Search results for: care networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6481

Search results for: care networks

2131 Cosmetic Surgery on the Rise: The Impact of Remote Communication

Authors: Bruno Di Pace, Roxanne H. Padley

Abstract:

Aims: The recent increase in remote video interaction has increased the number of requests for teleconsultations with plastic surgeons in private practice (70% in the UK and 64% in the USA). This study investigated the motivations for such an increase and the underlying psychological impact on patients. Method: An anonymous web-based poll of 8 questions was designed and distributed to patients seeking cosmetic surgery through social networks in both Italy and the UK. The questions gathered responses regarding 1. Reasons for pursuing cosmetic surgery; 2. The effects of delays caused by the SARS-COV-2 pandemic; 3. The effects on mood; 4. The influence of video conferencing on body-image perception. Results: 85 respondents completed the online poll. Overall, 68% of respondents stated that seeing themselves more frequently online had influenced their decision to seek cosmetic surgery. The types of surgeries indicated were predominantly to the upper body and face (82%). Delays and access to surgeons during the pandemic were perceived as negatively impacting patients' moods (95%). Body-image perception and self-esteem were lower than in the pre-pandemic, particularly during lockdown (72%). Patients were more inclined to undergo cosmetic surgery during the pandemic, both due to the wish to improve their “lockdown face” for video conferencing (77%) and also due to the benefits of home recovery while in smart working (58%). Conclusions: Overall, findings suggest that video conferencing has led to a significant increase in requests for cosmetic surgery and the so-called “Zoom Boom” effect.

Keywords: cosmetic surgery, remote communication, telehealth, zoom boom

Procedia PDF Downloads 180
2130 A Bi-Objective Model to Optimize the Total Time and Idle Probability for Facility Location Problem Behaving as M/M/1/K Queues

Authors: Amirhossein Chambari

Abstract:

This article proposes a bi-objective model for the facility location problem subject to congestion (overcrowding). Motivated by implementations to locate servers in internet mirror sites, communication networks, one-server-systems, so on. This model consider for situations in which immobile (or fixed) service facilities are congested (or queued) by stochastic demand to behave as M/M/1/K queues. We consider for this problem two simultaneous perspectives; (1) Customers (desire to limit times of accessing and waiting for service) and (2) Service provider (desire to limit average facility idle-time). A bi-objective model is setup for facility location problem with two objective functions; (1) Minimizing sum of expected total traveling and waiting time (customers) and (2) Minimizing the average facility idle-time percentage (service provider). The proposed model belongs to the class of mixed-integer nonlinear programming models and the class of NP-hard problems. In addition, to solve the model, controlled elitist non-dominated sorting genetic algorithms (Controlled NSGA-II) and controlled elitist non-dominated ranking genetic algorithms (NRGA-I) are proposed. Furthermore, the two proposed metaheuristics algorithms are evaluated by establishing standard multiobjective metrics. Finally, the results are analyzed and some conclusions are given.

Keywords: bi-objective, facility location, queueing, controlled NSGA-II, NRGA-I

Procedia PDF Downloads 584
2129 Redefining Identity of People with Disabilities Based on Content Analysis of Instagram Accounts

Authors: Grzegorz Kubinski

Abstract:

The proposed paper is focused on forms of identity expression in people with disabilities (PWD) in the social networks like Instagram. Theoretical analysis widely proposes using the new media as an assistive tool for improving wellbeing and labour activities of PWD. This kind of use is definitely important and plays a key role in all social inclusion processes. However, Instagram is not a place where PWD only express their own problems, but in the opposite, allows them to construct a new definition of disability. In the paper, the problem how this different than a classical approach to disability is created by PWD will be discussed. This issue will be scrutinized mainly in two points. Firstly, the question of how disability is changed by other everyday activities, like fashion or sport, will be described. Secondly, and this could be seen as more important, the point how PWD redefining their bodies creating a different form of aesthetic will be presented. The paper is based on content analysis of Instagram accounts. About 20 accounts created by PWD were analyzed for 6 month period, taking into account elements like photos, comments and discussions. All those information were studied in relation to 'everyday life' category and 'aesthetic' category. Works by T. Siebers, L. J. Davis or R. McRuer were used as theoretical background. Conclusions and interpretations presented in the proposed paper show that the Internet can be used by PWD not only as prosthetic and assistive tools. PWD willingly use them as modes of expression their independence, agency and identity. The paper proposes that in further research this way of using the Internet communication by PWD should be taken into account as an important part of the understanding of disability.

Keywords: body, disability, identity, new media

Procedia PDF Downloads 139
2128 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring

Authors: A. Degale Desta, Cheng Jian

Abstract:

Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.

Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning

Procedia PDF Downloads 165
2127 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning

Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie

Abstract:

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.

Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue

Procedia PDF Downloads 191
2126 Combination of Diuretics and Selective Serotonin Reuptake Inhibitors Leading Severe Hyponatremia: A Case Report

Authors: Esra Bora, Alper Omeroglu, Zeynep Pelin Polat, Oguzhan Kara, Fatih Akdogan, Sema Ucak Basat

Abstract:

Hyponatremia is one of the most encountered electrolyte imbalance among all medical fields. It has a wide range of symptoms as well as complications from fatigue to loss of consciousness. Although a lot of factors can cause low sodium levels in serum, combining specific medications can lead to severe hyponatremia in a rapid onset which can cause high mortality and morbidity. The objective of this case report was to underline that prescribing specific medications disregarding their side effects can cause this common electrolyte imbalance but in a more severe manner. In this case report, we present a 46-year-old male patient with a serum sodium level of 104 mEq/L who consumed hydrochlorothiazide for hypertension and was under treatment with selective serotonin reuptake inhibitors (SSRIs) for major depression. The patient had tonic-clonic seizures at the second hour of the treatment and intubation was needed due to loss of consciousness and hypoxia. After proper replacement of sodium with hypertonic solutions in intensive care unit for nine days, extubation indicated. Even in healthy young males, hyponatremia due to two separately prescribed medications can lead life-threatening hyponatremia. Physicians should be aware of the side effects of diuretics, especially hydrochlorothiazides and SSRIs and their combinations.

Keywords: diuretics, hydrochlorothiazide, hyponatremia, SSRI

Procedia PDF Downloads 154
2125 Telehealth Psychotherapy: A Comparison of Two Swedish Randomized Clinical Trials

Authors: Madeline Foster

Abstract:

Since the COVID-19 pandemic, telehealth usage for the delivery of psychotherapy has surged. The evidence base evaluating the success of telehealth interventions continues to grow, with both benefits as well as potential risks identified. This study compared two recent randomized clinical trials (RCTs) from Sweden that looked at the effectiveness of Cognitive Behavioral Therapy (CBT) delivered via telehealth (TH) versus face-to-face (FTF) for individuals with Obsessive Compulsive Disorder (OCD). The papers had mixed results. The first paper by Aspvall and colleagues compared the effect of a therapist-supported, internet-delivered stepped-care CBT program for children and adolescents aged 7 to 17 with face-to-face CBT (2021). In Aspvall’s study, the control scored a mean Y-BOCS of 10.57 and the TH intervention group scored a mean Y-BOCS of 11.57. The mean difference (0.91) met the criteria for noninferiority (p = 0.03). The second study by Lundström and colleagues also compared therapist-supported, internet-based CBT with FTF CBT for the treatment of those with DSM-5-diagnosed OCD. Conversely, while Lundström’s study reported improved symptoms across all groups, at follow up the difference in symptom severity between FTF and TH was clinically significant, with 77% of FTF participants responding to treatment compared to only 45% of TH participants. Due to the methodological limitations of Lundström’s study, it was concluded that Aspvall’s paper made a stronger scientific argument.

Keywords: telehealth, Sweden, RCT, cognitive-behavioral therapy, obsessive-compulsive disorder

Procedia PDF Downloads 64
2124 Role of Adaptive Support Ventilation in Weaning of COPD Patients

Authors: A. Kamel Abd Elaziz Mohamed, B. Sameh Kamal el Maraghi

Abstract:

Introduction: Adaptive support ventilation (ASV) is an improved closed-loop ventilation mode that provides both pressure-controlled ventilation and PSV according to the patient’s needs. Aim of the work: To compare the short-term effects of Adaptive support ventilation (ASV), with conventional Pressure support ventilation (PSV) in weaning of intubated COPD patients. Patients and methods: Fifty patients admitted in the intensive care with acute exacerbation of COPD and needing intubation were included in the study. All patients were initially ventilated with control/assist control mode, in a stepwise manner and were receiving standard medical therapy. Patients were randomized into two groups to receive either ASV or PSV. Results: Out of fifty patients included in the study forty one patients in both studied groups were weaned successfully according to their ABG data and weaning indices. APACHE II score showed no significant difference in both groups. There were statistically significant differences between the groups in term of, duration of mechanical ventilation, weaning hours and length of ICU stay being shorter in (group 1) weaned by ASV. Re-intubation and mortality rate were higher in (group 11) weaned by conventional PSV, however the differences were not significant. Conclusion: ASV can provide automated weaning and achieve shorter weaning time for COPD patients hence leading to reduction in the total duration of MV, length of stay, and hospital costs.

Keywords: COPD patients, ASV, PSV, mechanical ventilation (MV)

Procedia PDF Downloads 390
2123 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform

Authors: Reza Mohammadzadeh

Abstract:

The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.

Keywords: data model, geotechnical risks, machine learning, underground coal mining

Procedia PDF Downloads 275
2122 Enhancement of Underwater Haze Image with Edge Reveal Using Pixel Normalization

Authors: M. Dhana Lakshmi, S. Sakthivel Murugan

Abstract:

As light passes from source to observer in the water medium, it is scattered by the suspended particulate matter. This scattering effect will plague the captured images with non-uniform illumination, blurring details, halo artefacts, weak edges, etc. To overcome this, pixel normalization with an Amended Unsharp Mask (AUM) filter is proposed to enhance the degraded image. To validate the robustness of the proposed technique irrespective of atmospheric light, the considered datasets are collected on dual locations. For those images, the maxima and minima pixel intensity value is computed and normalized; then the AUM filter is applied to strengthen the blurred edges. Finally, the enhanced image is obtained with good illumination and contrast. Thus, the proposed technique removes the effect of scattering called de-hazing and restores the perceptual information with enhanced edge detail. Both qualitative and quantitative analyses are done on considering the standard non-reference metric called underwater image sharpness measure (UISM), and underwater image quality measure (UIQM) is used to measure color, sharpness, and contrast for both of the location images. It is observed that the proposed technique has shown overwhelming performance compared to other deep-based enhancement networks and traditional techniques in an adaptive manner.

Keywords: underwater drone imagery, pixel normalization, thresholding, masking, unsharp mask filter

Procedia PDF Downloads 200
2121 Urban Heat Island Effects on Human Health in Birmingham and Its Mitigation

Authors: N. A. Parvin, E. B. Ferranti, L. A. Chapman, C. A. Pfrang

Abstract:

This study intends to investigate the effects of the Urban Heat Island on public health in Birmingham. Birmingham is located at the center of the West Midlands and its weather is Highly variable due to geographical factors. Residential developments, road networks and infrastructure often replace open spaces and vegetation. This transformation causes the temperature of urban areas to increase and creates an "island" of higher temperatures in the urban landscape. Extreme heat in the urban area is influencing public health in the UK as well as in the world. Birmingham is a densely built-up area with skyscrapers and congested buildings in the city center, which is a barrier to air circulation. We will investigate the city regarding heat and cold-related human mortality and other impacts. We are using primary and secondary datasets to examine the effect of population shift and land-use change on the UHI in Birmingham. We will also use freely available weather data from the Birmingham Urban Observatory and will incorporate satellite data to determine urban spatial expansion and its effect on the UHI. We have produced a temperature map based on summer datasets of 2020, which has covered 25 weather stations in Birmingham to show the differences between diurnal and nocturnal summer and annual temperature trends. Some impacts of the UHI may be beneficial, such as the lengthening of the plant growing season, but most of them are highly negative. We are looking for various effects of urban heat which is impacting human health and investigating mitigation options.

Keywords: urban heat, public health, climate change

Procedia PDF Downloads 97
2120 R-Killer: An Email-Based Ransomware Protection Tool

Authors: B. Lokuketagoda, M. Weerakoon, U. Madushan, A. N. Senaratne, K. Y. Abeywardena

Abstract:

Ransomware has become a common threat in past few years and the recent threat reports show an increase of growth in Ransomware infections. Researchers have identified different variants of Ransomware families since 2015. Lack of knowledge of the user about the threat is a major concern. Ransomware detection methodologies are still growing through the industry. Email is the easiest method to send Ransomware to its victims. Uninformed users tend to click on links and attachments without much consideration assuming the emails are genuine. As a solution to this in this paper R-Killer Ransomware detection tool is introduced. Tool can be integrated with existing email services. The core detection Engine (CDE) discussed in the paper focuses on separating suspicious samples from emails and handling them until a decision is made regarding the suspicious mail. It has the capability of preventing execution of identified ransomware processes. On the other hand, Sandboxing and URL analyzing system has the capability of communication with public threat intelligence services to gather known threat intelligence. The R-Killer has its own mechanism developed in its Proactive Monitoring System (PMS) which can monitor the processes created by downloaded email attachments and identify potential Ransomware activities. R-killer is capable of gathering threat intelligence without exposing the user’s data to public threat intelligence services, hence protecting the confidentiality of user data.

Keywords: ransomware, deep learning, recurrent neural networks, email, core detection engine

Procedia PDF Downloads 216
2119 Integrated Machine Learning Framework for At-Home Patients Personalized Risk Prediction Using Activities, Biometric, and Demographic Features

Authors: Claire Xu, Welton Wang, Manasvi Pinnaka, Anqi Pan, Michael Han

Abstract:

Hospitalizations account for one-third of the total health care spending in the US. Early risk detection and intervention can reduce this high cost and increase the satisfaction of both patients and physicians. Due to the lack of awareness of the potential arising risks in home environment, the opportunities for patients to seek early actions of clinical visits are dramatically reduced. This research aims to offer a highly personalized remote patients monitoring and risk assessment AI framework to identify the potentially preventable hospitalization for both acute as well as chronic diseases. A hybrid-AI framework is trained with data from clinical setting, patients surveys, as well as online databases. 20+ risk factors are analyzed ranging from activities, biometric info, demographic info, socio-economic info, hospitalization history, medication info, lifestyle info, etc. The AI model yields high performance of 87% accuracy and 88 sensitivity with 20+ features. This hybrid-AI framework is proven to be effective in identifying the potentially preventable hospitalization. Further, the high indicative features are identified by the models which guide us to a healthy lifestyle and early intervention suggestions.

Keywords: hospitalization prevention, machine learning, remote patient monitoring, risk prediction

Procedia PDF Downloads 237
2118 Experimental Study on Strength and Durability Properties of Bio-Self-Cured Fly Ash Based Concrete under Aggressive Environments

Authors: R. Malathy

Abstract:

High performance concrete is not only characterized by its high strength, workability, and durability but also by its smartness in performance without human care since the first day. If the concrete can cure on its own without external curing without compromising its strength and durability, then it is said to be high performance self-curing concrete. In this paper, an attempt is made on the performance study of internally cured concrete using biomaterials, namely Spinacea pleracea and Calatropis gigantea as self-curing agents, and it is compared with the performance of concrete with existing self-cure chemical, namely polyethylene glycol. The present paper focuses on workability, strength, and durability study on M20, M30, and M40 grade concretes replacing 30% of fly ash for cement. The optimum dosage of Spinacea pleracea, Calatropis gigantea, and polyethylene glycol was taken as 0.6%, 0.24%, and 0.3% by weight of cement from the earlier research studies. From the slump tests performed, it was found that there is a minimum variation between conventional concrete and self-cured concrete. The strength activity index is determined by keeping compressive strength of conventionally cured concrete for 28 days as unity and observed that, for self-cured concrete, it is more than 1 after 28 days and more than 1.15 after 56 days because of secondary reaction of fly ash. The performance study of concretes in aggressive environment like acid attack, sea water attack, and chloride attack was made, and the results are positive and encouraging in bio-self-cured concretes which are ecofriendly, cost effective, and high performance materials.

Keywords: bio materials, Calatropis gigantea, self curing concrete, Spinacea oleracea

Procedia PDF Downloads 347
2117 Optimal and Critical Path Analysis of State Transportation Network Using Neo4J

Authors: Pallavi Bhogaram, Xiaolong Wu, Min He, Onyedikachi Okenwa

Abstract:

A transportation network is a realization of a spatial network, describing a structure which permits either vehicular movement or flow of some commodity. Examples include road networks, railways, air routes, pipelines, and many more. The transportation network plays a vital role in maintaining the vigor of the nation’s economy. Hence, ensuring the network stays resilient all the time, especially in the face of challenges such as heavy traffic loads and large scale natural disasters, is of utmost importance. In this paper, we used the Neo4j application to develop the graph. Neo4j is the world's leading open-source, NoSQL, a native graph database that implements an ACID-compliant transactional backend to applications. The Southern California network model is developed using the Neo4j application and obtained the most critical and optimal nodes and paths in the network using centrality algorithms. The edge betweenness centrality algorithm calculates the critical or optimal paths using Yen's k-shortest paths algorithm, and the node betweenness centrality algorithm calculates the amount of influence a node has over the network. The preliminary study results confirm that the Neo4j application can be a suitable tool to study the important nodes and the critical paths for the major congested metropolitan area.

Keywords: critical path, transportation network, connectivity reliability, network model, Neo4j application, edge betweenness centrality index

Procedia PDF Downloads 135
2116 A Bibliometric Analysis on Filter Bubble

Authors: Misbah Fatma, Anam Saiyeda

Abstract:

This analysis charts the introduction and expansion of research into the filter bubble phenomena over the last 10 years using a large dataset of academic publications. This bibliometric study demonstrates how interdisciplinary filter bubble research is. The identification of key authors and organizations leading the filter bubble study sheds information on collaborative networks and knowledge transfer. Relevant papers are organized based on themes including algorithmic bias, polarisation, social media, and ethical implications through a systematic examination of the literature. In order to shed light on how these patterns have changed over time, the study plots their historical history. The study also looks at how research is distributed globally, showing geographic patterns and discrepancies in scholarly output. The results of this bibliometric analysis let us fully comprehend the development and reach of filter bubble research. This study offers insights into the ongoing discussion surrounding information personalization and its implications for societal discourse, democratic participation, and the potential risks to an informed citizenry by exposing dominant themes, interdisciplinary collaborations, and geographic patterns. In order to solve the problems caused by filter bubbles and to advance a more diverse and inclusive information environment, this analysis is essential for scholars and researchers.

Keywords: bibliometric analysis, social media, social networking, algorithmic personalization, self-selection, content moderation policies and limited access to information, recommender system and polarization

Procedia PDF Downloads 119
2115 Information Security Dilemma: Employees' Behaviour on Three-Dimensions to Failure

Authors: Dyana Zainudin, Atta Ur-Rahman, Thaier Hamed

Abstract:

This paper explains about human nature concept as to understand the significance of information security in employees’ mentality including leaders in an organisation. By studying on a theory concept of the latest Von Solms fourth waves, information security governance basically refers to the concept of a set of methods, techniques and tools that responsible for protecting resources of a computer system to ensure service availability, confidentiality and integrity of information. However, today’s information security dilemma relates to the acceptance of employees mentality. The major causes are a lack of communication and commitment. These types of management in an organisation are labelled as immoral/amoral management which effects on information security compliance. A recovery action is taken based on ‘learn a lesson from incident events’ rather than prevention. Therefore, the paper critically analysed the Von Solms fourth waves’ theory with current human events and its correlation by studying secondary data and also from qualitative analysis among employees in public sectors. ‘Three-dimensions to failure’ of information security dilemma are explained as deny, don’t know and don’t care. These three-dimensions are the most common vulnerable behaviour owned by employees. Therefore, by avoiding the three-dimensions to failure may improve the vulnerable behaviour of employees which is often related to immoral/amoral management.

Keywords: information security management system, information security behaviour, information security governance, information security culture

Procedia PDF Downloads 209
2114 A Study of Level of Happiness in Orphans of Patna District

Authors: Riya Kartikee, Uday Shankar

Abstract:

Background –.Happiness refers to a range of the balance of positive and pleasant emotions of joy, pride, contentment, gratitude, and living with ethics. Happiness is an experience combined with a sense that one’s life is good, meaningful, and worth a while, but in the context of orphans who have lost their birthgivers, their parents who play an important role in bringing necessities and comfort to them, but many terms of the above phases are missing in the life of orphan So, stress increases because of lack of love, attention, sympathy, care, they experience many kind of trauma and also in some cases their lives get worst as they face some physiological abuse, sexual abuse, they are forced to have stress at a not only mentally but physically also in the context of Patna, Bihar where many people are below poverty line, lack of resources is a normal condition for the Orphanages.AIM- The present study was intended to study the level of Happiness among the orphans of Patna District, also it was attempted to find the role of happiness in their lives as an individual.Method- The sample of 70 Orphans in the age group of 12 to 18 years were taken from the orphanages of Patna district-Apnaghar, Rainbow homes, etc. Purposive sampling was used in the study, There has been one research tool used in the study, which is Happiness scale by Dr.R.L Bhardwaj and Dr.Poonam R Das. Results- Results have revealed that Orphans have possessed a very low level of happiness and unhappiness was related due to their living conditions in the orphanage.Conclusion-It can be stated that the Level of happiness is an important missing determinant in the lives of orphans.

Keywords: happiness, orphans, patna, orphanage

Procedia PDF Downloads 175
2113 Gap Analysis of Service Quality: The Veterinary Teaching Hospital, University of Peradeniya, Sri Lanka

Authors: Preethi Sudarshanie Dassanayake, R. A. Sudath Weerasiri

Abstract:

Objective: The objective of this study were to find out highest expectation and perception,highest gap between perception and expectation of service quality, and to find out such gaps between perception and expectation with regard to service quality dimensions were whether statistically significant. Methodology: This study carried out at the Out Patient Department (OPD) of the Veterinary Teaching Hospital (VTH), University of Peradeniya. Modified version of SERVQUAL with 22-pairs of items regarding expectation and perception of service quality in dimensions of tangible, reliability, responsiveness, assurance and empathy were included in Part 1 and the Part 2 of the questionnaire consisted of questions regarding socio-demographic factors. Sample size was 200 and sampling procedure was Systematic Random Sampling. Customers above 18 years of age, able to read, write and understand Sinhala or English language, visits more than twice in last six months and who willing to respond were selected. Findings: The analysis revealed customers expectations of service higher than the perceived for all 22- items of the SERVQUAL. This high expectation suggests that there is sufficient room for further improvement of service quality in all five dimensions. Originality/Value of the Paper: This study gave a new insight for poorly researched area of veterinary health service quality in Sri Lankan context. It provides hospital administrators and policy makers to develop strategies for further improvement of service quality according to customers' view.

Keywords: expectation, perception, service quality, SERVQUAL, veterinary health care

Procedia PDF Downloads 469
2112 Central Palmar Necrosis Following Steroid Injections for the Treatment of Carpal Tunnel Syndrome: A Case Report

Authors: M. Ridwanul Hassan, Samuel George

Abstract:

Aims: Steroid injections are commonly used as a diagnostic tool or an alternative to surgical management of carpal tunnel syndrome (CTS) and are generally safe. Ischaemia is a rare complication with very few cases reported in the literature. Methods: We report a case of a 50-year-old female that presented with a necrotic wound to her left palm one month after a steroid injection into the carpal tunnel. She had a 2-year history of CTS in her left hand that was treated with six previous steroid injections in primary care during this period. The wound evolved from a blister to a necrotic ulcer which led to a painful, hollow defect in the centre of her palm. She did not report any history of trauma, nor did she have any co-morbidities. Clinical photographs were taken. Results: On examination, she had a 0.5 cmx1 cm defect in the palm of her left hand down to aponeurosis. There was purulent discharge in the wound with surrounding erythema but no spreading cellulitis. She had full function of her fingers but was very tender on movements and at rest. She was admitted for intravenous antibiotics and underwent a debridement, washout, and carpal tunnel release the next day. The defect was packed to heal by secondary intention and has now fully healed one month following her operation. Conclusions: This is an extremely rare complication of steroid injections to the carpal tunnel and may have been avoided by earlier referral for surgery rather than treatment using multiple steroid injections.

Keywords: hand surgery, complication, rare, carpal tunnel syndrome

Procedia PDF Downloads 113
2111 Substation Automation, Digitization, Cyber Risk and Chain Risk Management Reliability

Authors: Serzhan Ashirov, Dana Nour, Rafat Rob, Khaled Alotaibi

Abstract:

There has been a fast growth in the introduction and use of communications, information, monitoring, and sensing technologies. The new technologies are making their way to the Industrial Control Systems as embedded in products, software applications, IT services, or commissioned to enable integration and automation of increasingly global supply chains. As a result, the lines that separated the physical, digital, and cyber world have diminished due to the vast implementation of the new, disruptive digital technologies. The variety and increased use of these technologies introduce many cybersecurity risks affecting cyber-resilience of the supply chain, both in terms of the product or service delivered to a customer and members of the supply chain operation. US department of energy considers supply chain in the IR4 space to be the weakest link in cybersecurity. The IR4 identified the digitization of the field devices, followed by digitalization that eventually moved through the digital transformation space with little care for the new introduced cybersecurity risks. This paper will examine the best methodologies for securing the electrical substations from cybersecurity attacks due to supply chain risks, and due to digitization effort. SCADA systems are the most vulnerable part of the power system infrastructure due to digitization and due to the weakness and vulnerabilities in the supply chain security. The paper will discuss in details how create a secure supply chain methodology, secure substations, and mitigate the risks due to digitization

Keywords: cybersecurity, supply chain methodology, secure substation, digitization

Procedia PDF Downloads 65
2110 Managing City Pipe Leaks through Community Participation Using a Web and Mobile Application in South Africa

Authors: Mpai Mokoena, Nsenda Lukumwena

Abstract:

South Africa is one of the driest countries in the world and is facing a water crisis. In addition to inadequate infrastructure and poor planning, the country is experiencing high rates of water wastage due to pipe leaks. This study outlines the level of water wastage and develops a smart solution to efficiently manage and reduce the effects of pipe leaks, while monitoring the situation before and after fixing the pipe leaks. To understand the issue in depth, a literature review of journal papers and government reports was conducted. A questionnaire was designed and distributed to the general public. Additionally, the municipality office was contacted from a managerial perspective. The analysis from the study indicated that the majority of the citizens are aware of the water crisis and are willing to participate positively to decrease the level of water wasted. Furthermore, the response from the municipality acknowledged that more practical solutions are needed to reduce water wastage, and resources to attend to pipe leaks swiftly. Therefore, this paper proposes a specific solution for municipalities, local plumbers and citizens to minimize the effects of pipe leaks. The solution provides web and mobile application platforms to report and manage leaks swiftly. The solution is beneficial to the country in achieving water security and would promote a culture of responsibility toward water usage.

Keywords: urban distribution networks, leak management, mobile application, responsible citizens, water crisis, water security

Procedia PDF Downloads 146
2109 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification

Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro

Abstract:

Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.

Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification

Procedia PDF Downloads 118
2108 Load-Enabled Deployment and Sensing Range Optimization for Lifetime Enhancement of WSNs

Authors: Krishan P. Sharma, T. P. Sharma

Abstract:

Wireless sensor nodes are resource constrained battery powered devices usually deployed in hostile and ill-disposed areas to cooperatively monitor physical or environmental conditions. Due to their limited power supply, the major challenge for researchers is to utilize their battery power for enhancing the lifetime of whole network. Communication and sensing are two major sources of energy consumption in sensor networks. In this paper, we propose a deployment strategy for enhancing the average lifetime of a sensor network by effectively utilizing communication and sensing energy to provide full coverage. The proposed scheme is based on the fact that due to heavy relaying load, sensor nodes near to the sink drain energy at much faster rate than other nodes in the network and consequently die much earlier. To cover this imbalance, proposed scheme finds optimal communication and sensing ranges according to effective load at each node and uses a non-uniform deployment strategy where there is a comparatively high density of nodes near to the sink. Probable relaying load factor at particular node is calculated and accordingly optimal communication distance and sensing range for each sensor node is adjusted. Thus, sensor nodes are placed at locations that optimize energy during network operation. Formal mathematical analysis for calculating optimized locations is reported in present work.

Keywords: load factor, network lifetime, non-uniform deployment, sensing range

Procedia PDF Downloads 385
2107 Hydrological Evaluation of Satellite Precipitation Products Using IHACRES Rainfall-Runoff Model over a Basin in Iran

Authors: Mahmoud Zakeri Niri, Saber Moazami, Arman Abdollahipour, Hossein Ghalkhani

Abstract:

The objective of this research is to hydrological evaluation of four widely-used satellite precipitation products named PERSIANN, TMPA-3B42V7, TMPA-3B42RT, and CMORPH over Zarinehrood basin in Iran. For this aim, at first, daily streamflow of Sarough-cahy river of Zarinehrood basin was simulated using IHACRES rainfall-runoff model with daily rain gauge and temperature as input data from 1988 to 2008. Then, the model was calibrated in two different periods through comparison the simulated discharge with the observed one at hydrometric stations. Moreover, in order to evaluate the performance of satellite precipitation products in streamflow simulation, the calibrated model was validated using daily satellite rainfall estimates from the period of 2003 to 2008. The obtained results indicated that TMPA-3B42V7 with CC of 0.69, RMSE of 5.93 mm/day, MAE of 4.76 mm/day, and RBias of -5.39% performs better simulation of streamflow than those PERSIANN and CMORPH over the study area. It is noteworthy that in Iran, the availability of ground measuring station data is very limited because of the sparse density of hydro-meteorological networks. On the other hand, large spatial and temporal variability of precipitations and lack of a reliable and extensive observing system are the most important challenges to rainfall analysis, flood prediction, and other hydrological applications in this country.

Keywords: hydrological evaluation, IHACRES, satellite precipitation product, streamflow simulation

Procedia PDF Downloads 242
2106 Assessing Climate-Induced Species Range Shifts and Their Impacts on the Protected Seascape on Canada’s East Coast Using Species Distribution Models and Future Projections

Authors: Amy L. Irvine, Gabriel Reygondeau, Derek P. Tittensor

Abstract:

Marine protected areas (MPAs) within Canada’s exclusive economic zone help ensure the conservation and sustainability of marine ecosystems and the continued provision of ecosystem services to society (e.g., food, carbon sequestration). With ongoing and accelerating climate change, however, MPAs may become undermined in terms of their effectiveness at fulfilling these outcomes. Many populations of species, especially those at their thermal range limits, may shift to cooler waters or become extirpated due to climate change, resulting in new species compositions and ecological interactions within static MPA boundaries. While Canadian MPA management follows international guidelines for marine conservation, no consistent approach exists for adapting MPA networks to climate change and the resulting altered ecosystem conditions. To fill this gap, projected climate-driven shifts in species distributions on Canada’s east coast were analyzed to identify when native species emigrate and novel species immigrate within the network and how high mitigation and carbon emission scenarios influence these timelines. Indicators of the ecological changes caused by these species' shifts in the biological community were also developed. Overall, our research provides projections of climate change impacts and helps to guide adaptive management responses within the Canadian east coast MPA network.

Keywords: climate change, ecosystem modeling, marine protected areas, management

Procedia PDF Downloads 104
2105 A BERT-Based Model for Financial Social Media Sentiment Analysis

Authors: Josiel Delgadillo, Johnson Kinyua, Charles Mutigwe

Abstract:

The purpose of sentiment analysis is to determine the sentiment strength (e.g., positive, negative, neutral) from a textual source for good decision-making. Natural language processing in domains such as financial markets requires knowledge of domain ontology, and pre-trained language models, such as BERT, have made significant breakthroughs in various NLP tasks by training on large-scale un-labeled generic corpora such as Wikipedia. However, sentiment analysis is a strong domain-dependent task. The rapid growth of social media has given users a platform to share their experiences and views about products, services, and processes, including financial markets. StockTwits and Twitter are social networks that allow the public to express their sentiments in real time. Hence, leveraging the success of unsupervised pre-training and a large amount of financial text available on social media platforms could potentially benefit a wide range of financial applications. This work is focused on sentiment analysis using social media text on platforms such as StockTwits and Twitter. To meet this need, SkyBERT, a domain-specific language model pre-trained and fine-tuned on financial corpora, has been developed. The results show that SkyBERT outperforms current state-of-the-art models in financial sentiment analysis. Extensive experimental results demonstrate the effectiveness and robustness of SkyBERT.

Keywords: BERT, financial markets, Twitter, sentiment analysis

Procedia PDF Downloads 154
2104 Hybrid Sol-Gel Coatings for Corrosion Protection of AA6111-T4 Aluminium Alloy

Authors: Shadatul Hanom Rashid, Xiaorong Zhou

Abstract:

Hybrid sol-gel coatings are the blend of both advantages of inorganic and organic networks have been reported as environmentally friendly anti-corrosion surface pre-treatment for several metals, including aluminum alloys. In this current study, Si-Zr hybrid sol-gel coatings were synthesized from (3-glycidoxypropyl)trimethoxysilane (GPTMS), tetraethyl orthosilicate (TEOS) and zirconium(IV) propoxide (TPOZ) precursors and applied on AA6111 aluminum alloy by dip coating technique. The hybrid sol-gel coatings doped with different concentrations of cerium nitrate (Ce(NO3)3) as a corrosion inhibitor were also prepared and the effect of Ce(NO3)3 concentrations on the morphology and corrosion resistance of the coatings were examined. The surface chemistry and morphology of the hybrid sol-gel coatings were analyzed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The corrosion behavior of the coated aluminum alloy samples was evaluated by electrochemical impedance spectroscopy (EIS). Results revealed that good corrosion resistance of hybrid sol-gel coatings were prepared from hydrolysis and condensation reactions of GPTMS, TEOS and TPOZ precursors deposited on AA6111 aluminum alloy. When the coating doped with cerium nitrate, the properties were improved significantly. The hybrid sol-gel coatings containing lower concentration of cerium nitrate offer the best inhibition performance. A proper doping concentration of Ce(NO3)3 can effectively improve the corrosion resistance of the alloy, while an excessive concentration of Ce(NO3)3 would reduce the corrosion protection properties, which is associated with defective morphology and instability of the sol-gel coatings.

Keywords: AA6111, Ce(NO3)3, corrosion, hybrid sol-gel coatings

Procedia PDF Downloads 159
2103 The Great Mimicker: A Case of Disseminated Tuberculosis

Authors: W. Ling, Mohamed Saufi Bin Awang

Abstract:

Introduction: Mycobacterium tuberculosis post a major health problem worldwide. Central nervous system (CNS) infection by mycobacterium tuberculosis is one of the most devastating complications of tuberculosis. Although with advancement in medical fields, we are yet to understand the pathophysiology of how mycobacterium tuberculosis was able to cross the blood-brain barrier (BBB) and infect the CNS. CNS TB may present with nonspecific clinical symptoms which can mimic other diseases/conditions; this is what makes the diagnosis relatively difficult and challenging. Public health has to be informed and educated about the spread of TB, and early identification of TB is important as it is a curable disease. Case Report: A young 21-year-old Malay gentleman was initially presented to us with symptoms of ear discharge, tinnitus, and right-sided headache for the past one year. Further history reveals that the symptoms have been mismanaged and neglected over the period of 1 year. Initial investigation reveals features of inflammation of the ear. Further imaging showed the feature of chronic inflammation of the otitis media and atypical right cerebral abscess, which has the same characteristic features and consistency. He further underwent a biopsy, and results reveal positive Mycobacterium tuberculosis of the otitis media. With the results and the available imaging, we were certain that this is likely a case of disseminated tuberculosis causing CNS TB. Conclusion: We aim to highlight the challenge and difficult face in our health care system and public health in early identification and treatment.

Keywords: central nervous system tuberculosis, intracranial tuberculosis, tuberculous encephalopathy, tuberculous meningitis

Procedia PDF Downloads 190
2102 Estimation of Time Loss and Costs of Traffic Congestion: The Contingent Valuation Method

Authors: Amira Mabrouk, Chokri Abdennadher

Abstract:

The reduction of road congestion which is inherent to the use of vehicles is an obvious priority to public authority. Therefore, assessing the willingness to pay of an individual in order to save trip-time is akin to estimating the change in price which was the result of setting up a new transport policy to increase the networks fluidity and improving the level of social welfare. This study holds an innovative perspective. In fact, it initiates an economic calculation that has the objective of giving an estimation of the monetized time value during the trips made in Sfax. This research is founded on a double-objective approach. The aim of this study is to i) give an estimation of the monetized value of time; an hour dedicated to trips, ii) determine whether or not the consumer considers the environmental variables to be significant, iii) analyze the impact of applying a public management of the congestion via imposing taxation of city tolls on urban dwellers. This article is built upon a rich field survey led in the city of Sfax. With the use of the contingent valuation method, we analyze the “declared time preferences” of 450 drivers during rush hours. Based on the fond consideration of attributed bias of the applied method, we bring to light the delicacy of this approach with regards to the revelation mode and the interrogative techniques by following the NOAA panel recommendations bearing the exception of the valorization point and other similar studies about the estimation of transportation externality.

Keywords: willingness to pay, contingent valuation, time value, city toll

Procedia PDF Downloads 438