF Downloads 505
415 Assessment of Neurodevelopmental Needs in Duchenne Muscular Dystrophy

Authors: Mathula Thangarajh

Abstract:

Duchenne muscular dystrophy (DMD) is a severe form of X-linked muscular dystrophy caused by mutations in the dystrophin gene resulting in progressive skeletal muscle weakness. Boys with DMD also have significant cognitive disabilities. The intelligence quotient of boys with DMD, compared to peers, is approximately one standard deviation below average. Detailed neuropsychological testing has demonstrated that boys with DMD have a global developmental impairment, with verbal memory and visuospatial skills most significantly affected. Furthermore, the total brain volume and gray matter volume are lower in children with DMD compared to age-matched controls. These results are suggestive of a significant structural and functional compromise to the developing brain as a result of absent dystrophin protein expression. There is also some genetic evidence to suggest that mutations in the 3’ end of the DMD gene are associated with more severe neurocognitive problems. Our working hypothesis is that (i) boys with DMD do not make gains in neurodevelopmental skills compared to typically developing children and (ii) women carriers of DMD mutations may have subclinical cognitive deficits. We also hypothesize that there may be an intergenerational vulnerability of cognition, with boys of DMD-carrier mothers being more affected cognitively than boys of non-DMD-carrier mothers. The objectives of this study are: 1. Assess the neurodevelopment in boys with DMD at 4-time points and perform baseline neuroradiological assessment, 2. Assess cognition in biological mothers of DMD participants at baseline, 3. Assess possible correlation between DMD mutation and cognitive measures. This study also explores functional brain abnormalities in people with DMD by exploring how regional and global connectivity of the brain underlies executive function deficits in DMD. Such research can contribute to a better holistic understanding of the cognition alterations due to DMD and could potentially allow clinicians to create better-tailored treatment plans for the DMD population. There are four study visits for each participant (baseline, 2-4 weeks, 1 year, 18 months). At each visit, the participant completes the NIH Toolbox Cognition Battery, a validated psychometric measure that is recommended by NIH Common Data Elements for use in DMD. Visits 1, 3, and 4 also involve the administration of the BRIEF-2, ABAS-3, PROMIS/NeuroQoL, PedsQL Neuromuscular module 3.0, Draw a Clock Test, and an optional fMRI scan with the N-back matching task. We expect to enroll 52 children with DMD, 52 mothers of children with DMD, and 30 healthy control boys. This study began in 2020 during the height of the COVID-19 pandemic. Due to this, there were subsequent delays in recruitment because of travel restrictions. However, we have persevered and continued to recruit new participants for the study. We partnered with the Muscular Dystrophy Association (MDA) and helped advertise the study to interested families. Since then, we have had families from across the country contact us about their interest in the study. We plan to continue to enroll a diverse population of DMD participants to contribute toward a better understanding of Duchenne Muscular Dystrophy.

Keywords: neurology, Duchenne muscular dystrophy, muscular dystrophy, cognition, neurodevelopment, x-linked disorder, DMD, DMD gene

Procedia PDF Downloads 103
414 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge

Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi

Abstract:

Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.

Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring

Procedia PDF Downloads 213
413 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components

Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea

Abstract:

Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.

Keywords: assessment, part of speech, sentiment analysis, student feedback

Procedia PDF Downloads 148
412 Unsupervised Classification of DNA Barcodes Species Using Multi-Library Wavelet Networks

Authors: Abdesselem Dakhli, Wajdi Bellil, Chokri Ben Amar

Abstract:

DNA Barcode, a short mitochondrial DNA fragment, made up of three subunits; a phosphate group, sugar and nucleic bases (A, T, C, and G). They provide good sources of information needed to classify living species. Such intuition has been confirmed by many experimental results. Species classification with DNA Barcode sequences has been studied by several researchers. The classification problem assigns unknown species to known ones by analyzing their Barcode. This task has to be supported with reliable methods and algorithms. To analyze species regions or entire genomes, it becomes necessary to use similarity sequence methods. A large set of sequences can be simultaneously compared using Multiple Sequence Alignment which is known to be NP-complete. To make this type of analysis feasible, heuristics, like progressive alignment, have been developed. Another tool for similarity search against a database of sequences is BLAST, which outputs shorter regions of high similarity between a query sequence and matched sequences in the database. However, all these methods are still computationally very expensive and require significant computational infrastructure. Our goal is to build predictive models that are highly accurate and interpretable. This method permits to avoid the complex problem of form and structure in different classes of organisms. On empirical data and their classification performances are compared with other methods. Our system consists of three phases. The first is called transformation, which is composed of three steps; Electron-Ion Interaction Pseudopotential (EIIP) for the codification of DNA Barcodes, Fourier Transform and Power Spectrum Signal Processing. The second is called approximation, which is empowered by the use of Multi Llibrary Wavelet Neural Networks (MLWNN).The third is called the classification of DNA Barcodes, which is realized by applying the algorithm of hierarchical classification.

Keywords: DNA barcode, electron-ion interaction pseudopotential, Multi Library Wavelet Neural Networks (MLWNN)

Procedia PDF Downloads 323
411 Control Algorithm Design of Single-Phase Inverter For ZnO Breakdown Characteristics Tests

Authors: Kashif Habib, Zeeshan Ayyub

Abstract:

ZnO voltage dependent resistor was widely used as components of the electrical system for over-voltage protection. It has a wide application prospect in superconducting energy-removal, generator de-excitation, overvoltage protection of electrical & electronics equipment. At present, the research for the application of ZnO voltage dependent resistor stop, it uses just in the field of its nonlinear voltage current characteristic and overvoltage protection areas. There is no further study over the over-voltage breakdown characteristics, such as the combustion phenomena and the measure of the voltage/current when it breakdown, and the affect to its surrounding equipment. It is also a blind spot in its application. So, when we do the feature test of ZnO voltage dependent resistor, we need to design a reasonable test power supply, making the terminal voltage keep for sine wave, simulating the real use of PF voltage in power supply conditions. We put forward the solutions of using inverter to generate a controllable power. The paper mainly focuses on the breakdown characteristic test power supply of nonlinear ZnO voltage dependent resistor. According to the current mature switching power supply technology, we proposed power control system using the inverter as the core. The power mainly realize the sin-voltage output on the condition of three-phase PF-AC input, and 3 control modes (RMS, Peak, Average) of the current output. We choose TMS320F2812M as the control part of the hardware platform. It is used to convert the power from three-phase to a controlled single-phase sin-voltage through a rectifier, filter, and inverter. Design controller produce SPWM, to get the controlled voltage source via appropriate multi-loop control strategy, while execute data acquisition and display, system protection, start logic control, etc. The TMS320F2812M is able to complete the multi-loop control quickly and can be a good completion of the inverter output control.

Keywords: ZnO, multi-loop control, SPWM, non-linear load

Procedia PDF Downloads 326
410 Object Detection in Digital Images under Non-Standardized Conditions Using Illumination and Shadow Filtering

Authors: Waqqas-ur-Rehman Butt, Martin Servin, Marion Pause

Abstract:

In recent years, object detection has gained much attention and very encouraging research area in the field of computer vision. The robust object boundaries detection in an image is demanded in numerous applications of human computer interaction and automated surveillance systems. Many methods and approaches have been developed for automatic object detection in various fields, such as automotive, quality control management and environmental services. Inappropriately, to the best of our knowledge, object detection under illumination with shadow consideration has not been well solved yet. Furthermore, this problem is also one of the major hurdles to keeping an object detection method from the practical applications. This paper presents an approach to automatic object detection in images under non-standardized environmental conditions. A key challenge is how to detect the object, particularly under uneven illumination conditions. Image capturing conditions the algorithms need to consider a variety of possible environmental factors as the colour information, lightening and shadows varies from image to image. Existing methods mostly failed to produce the appropriate result due to variation in colour information, lightening effects, threshold specifications, histogram dependencies and colour ranges. To overcome these limitations we propose an object detection algorithm, with pre-processing methods, to reduce the interference caused by shadow and illumination effects without fixed parameters. We use the Y CrCb colour model without any specific colour ranges and predefined threshold values. The segmented object regions are further classified using morphological operations (Erosion and Dilation) and contours. Proposed approach applied on a large image data set acquired under various environmental conditions for wood stack detection. Experiments show the promising result of the proposed approach in comparison with existing methods.

Keywords: image processing, illumination equalization, shadow filtering, object detection

Procedia PDF Downloads 218
409 Enhancing the Resilience of Combat System-Of-Systems Under Certainty and Uncertainty: Two-Phase Resilience Optimization Model and Deep Reinforcement Learning-Based Recovery Optimization Method

Authors: Xueming Xu, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge

Abstract:

A combat system-of-systems (CSoS) comprises various types of functional combat entities that interact to meet corresponding task requirements in the present and future. Enhancing the resilience of CSoS holds significant military value in optimizing the operational planning process, improving military survivability, and ensuring the successful completion of operational tasks. Accordingly, this research proposes an integrated framework called CSoS resilience enhancement (CSoSRE) to enhance the resilience of CSoS from a recovery perspective. Specifically, this research presents a two-phase resilience optimization model to define a resilience optimization objective for CSoS. This model considers not only task baseline, recovery cost, and recovery time limit but also the characteristics of emergency recovery and comprehensive recovery. Moreover, the research extends it from the deterministic case to the stochastic case to describe the uncertainty in the recovery process. Based on this, a resilience-oriented recovery optimization method based on deep reinforcement learning (RRODRL) is proposed to determine a set of entities requiring restoration and their recovery sequence, thereby enhancing the resilience of CSoS. This method improves the deep Q-learning algorithm by designing a discount factor that adapts to changes in CSoS state at different phases, simultaneously considering the network’s structural and functional characteristics within CSoS. Finally, extensive experiments are conducted to test the feasibility, effectiveness and superiority of the proposed framework. The obtained results offer useful insights for guiding operational recovery activity and designing a more resilient CSoS.

Keywords: combat system-of-systems, resilience optimization model, recovery optimization method, deep reinforcement learning, certainty and uncertainty

Procedia PDF Downloads 22
408 A Pilot Study of Influences of Scan Speed on Image Quality for Digital Tomosynthesis

Authors: Li-Ting Huang, Yu-Hsiang Shen, Cing-Ciao Ke, Sheng-Pin Tseng, Fan-Pin Tseng, Yu-Ching Ni, Chia-Yu Lin

Abstract:

Chest radiography is the most common technique for the diagnosis and follow-up of pulmonary diseases. However, the lesions superimposed with normal structures are difficult to be detected in chest radiography. Chest tomosynthesis is a relatively new technique to obtain 3D section images from a set of low-dose projections acquired over a limited angular range. However, there are some limitations with chest tomosynthesis. Patients undergoing tomosynthesis have to be able to hold their breath firmly for 10 seconds. A digital tomosynthesis system with advanced reconstruction algorithm and high-stability motion mechanism was developed by our research group. The potential for the system to perform a bidirectional chest scan within 10 seconds is expected. The purpose of this study is to realize the influences of the scan speed on the image quality for our digital tomosynthesis system. The major factors that lead image blurring are the motion of the X-ray source and the patient. For the fore one, an experiment of imaging a chest phantom with three different scan speeds, which are 6 cm/s, 8 cm/s, and 15 cm/s, was proceeded to understand the scan speed influences on the image quality. For the rear factor, a normal SD (Sprague-Dawley) rat was imaged with it alive and sacrificed to assess the impact on the image quality due to breath motion. In both experiments, the profile of the ROIs (region of interest) and the CNRs (contrast-to-noise ratio) of the ROIs to the normal tissue of the reconstructed images was examined to realize the degradations of the qualities of the images. The preliminary results show that no obvious degradation of the image quality was observed with increasing scan speed, possibly due to the advanced designs for the hardware and software of the system. It implies that higher speed (15 cm/s) than that of the commercialized tomosynthesis system (12 cm/s) for the proposed system is achieved, and therefore a complete chest scan within 10 seconds is expected.

Keywords: chest radiography, digital tomosynthesis, image quality, scan speed

Procedia PDF Downloads 334
407 Association between Physical Inactivity and Sedentary Behaviours with Risk of Hypertension among Sedentary Occupation Workers: A Cross-Sectional Study

Authors: Hanan Badr, Fahad Manee, Rao Shashidhar, Omar Bayoumy

Abstract:

Introduction: Hypertension is the major risk factor for cardiovascular diseases and stroke and a universe leading cause of disability-adjusted life years and mortality. Adopting an unhealthy lifestyle is thought to be associated with developing hypertension regardless of predisposing genetic factors. This study aimed to examine the association between recreational physical activity (RPA), and sedentary behaviors with a risk of hypertension among ministry employees, where there is no role for occupational physical activity (PA), and to scrutinize participants’ time spent in RPA and sedentary behaviors on the working and weekend days. Methods: A cross-sectional study was conducted among randomly selected 2562 employees working at ten randomly selected ministries in Kuwait. To have a representative sample, the proportional allocation technique was used to define the number of participants in each ministry. A self-administered questionnaire was used to collect data about participants' socio-demographic characteristics, health status, and their 24 hours’ time use during a regular working day and a weekend day. The time use covered a list of 20 different activities practiced by a person daily. The New Zealand Physical Activity Questionnaire-Short Form (NZPAQ-SF) was used to assess the level of RPA. The scale generates three categories according to the number of hours spent in RPA/week: relatively inactive, relatively active, and highly active. Gender-matched trained nurses performed anthropometric measurements (weight and height) and measuring blood pressure (two readings) using an automatic blood pressure monitor (95% accuracy level compared to a calibrated mercury sphygmomanometer). Results: Participants’ mean age was 35.3±8.4 years, with almost equal gender distribution. About 13% of the participants were smokers, and 75% were overweight. Almost 10% reported doctor-diagnosed hypertension. Among those who did not, the mean systolic blood pressure was 119.9±14.2 and the mean diastolic blood pressure was 80.9±7.3. Moreover, 73.9% of participants were relatively physically inactive and 18% were highly active. Mean systolic and diastolic blood pressure showed a significant inverse association with the level of RPA (means of blood pressure measures were: 123.3/82.8 among relatively inactive, 119.7/80.4 among relatively active, and 116.6/79.6 among highly active). Furthermore, RPA occupied 1.6% and 1.8% of working and weekend days, respectively, while sedentary behaviors (watching TV, using electronics for social media or entertaining, etc.) occupied 11.2% and 13.1%, respectively. Sedentary behaviors were significantly associated with high levels of systolic and diastolic blood pressure. Binary logistic regression revealed that physical inactivity (OR=3.13, 95% CI: 2.25-4.35) and sedentary behaviors (OR=2.25, CI: 1.45-3.17) were independent risk factors for high systolic and diastolic blood pressure after adjustment for other covariates. Conclusions: Physical inactivity and sedentary lifestyle were associated with a high risk of hypertension. Further research to examine the independent role of RPA in improving blood pressure levels and cultural and occupational barriers for practicing RPA are recommended. Policies should be enacted in promoting PA in the workplace that might help in decreasing the risk of hypertension among sedentary occupation workers.

Keywords: physical activity, sedentary behaviors, hypertension, workplace

Procedia PDF Downloads 180
406 Modified 'Perturb and Observe' with 'Incremental Conductance' Algorithm for Maximum Power Point Tracking

Authors: H. Fuad Usman, M. Rafay Khan Sial, Shahzaib Hamid

Abstract:

The trend of renewable energy resources has been amplified due to global warming and other environmental related complications in the 21st century. Recent research has very much emphasized on the generation of electrical power through renewable resources like solar, wind, hydro, geothermal, etc. The use of the photovoltaic cell has become very public as it is very useful for the domestic and commercial purpose overall the world. Although a single cell gives the low voltage output but connecting a number of cells in a series formed a complete module of the photovoltaic cells, it is becoming a financial investment as the use of it fetching popular. This also reduced the prices of the photovoltaic cell which gives the customers a confident of using this source for their electrical use. Photovoltaic cell gives the MPPT at single specific point of operation at a given temperature and level of solar intensity received at a given surface whereas the focal point changes over a large range depending upon the manufacturing factor, temperature conditions, intensity for insolation, instantaneous conditions for shading and aging factor for the photovoltaic cells. Two improved algorithms have been proposed in this article for the MPPT. The widely used algorithms are the ‘Incremental Conductance’ and ‘Perturb and Observe’ algorithms. To extract the maximum power from the source to the load, the duty cycle of the convertor will be effectively controlled. After assessing the previous techniques, this paper presents the improved and reformed idea of harvesting maximum power point from the photovoltaic cells. A thoroughly go through of the previous ideas has been observed before constructing the improvement in the traditional technique of MPP. Each technique has its own importance and boundaries at various weather conditions. An improved technique of implementing the use of both ‘Perturb and Observe’ and ‘Incremental Conductance’ is introduced.

Keywords: duty cycle, MPPT (Maximum Power Point Tracking), perturb and observe (P&O), photovoltaic module

Procedia PDF Downloads 181
405 Enzymatic Determination of Limonene in Red Clover Genotypes

Authors: Andrés Quiroz, Emilio Hormazabal, Ana Mutis, Fernando Ortega, Manuel Chacón-Fuentes, Leonardo Parra

Abstract:

Red clover (Trifolium pratense L.) is an important forage species in temperate regions of the world. The main limitation of this species worldwide is a lack of persistence related to the high mortality of plants due to a complex of biotic and abiotic factors, determining a life span of two or three seasons. Because of the importance of red clover in Chile, a red clover breeding program was started at INIA Carillanca Research Center in 1989, with the main objective of improving the survival of plants, forage yield, and persistence. The main selection criteria for selecting new varieties have been based on agronomical parameters and biotic factors. The main biotic factor associated with red clover mortality in Chile is Hylastinus obscurus (Coleoptera: Curculionidae). Both larval and adults feed on the roots, causing weakening and subsequent death of clover plants. Pesticides have not been successful for controlling infestations of this root borer. Therefore, alternative strategies for controlling this pest are a high priority for red clover producers. Currently, the role of semiochemical in the interaction between H. obscurus and red clover plants has been widely studied for our group. Specifically, from the red clover foliage has been identified limonene is eliciting repellency from the root borer. Limonene is generated in the plant from two independent biosynthetic pathways, the mevalonic acid, and deoxyxylulose pathway. Mevalonate pathway enzymes are localized in the cytosol, whereas the deoxyxylulose phosphate pathway enzymes are found in plastids. In summary, limonene can be determinated by enzymatic bioassay using GPP as substrate and by limonene synthase expression. Therefore, the main objective of this work was to study genetic variation of limonene in material provided by INIA´s Red Clover breeding program. Protein extraction was carried out homogenizing 250 mg of leave tissue and suspended in 6 mL of extraction buffer (PEG 1500, PVP-30, 20 mM MgCl2 and antioxidants) and stirred on ice for 20 min. After centrifugation, aliquots of 2.5 mL were desalted on PD-10 columns, resulting in a final volume of 3.5 mL. Protein determination was performed according to Bradford with BSA as a standard. Monoterpene synthase assays were performed with 50 µL of protein extracts transferred into gas-tight 2 mL crimp seal vials after addition of 4 µL MgCl₂ and 41 µL assay buffer. The assay was started by adding 5 µL of a GPP solution. The mixture was incubated for 30 min at 40 °C. Biosynthesized limonene was quantified in a GC equipped with a chiral column and using synthetic R and S-limonene standards. The enzymatic the production of R and S-limonene from different Superqueli-Carillanca genotypes is shown in this work. Preliminary results showed significant differences in limonene content among the genotypes analyzed. These results constitute an important base for selecting genotypes with a high content of this repellent monoterpene towards H. obscurus.

Keywords: head space, limonene enzymatic determination, red clover, Hylastinus obscurus

Procedia PDF Downloads 268
404 Security of Database Using Chaotic Systems

Authors: Eman W. Boghdady, A. R. Shehata, M. A. Azem

Abstract:

Database (DB) security demands permitting authorized users and prohibiting non-authorized users and intruders actions on the DB and the objects inside it. Organizations that are running successfully demand the confidentiality of their DBs. They do not allow the unauthorized access to their data/information. They also demand the assurance that their data is protected against any malicious or accidental modification. DB protection and confidentiality are the security concerns. There are four types of controls to obtain the DB protection, those include: access control, information flow control, inference control, and cryptographic. The cryptographic control is considered as the backbone for DB security, it secures the DB by encryption during storage and communications. Current cryptographic techniques are classified into two types: traditional classical cryptography using standard algorithms (DES, AES, IDEA, etc.) and chaos cryptography using continuous (Chau, Rossler, Lorenz, etc.) or discreet (Logistics, Henon, etc.) algorithms. The important characteristics of chaos are its extreme sensitivity to initial conditions of the system. In this paper, DB-security systems based on chaotic algorithms are described. The Pseudo Random Numbers Generators (PRNGs) from the different chaotic algorithms are implemented using Matlab and their statistical properties are evaluated using NIST and other statistical test-suits. Then, these algorithms are used to secure conventional DB (plaintext), where the statistical properties of the ciphertext are also tested. To increase the complexity of the PRNGs and to let pass all the NIST statistical tests, we propose two hybrid PRNGs: one based on two chaotic Logistic maps and another based on two chaotic Henon maps, where each chaotic algorithm is running side-by-side and starting from random independent initial conditions and parameters (encryption keys). The resulted hybrid PRNGs passed the NIST statistical test suit.

Keywords: algorithms and data structure, DB security, encryption, chaotic algorithms, Matlab, NIST

Procedia PDF Downloads 267
403 Graph Clustering Unveiled: ClusterSyn - A Machine Learning Framework for Predicting Anti-Cancer Drug Synergy Scores

Authors: Babak Bahri, Fatemeh Yassaee Meybodi, Changiz Eslahchi

Abstract:

In the pursuit of effective cancer therapies, the exploration of combinatorial drug regimens is crucial to leverage synergistic interactions between drugs, thereby improving treatment efficacy and overcoming drug resistance. However, identifying synergistic drug pairs poses challenges due to the vast combinatorial space and limitations of experimental approaches. This study introduces ClusterSyn, a machine learning (ML)-powered framework for classifying anti-cancer drug synergy scores. ClusterSyn employs a two-step approach involving drug clustering and synergy score prediction using a fully connected deep neural network. For each cell line in the training dataset, a drug graph is constructed, with nodes representing drugs and edge weights denoting synergy scores between drug pairs. Drugs are clustered using the Markov clustering (MCL) algorithm, and vectors representing the similarity of drug pairs to each cluster are input into the deep neural network for synergy score prediction (synergy or antagonism). Clustering results demonstrate effective grouping of drugs based on synergy scores, aligning similar synergy profiles. Subsequently, neural network predictions and synergy scores of the two drugs on others within their clusters are used to predict the synergy score of the considered drug pair. This approach facilitates comparative analysis with clustering and regression-based methods, revealing the superior performance of ClusterSyn over state-of-the-art methods like DeepSynergy and DeepDDS on diverse datasets such as Oniel and Almanac. The results highlight the remarkable potential of ClusterSyn as a versatile tool for predicting anti-cancer drug synergy scores.

Keywords: drug synergy, clustering, prediction, machine learning., deep learning

Procedia PDF Downloads 88
402 Selection of Optimal Reduced Feature Sets of Brain Signal Analysis Using Heuristically Optimized Deep Autoencoder

Authors: Souvik Phadikar, Nidul Sinha, Rajdeep Ghosh

Abstract:

In brainwaves research using electroencephalogram (EEG) signals, finding the most relevant and effective feature set for identification of activities in the human brain is a big challenge till today because of the random nature of the signals. The feature extraction method is a key issue to solve this problem. Finding those features that prove to give distinctive pictures for different activities and similar for the same activities is very difficult, especially for the number of activities. The performance of a classifier accuracy depends on this quality of feature set. Further, more number of features result in high computational complexity and less number of features compromise with the lower performance. In this paper, a novel idea of the selection of optimal feature set using a heuristically optimized deep autoencoder is presented. Using various feature extraction methods, a vast number of features are extracted from the EEG signals and fed to the autoencoder deep neural network. The autoencoder encodes the input features into a small set of codes. To avoid the gradient vanish problem and normalization of the dataset, a meta-heuristic search algorithm is used to minimize the mean square error (MSE) between encoder input and decoder output. To reduce the feature set into a smaller one, 4 hidden layers are considered in the autoencoder network; hence it is called Heuristically Optimized Deep Autoencoder (HO-DAE). In this method, no features are rejected; all the features are combined into the response of responses of the hidden layer. The results reveal that higher accuracy can be achieved using optimal reduced features. The proposed HO-DAE is also compared with the regular autoencoder to test the performance of both. The performance of the proposed method is validated and compared with the other two methods recently reported in the literature, which reveals that the proposed method is far better than the other two methods in terms of classification accuracy.

Keywords: autoencoder, brainwave signal analysis, electroencephalogram, feature extraction, feature selection, optimization

Procedia PDF Downloads 118
401 Biosocial Determinants of Maternal and Child Health in Northeast India: A Case Study

Authors: Benrithung Murry

Abstract:

This paper highlights the biosocial determinants of health-seeking behavior in tribal population groups of northeast India, focusing on maternal and child health. The northeastern region of India is a conglomeration of several ethnic groups, most of which are scheduled as tribal groups. A total of 750 ever-married women in reproductive ages (15-49 years) were interviewed from three tribal groups of Nagaland, India using pre-tested and modified maternal health schedule. Data pertaining to reproductive performance of the mothers and their children health status were collected from 12 villages of Dimapur district, Nagaland, India. The sample for study comprises 212 Angami women, 267 Ao women, and 271 Sumi women, all of which belonging to tribal populations of Northeast India. Sex ratios of 15-49 years in these three populations are 1018.18, 1086.69, and 1106.92, respectively. 90% of the populations in the study are nuclear families, with about 10% of households falling below the poverty line as per the cutoffs for India. Female literacy level in these population groups is higher than the national average of 65.46%; however, about 30% of all married women are not engaged in any sort of earnings. Total fertility rates of these populations are alarming (Total Fertility Rate ≥ 6) and far from replacement fertility level, while infant mortality rates are found to be much lower than the national average of 34 per 1000. The perception and practice of maternal health in this region is unimpressive despite the availability of medical amenities. Only 3 % of mothers in the study have reported 4 times antenatal checkups during last two pregnancies. Other mothers have reported 1 to 3 times of antenatal checkups, but about 25% of them never visited a doctor during the entire pregnancy period. About 15% of mothers never took tetanus injection, while 40% of mothers never took iron folic supplements during pregnancy. Almost half of all women and their husbands do not use birth control measures even for the spacing of children, which has an immense impact on prenatal mortality mainly due to deliberate abortions: the percentage of prenatal mortality among Angami, Ao and Sumi populations is 44.88, 31.88 and 54.98, respectively per 1000 live births. The steep decline in fertility levels in most countries is a consequence of the increasing use of modern methods of contraception. However, among users of birth control measures in these populations, it is seen that most couples use it only after they have the desired number of children, thus its use having no substantial influence in reducing fertility. It is also seen that the majority of the children were only partially vaccinated. With many child deliveries being done at home, many newborns are not administered with polio at birth. Two-third of all children do not have complete basic immunization against polio, diphtheria, tetanus, pertussis, bacillus, and hepatitis besides others. Certain adherence to traditional beliefs and customs apart from the socio-economic factors is believed to have been operating in these populations, which determines their health-seeking behavior. While a more in-depth study combining biological, socio-cultural, economic, and genetic factors is suggested, there is an urgent need for intervention in these populations to combat with the poor maternal and child health status.

Keywords: case study, health behavior, mother and child, northeast india

Procedia PDF Downloads 132
400 Different Types of Amyloidosis Revealed with Positive Cardiac Scintigraphy with Tc-99M DPD-SPECT

Authors: Ioannis Panagiotopoulos, Efstathios Kastritis, Anastasia Katinioti, Georgios Efthymiadis, Argyrios Doumas, Maria Koutelou

Abstract:

Introduction: Transthyretin amyloidosis (ATTR) is a rare but serious infiltrative disease. Myocardial scintigraphy with DPD has emerged as the most effective, non-invasive, highly sensitive, and highly specific diagnostic method for cardiac ATTR amyloidosis. However, there are cases in which additional laboratory investigations reveal AL amyloidosis or other diseases despite a positive DPD scintigraphy. We describe the experience from the Onassis Cardiac Surgery Center and the monitoring center for infiltrative myocardial diseases of the cardiology clinic at AHEPA. Materials and Methods: All patients with clinical suspicion of cardiac or extracardiac amyloidosis undergo a myocardial scintigraphy scan with Tc-99m DPD. In this way, over 500 patients have been examined. Further diagnostic approach based on clinical and imaging findings includes laboratory investigation and invasive techniques (e.g., biopsy). Results: Out of 76 patients in total with positive myocardial scintigraphy Grade 2 or 3 according to the Perugini scale, 8 were proven to suffer from AL Amyloidosis during the investigation of paraproteinemia. Among these patients, 3 showed Grade 3 uptake, while the rest were graded as Grade 2, or 2 to 3. Additionally, one patient presented diffuse and unusual radiopharmaceutical uptake in soft tissues throughout the body without cardiac involvement. These findings raised suspicions, leading to the analysis of κ and λ light chains in the serum, as well as immunostaining of proteins in the serum and urine of these specific patients. The final diagnosis was AL amyloidosis. Conclusion: The value of DPD scintigraphy in the diagnosis of cardiac amyloidosis from transthyretin is undisputed. However, positive myocardial scintigraphy with DPD should not automatically lead to the diagnosis of ATTR amyloidosis. Laboratory differentiation between ATTR and AL amyloidosis is crucial, as both prognosis and therapeutic strategy are dramatically altered. Laboratory exclusion of paraproteinemia is a necessary and essential step in the diagnostic algorithm of ATTR amyloidosis for all positive myocardial scintigraphy with diphosphonate tracers since >20% of patients with Grade 3 and 2 uptake may conceal AL amyloidosis.

Keywords: AL amyloidosis, amyloidosis, ATTR, myocardial scintigraphy, Tc-99m DPD

Procedia PDF Downloads 86
399 Analysis of NMDA Receptor 2B Subunit Gene (GRIN2B) mRNA Expression in the Peripheral Blood Mononuclear Cells of Alzheimer's Disease Patients

Authors: Ali̇ Bayram, Semih Dalkilic, Remzi Yigiter

Abstract:

N-methyl-D-aspartate (NMDA) receptor is a subtype of glutamate receptor and plays a pivotal role in learning, memory, neuronal plasticity, neurotoxicity and synaptic mechanisms. Animal experiments were suggested that glutamate-induced excitotoxic injuriy and NMDA receptor blockage lead to amnesia and other neurodegenerative diseases including Alzheimer’s disease (AD), Huntington’s disease, amyotrophic lateral sclerosis. Aim of this study is to investigate association between NMDA receptor coding gene GRIN2B expression level and Alzheimer disease. The study was approved by the local ethics committees, and it was conducted according to the principles of the Declaration of Helsinki and guidelines for the Good Clinical Practice. Peripheral blood was collected 50 patients who diagnosed AD and 49 healthy control individuals. Total RNA was isolated with RNeasy midi kit (Qiagen) according to manufacturer’s instructions. After checked RNA quality and quantity with spectrophotometer, GRIN2B expression levels were detected by quantitative real time PCR (QRT-PCR). Statistical analyses were performed, variance between two groups were compared with Mann Whitney U test in GraphpadInstat algorithm with 95 % confidence interval and p < 0.05. After statistical analyses, we have determined that GRIN2B expression levels were down regulated in AD patients group with respect to control group. But expression level of this gene in each group was showed high variability. İn this study, we have determined that NMDA receptor coding gene GRIN2B expression level was down regulated in AD patients when compared with healthy control individuals. According to our results, we have speculated that GRIN2B expression level was associated with AD. But it is necessary to validate these results with bigger sample size.

Keywords: Alzheimer’s disease, N-methyl-d-aspartate receptor, NR2B, GRIN2B, mRNA expression, RT-PCR

Procedia PDF Downloads 395
398 Population Diversity Studies in Dendrocalamus strictus Roxb. (Nees.) Through Morphological Parameters

Authors: Anugrah Tripathi, H. S. Ginwal, Charul Kainthola

Abstract:

Bamboos are considered as valuable resources which have the potential of meeting current economic, environmental and social needs. Bamboo has played a key role in humankind and its livelihood since ancient time. Distributed in diverse areas across the globe, bamboo makes an important natural resource for hundreds of millions of people across the world. In some of the Asian countries and northeast part of India, bamboo is the basis of life on many horizons. India possesses the largest bamboo-bearing area across the world and a great extent of species richness, but this rich genetic resource and its diversity have dwindled in the natural forest due to forest fire, over exploitation, lack of proper management policies, and gregarious flowering behavior. Bamboos which are well known for their peculiar, extraordinary morphology, show a lot of variation in many scales. Among the various bamboo species, Dendrocalamus strictus is the most abundant bamboo resource in India, which is a deciduous, solid, and densely tufted bamboo. This species can thrive in wide gradients of geographical as well as climatic conditions. Due to this, it exhibits a significant amount of variation among the populations of different origins for numerous morphological features. Morphological parameters are the front-line criteria for the selection and improvement of any forestry species. Study on the diversity among eight important morphological characters of D. strictus was carried out, covering 16 populations from wide geographical locations of India following INBAR standards. Among studied 16 populations, three populations viz. DS06 (Gaya, Bihar), DS15 (Mirzapur, Uttar Pradesh), and DS16 (Bhogpur, Pinjore, Haryana) were found as superior populations with higher mean values for parametric characters (clump height, no. of culms/ clump, circumference of clump, internode diameter and internode length) and with the higher sum of ranks in non-parametric characters (straightness, disease, and pest incidence and branching pattern). All of these parameters showed an ample amount of variations among the studied populations and revealed a significant difference among the populations. Variation in morphological characters is very common in a species having wide distribution and is usually evident at various levels, viz., between and within the populations. They are of paramount importance for growth, biomass, and quick production gains. Present study also gives an idea for the selection of the population on the basis of these morphological parameters. From this study on morphological parameters and their variation, we may find an overview of best-performing populations for growth and biomass accumulation. Some of the studied parameters also provide ideas to standardize mechanisms of selecting and sustainable harvesting of the clumps by applying simpler silvicultural systems so that they can be properly managed in homestead gardens for the community utilization as well as by commercial growers to meet the requirement of industries and other stakeholders.

Keywords: Dendrocalamus strictus, homestead garden, gregarious flowering, stakeholders, INBAR

Procedia PDF Downloads 79
397 Circulating Public Perception on Agroforestry: Discourse Networks Analysis Using Social Media and Online News Media in Four Countries of the Sahel Region

Authors: Luisa Müting, Wisnu Harto Adiwijoyo

Abstract:

Agroforestry systems transform the agricultural landscapes in the Sahel region of Africa, providing food and farming products consumed for subsistence or sold for income. In the incrementally dry climate of the Sahel region, the spreading of agroforestry practices is integral for policymaker efforts to counteract land degradation and provide soil restoration in the region. Several measures on agroforestry practices have been implemented in the region by governmental and non-governmental institutions in recent years. However, despite the efforts, past research shows that awareness of how policies and interventions are being consumed and perceived by the public remains low. Therefore, interpreting public policy dilemmas by analyzing the public perception regarding agroforestry concepts and practices is necessary. Public perceptions and discourses can be an essential driver or constraint for the adoption of agroforestry practices in the region. Thus, understanding the public discourse behavior of crucial stakeholders could assist policymakers in developing inclusive and contextual policies that are relevant to the context of agroforestry adoption in Sahel region. To answer how information about agroforestry spreads and is perceived by the public. As internet usage increased drastically over the past decade, reaching a share of 33 percent of the population being connected to the internet, this research is based on online conversation data. Social media data from Facebook are gathered daily between April 2021 and April 2022 in Djibouti, Senegal, Mali, and Nigeria based on their share of active internet users compared to other countries in the Sahel region. A systematic methodology was applied to the extracted social media using discourse network analysis (DNA). This study then clustered the data by the types of agroforestry practices, sentiments, and country. Additionally, this research extracted the text data from online news media during the same period to pinpoint events related to the topic of agroforestry. The preliminary result indicates that tree management, crops, and livestock integration, diversifying species and genetic resources, and focusing on interactions and productivity across the agricultural system; are the most notable keywords in agroforestry-related conversations within the four countries in the Sahel region. Additionally, approximately 84 percent of the discussions were still dominated by big actors, such as NGO or government actors. Furthermore, as a subject of communication within agroforestry discourse, the Great Green Wall initiative generates almost 60 percent positive sentiment within the captured social media data, effectively having a more significant outreach than general agroforestry topics. This study provides an understanding for scholars and policymakers with a springboard for further research or policy design on agroforestry in the four countries of the Sahel region with systematically uncaptured novel data from the internet.

Keywords: sahel, djibouti, senegal, mali, nigeria, social networks analysis, public discourse analysis, sentiment analysis, content analysis, social media, online news, agroforestry, land restoration

Procedia PDF Downloads 108
396 D-Wave Quantum Computing Ising Model: A Case Study for Forecasting of Heat Waves

Authors: Dmytro Zubov, Francesco Volponi

Abstract:

In this paper, D-Wave quantum computing Ising model is used for the forecasting of positive extremes of daily mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 4-, and 5-day historical data respectively. Ising model’s real-valued weights and dimensionless coefficients are calculated using daily mean air temperatures from 119 places around the world, as well as sea level (Aburatsu, Japan). In comparison with current methods, this approach is better suited to predict heat wave values because it does not require the estimation of a probability distribution from scarce observations. Proposed forecast quantum computing algorithm is simulated based on traditional computer architecture and combinatorial optimization of Ising model parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on learning sample (1975-2010 yr). Analysis of the forecast accuracy (ratio of successful predictions to total number of predictions) on the validation sample (2011-2014 yr) shows that Ising model with three qubits has 100 % accuracy, which is quite significant as compared to other methods. However, number of identified heat waves is small (only one out of nineteen in this case). Other models with 2, 4, and 5 qubits have 20 %, 3.8 %, and 3.8 % accuracy respectively. Presented three-qubit forecast model is applied for prediction of heat waves at other five locations: Aurel Vlaicu, Romania – accuracy is 28.6 %; Bratislava, Slovakia – accuracy is 21.7 %; Brussels, Belgium – accuracy is 33.3 %; Sofia, Bulgaria – accuracy is 50 %; Akhisar, Turkey – accuracy is 21.4 %. These predictions are not ideal, but not zeros. They can be used independently or together with other predictions generated by different method(s). The loss of human life, as well as environmental, economic, and material damage, from extreme air temperatures could be reduced if some of heat waves are predicted. Even a small success rate implies a large socio-economic benefit.

Keywords: heat wave, D-wave, forecast, Ising model, quantum computing

Procedia PDF Downloads 505
395 Improvement of the Geometric of Dental Bridge Framework through Automatic Program

Authors: Rong-Yang Lai, Jia-Yu Wu, Chih-Han Chang, Yung-Chung Chen

Abstract:

The dental bridge is one of the clinical methods of the treatment for missing teeth. The dental bridge is generally designed for two layers, containing the inner layer of the framework(zirconia) and the outer layer of the porcelain-fused to framework restorations. The design of a conventional bridge is generally based on the antagonist tooth profile so that the framework evenly indented by an equal thickness from outer contour. All-ceramic dental bridge made of zirconia have well demonstrated remarkable potential to withstand a higher physiological occlusal load in posterior region, but it was found that there is still the risk of all-ceramic bridge failure in five years. Thus, how to reduce the incidence of failure is still a problem to be solved. Therefore, the objective of this study is to develop mechanical designs for all-ceramic dental bridges framework by reducing the stress and enhancing fracture resistance under given loading conditions by finite element method. In this study, dental design software is used to design dental bridge based on tooth CT images. After building model, Bi-directional Evolutionary Structural Optimization (BESO) Method algorithm implemented in finite element software was employed to analyze results of finite element software and determine the distribution of the materials in dental bridge; BESO searches the optimum distribution of two different materials, namely porcelain and zirconia. According to the previous calculation of the stress value of each element, when the element stress value is higher than the threshold value, the element would be replaced by the framework material; besides, the difference of maximum stress peak value is less than 0.1%, calculation is complete. After completing the design of dental bridge, the stress distribution of the whole structure is changed. BESO reduces the peak values of principle stress of 10% in outer-layer porcelain and avoids producing tensile stress failure.

Keywords: dental bridge, finite element analysis, framework, automatic program

Procedia PDF Downloads 286
394 Pharmacokinetic Modeling of Valsartan in Dog following a Single Oral Administration

Authors: In-Hwan Baek

Abstract:

Valsartan is a potent and highly selective antagonist of the angiotensin II type 1 receptor, and is widely used for the treatment of hypertension. The aim of this study was to investigate the pharmacokinetic properties of the valsartan in dogs following oral administration of a single dose using quantitative modeling approaches. Forty beagle dogs were randomly divided into two group. Group A (n=20) was administered a single oral dose of valsartan 80 mg (Diovan® 80 mg), and group B (n=20) was administered a single oral dose of valsartan 160 mg (Diovan® 160 mg) in the morning after an overnight fast. Blood samples were collected into heparinized tubes before and at 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 12 and 24 h following oral administration. The plasma concentrations of the valsartan were determined using LC-MS/MS. Non-compartmental pharmacokinetic analyses were performed using WinNonlin Standard Edition software, and modeling approaches were performed using maximum-likelihood estimation via the expectation maximization (MLEM) algorithm with sampling using ADAPT 5 software. After a single dose of valsartan 80 mg, the mean value of maximum concentration (Cmax) was 2.68 ± 1.17 μg/mL at 1.83 ± 1.27 h. The area under the plasma concentration-versus-time curve from time zero to the last measurable concentration (AUC24h) value was 13.21 ± 6.88 μg·h/mL. After dosing with valsartan 160 mg, the mean Cmax was 4.13 ± 1.49 μg/mL at 1.80 ± 1.53 h, the AUC24h was 26.02 ± 12.07 μg·h/mL. The Cmax and AUC values increased in proportion to the increment in valsartan dose, while the pharmacokinetic parameters of elimination rate constant, half-life, apparent of total clearance, and apparent of volume of distribution were not significantly different between the doses. Valsartan pharmacokinetic analysis fits a one-compartment model with first-order absorption and elimination following a single dose of valsartan 80 mg and 160 mg. In addition, high inter-individual variability was identified in the absorption rate constant. In conclusion, valsartan displays the dose-dependent pharmacokinetics in dogs, and Subsequent quantitative modeling approaches provided detailed pharmacokinetic information of valsartan. The current findings provide useful information in dogs that will aid future development of improved formulations or fixed-dose combinations.

Keywords: dose-dependent, modeling, pharmacokinetics, valsartan

Procedia PDF Downloads 301
393 Superparamagnetic Core Shell Catalysts for the Environmental Production of Fuels from Renewable Lignin

Authors: Cristina Opris, Bogdan Cojocaru, Madalina Tudorache, Simona M. Coman, Vasile I. Parvulescu, Camelia Bala, Bahir Duraki, Jeroen A. Van Bokhoven

Abstract:

The tremendous achievements in the development of the society concretized by more sophisticated materials and systems are merely based on non-renewable resources. Consequently, after more than two centuries of intensive development, among others, we are faced with the decrease of the fossil fuel reserves, an increased impact of the greenhouse gases on the environment, and economic effects caused by the fluctuations in oil and mineral resource prices. The use of biomass may solve part of these problems, and recent analyses demonstrated that from the perspective of the reduction of the emissions of carbon dioxide, its valorization may bring important advantages conditioned by the usage of genetic modified fast growing trees or wastes, as primary sources. In this context, the abundance and complex structure of lignin may offer various possibilities of exploitation. However, its transformation in fuels or chemicals supposes a complex chemistry involving the cleavage of C-O and C-C bonds and altering of the functional groups. Chemistry offered various solutions in this sense. However, despite the intense work, there are still many drawbacks limiting the industrial application. Thus, the proposed technologies considered mainly homogeneous catalysts meaning expensive noble metals based systems that are hard to be recovered at the end of the reaction. Also, the reactions were carried out in organic solvents that are not acceptable today from the environmental point of view. To avoid these problems, the concept of this work was to investigate the synthesis of superparamagnetic core shell catalysts for the fragmentation of lignin directly in the aqueous phase. The magnetic nanoparticles were covered with a nanoshell of an oxide (niobia) with a double role: to protect the magnetic nanoparticles and to generate a proper (acidic) catalytic function and, on this composite, cobalt nanoparticles were deposed in order to catalyze the C-C bond splitting. With this purpose, we developed a protocol to prepare multifunctional and magnetic separable nano-composite Co@Nb2O5@Fe3O4 catalysts. We have also established an analytic protocol for the identification and quantification of the fragments resulted from lignin depolymerization in both liquid and solid phase. The fragmentation of various lignins occurred on the prepared materials in high yields and with very good selectivity in the desired fragments. The optimization of the catalyst composition indicated a cobalt loading of 4wt% as optimal. Working at 180 oC and 10 atm H2 this catalyst allowed a conversion of lignin up to 60% leading to a mixture containing over 96% in C20-C28 and C29-C37 fragments that were then completely fragmented to C12-C16 in a second stage. The investigated catalysts were completely recyclable, and no leaching of the elements included in the composition was determined by inductively coupled plasma optical emission spectrometry (ICP-OES).

Keywords: superparamagnetic core-shell catalysts, environmental production of fuels, renewable lignin, recyclable catalysts

Procedia PDF Downloads 333
392 Geometric Nonlinear Dynamic Analysis of Cylindrical Composite Sandwich Shells Subjected to Underwater Blast Load

Authors: Mustafa Taskin, Ozgur Demir, M. Mert Serveren

Abstract:

The precise study of the impact of underwater explosions on structures is of great importance in the design and engineering calculations of floating structures, especially those used for military purposes, as well as power generation facilities such as offshore platforms that can become a target in case of war. Considering that ship and submarine structures are mostly curved surfaces, it is extremely important and interesting to examine the destructive effects of underwater explosions on curvilinear surfaces. In this study, geometric nonlinear dynamic analysis of cylindrical composite sandwich shells subjected to instantaneous pressure load is performed. The instantaneous pressure load is defined as an underwater explosion and the effects of the liquid medium are taken into account. There are equations in the literature for pressure due to underwater explosions, but these equations have been obtained for flat plates. For this reason, the instantaneous pressure load equations are arranged to be suitable for curvilinear structures before proceeding with the analyses. Fluid-solid interaction is defined by using Taylor's Plate Theory. The lower and upper layers of the cylindrical composite sandwich shell are modeled as composite laminate and the middle layer consists of soft core. The geometric nonlinear dynamic equations of the shell are obtained by Hamilton's principle, taken into account the von Kàrmàn theory of large displacements. Then, time dependent geometric nonlinear equations of motion are solved with the help of generalized differential quadrature method (GDQM) and dynamic behavior of cylindrical composite sandwich shells exposed to underwater explosion is investigated. An algorithm that can work parametrically for the solution has been developed within the scope of the study.

Keywords: cylindrical composite sandwich shells, generalized differential quadrature method, geometric nonlinear dynamic analysis, underwater explosion

Procedia PDF Downloads 199