Search results for: approach to patient
12247 An Approach of Node Model TCnNet: Trellis Coded Nanonetworks on Graphene Composite Substrate
Authors: Diogo Ferreira Lima Filho, José Roberto Amazonas
Abstract:
Nanotechnology opens the door to new paradigms that introduces a variety of novel tools enabling a plethora of potential applications in the biomedical, industrial, environmental, and military fields. This work proposes an integrated node model by applying the same concepts of TCNet to networks of nanodevices where the nodes are cooperatively interconnected with a low-complexity Mealy Machine (MM) topology integrating in the same electronic system the modules necessary for independent operation in wireless sensor networks (WSNs), consisting of Rectennas (RF to DC power converters), Code Generators based on Finite State Machine (FSM) & Trellis Decoder and On-chip Transmit/Receive with autonomy in terms of energy sources applying the Energy Harvesting technique. This approach considers the use of a Graphene Composite Substrate (GCS) for the integrated electronic circuits meeting the following characteristics: mechanical flexibility, miniaturization, and optical transparency, besides being ecological. In addition, graphene consists of a layer of carbon atoms with the configuration of a honeycomb crystal lattice, which has attracted the attention of the scientific community due to its unique Electrical Characteristics.Keywords: composite substrate, energy harvesting, finite state machine, graphene, nanotechnology, rectennas, wireless sensor networks
Procedia PDF Downloads 10612246 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data
Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine
Procedia PDF Downloads 24012245 Arteriosclerosis and Periodontitis: Correlation Expressed in the Amount of Fibrinogen in Blood
Authors: Nevila Alliu, Saimir Heta, Ilma Robo, Vera Ostreni
Abstract:
Periodontitis as an oral pathology caused by specific bacterial flora functions as a focal infection for the onset and aggravation of arteriosclerosis. These two distant pathologies, since they affect organs at a distance from each other, communicate with each other with correlation at the level of markers of inflammation in the blood. Fluctuations in the level of fibrinogen in the blood, depending on the active or passive phase of the existing periodontitis, affect the promotion of arteriosclerosis. The study is of the review type to analyze the effect of non-surgical periodontal treatment on fluctuations in the level of fibrinogen in the blood. The reduction of fibrinogen levels in the blood after non-surgical periodontal treatment of periodontitis in the patient's cavity is visible data and supported by literature sources. Also, the influence of a high amount of fibrinogen in the blood on the occurrence of arteriosclerosis is also another important data that again relies on many sources of literature. Conclusions: Thromboembolism and arteriosclerosis, as risk factors expressed in clinical data, have temporary bacteremia in the blood, which can occur significantly and often between phases of non-surgical periodontal treatment of periodontitis, treatments performed with treatment phases and protocols of predetermined treatment. Arterial thromboembolism has a significant factor, such as high levels of fibrinogen in the blood, which are significantly reduced during the period of non-surgical periodontal treatment.Keywords: fibrinogen, refractory periodontitis, atherosclerosis, non-surgical, periodontal treatment
Procedia PDF Downloads 10812244 A Gastro-Intestinal Model for a Rational Design of in vitro Systems to Study Drugs Bioavailability
Authors: Pompa Marcello, Mauro Capocelli, Vincenzo Piemonte
Abstract:
This work focuses on a mathematical model able to describe the gastro-intestinal physiology and providing a rational tool for the design of an artificial gastro-intestinal system. This latter is mainly devoted to analyse the absorption and bioavailability of drugs and nutrients through in vitro tests in order to overcome (or, at least, to partially replace) in vivo trials. The provided model realizes a conjunction ring (with extended prediction capability) between in vivo tests and mechanical-laboratory models emulating the human body. On this basis, no empirical equations controlling the gastric emptying are implemented in this model as frequent in the cited literature and all the sub-unit and the related system of equations are physiologically based. More in detail, the model structure consists of six compartments (stomach, duodenum, jejunum, ileum, colon and blood) interconnected through pipes and valves. Paracetamol, Ketoprofen, Irbesartan and Ketoconazole are considered and analysed in this work as reference drugs. The mathematical model has been validated against in vivo literature data. Results obtained show a very good model reliability and highlight the possibility to realize tailored simulations for different couples patient-drug, including food adsorption dynamics.Keywords: gastro-intestinal model, drugs bioavailability, paracetamol, ketoprofen
Procedia PDF Downloads 16912243 DNA Nano Wires: A Charge Transfer Approach
Authors: S. Behnia, S. Fathizadeh, A. Akhshani
Abstract:
In the recent decades, DNA has increasingly interested in the potential technological applications that not directly related to the coding for functional proteins that is the expressed in form of genetic information. One of the most interesting applications of DNA is related to the construction of nanostructures of high complexity, design of functional nanostructures in nanoelectronical devices, nanosensors and nanocercuits. In this field, DNA is of fundamental interest to the development of DNA-based molecular technologies, as it possesses ideal structural and molecular recognition properties for use in self-assembling nanodevices with a definite molecular architecture. Also, the robust, one-dimensional flexible structure of DNA can be used to design electronic devices, serving as a wire, transistor switch, or rectifier depending on its electronic properties. In order to understand the mechanism of the charge transport along DNA sequences, numerous studies have been carried out. In this regard, conductivity properties of DNA molecule could be investigated in a simple, but chemically specific approach that is intimately related to the Su-Schrieffer-Heeger (SSH) model. In SSH model, the non-diagonal matrix element dependence on intersite displacements is considered. In this approach, the coupling between the charge and lattice deformation is along the helix. This model is a tight-binding linear nanoscale chain established to describe conductivity phenomena in doped polyethylene. It is based on the assumption of a classical harmonic interaction between sites, which is linearly coupled to a tight-binding Hamiltonian. In this work, the Hamiltonian and corresponding motion equations are nonlinear and have high sensitivity to initial conditions. Then, we have tried to move toward the nonlinear dynamics and phase space analysis. Nonlinear dynamics and chaos theory, regardless of any approximation, could open new horizons to understand the conductivity mechanism in DNA. For a detailed study, we have tried to study the current flowing in DNA and investigated the characteristic I-V diagram. As a result, It is shown that there are the (quasi-) ohmic areas in I-V diagram. On the other hand, the regions with a negative differential resistance (NDR) are detectable in diagram.Keywords: DNA conductivity, Landauer resistance, negative dierential resistance, Chaos theory, mean Lyapunov exponent
Procedia PDF Downloads 42512242 Production of Metal Powder Using Twin Arc Spraying Process for Additive Manufacturing
Authors: D. Chen, H. Daoud, C. Kreiner, U. Glatzel
Abstract:
Additive Manufacturing (AM) provides promising opportunities to optimize and to produce tooling by integrating near-contour tempering channels for more efficient cooling. To enhance the properties of the produced tooling using additive manufacturing, prototypes should be produced in short periods. Thereby, this requires a small amount of tailored powders, which either has a high production cost or is commercially unavailable. Hence, in this study, an arc spray atomization approach to produce a tailored metal powder at a lower cost and even in small quantities, in comparison to the conventional powder production methods, was proposed. This approach involves converting commercially available metal wire into powder by modifying the wire arc spraying process. The influences of spray medium and gas pressure on the powder properties were investigated. As a result, particles with smooth surface and lower porosity were obtained, when nonoxidizing gases are used for thermal spraying. The particle size decreased with increasing of the gas pressure, and the particles sizes are in the range from 10 to 70 µm, which is desirable for selective laser melting (SLM). A comparison of microstructure and mechanical behavior of SLM generated parts using arc sprayed powders (alloy: X5CrNiCuNb 16-4) and commercial powder (alloy: X5CrNiCuNb 16-4) was also conducted.Keywords: additive manufacturing, arc spraying, powder production, selective laser melting
Procedia PDF Downloads 13812241 Evaluation of Water Management Options to Improve the Crop Yield and Water Productivity for Semi-Arid Watershed in Southern India Using AquaCrop Model
Authors: V. S. Manivasagam, R. Nagarajan
Abstract:
Modeling the soil, water and crop growth interactions are attaining major importance, considering the future climate change and water availability for agriculture to meet the growing food demand. Progress in understanding the crop growth response during water stress period through crop modeling approach provides an opportunity for improving and sustaining the future agriculture water use efficiency. An attempt has been made to evaluate the potential use of crop modeling approach for assessing the minimal supplementary irrigation requirement for crop growth during water limited condition and its practical significance in sustainable improvement of crop yield and water productivity. Among the numerous crop models, water driven-AquaCrop model has been chosen for the present study considering the modeling approach and water stress impact on yield simulation. The study has been evaluated in rainfed maize grown area of semi-arid Shanmuganadi watershed (a tributary of the Cauvery river system) located in southern India during the rabi cropping season (October-February). In addition to actual rainfed maize growth simulation, irrigated maize scenarios were simulated for assessing the supplementary irrigation requirement during water shortage condition for the period 2012-2015. The simulation results for rainfed maize have shown that the average maize yield of 0.5-2 t ha-1 was observed during deficit monsoon season (<350 mm) whereas 5.3 t ha-1 was noticed during sufficient monsoonal period (>350 mm). Scenario results for irrigated maize simulation during deficit monsoonal period has revealed that 150-200 mm of supplementary irrigation has ensured the 5.8 t ha-1 of irrigated maize yield. Thus, study results clearly portrayed that minimal application of supplementary irrigation during the critical growth period along with the deficit rainfall has increased the crop water productivity from 1.07 to 2.59 kg m-3 for major soil types. Overall, AquaCrop is found to be very effective for the sustainable irrigation assessment considering the model simplicity and minimal inputs requirement.Keywords: AquaCrop, crop modeling, rainfed maize, water stress
Procedia PDF Downloads 26912240 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia
Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski
Abstract:
The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils
Procedia PDF Downloads 36812239 Analyzing the Nutritional Challenges in Old People with Diabetes
Authors: Maedeh Gharazi
Abstract:
Adults with age 50 and older will include more than 70% of the diabetic populace by the year 2025. More established patients with diabetes are more inclined to have concurrent ceaseless conditions like hypertension, dyslipidemia, and cardiovascular sickness that may affect their nutritious necessities. The issue of achievement and support of an ideal body weight in elderly diabetic persons may not be as direct as in other age gatherings, and the risk-benefit ratio may be diverse too. Albeit expanded predominance of overweight and weight in the elderly adds to insulin resistance and hyperglycemia, more seasoned tenants of long haul care offices who experience the ill effects of diabetes have a tendency to be underweight. Both may mean insufficient nutritional status and lead to expanded grimness and mortality. The attendant problems of appetite changes, palatability of food, dietary restrictions, loneliness, and depression may influence the sort and amount of food devoured by elderly persons. Organized screening devices may recognize nutrition related issues that warrant proof based mediations. Despite the fact that glucose control and health concerns are essential calculates diet change in the more established populace, different contemplations incorporate personal satisfaction and individual inclinations. Redoing of nutritious rules to the needs of the more seasoned diabetic patient bodes well.Keywords: diabetes, nutritious necessities, insulin resistance, glucose control
Procedia PDF Downloads 33212238 Integrating Renewable Energy Forecasting Systems with HEMS and Developing It with a Bottom-Up Approach
Authors: Punit Gandhi, J. C. Brezet, Tim Gorter, Uchechi Obinna
Abstract:
This paper introduces how weather forecasting could help in more efficient energy management for smart homes with the use of Home Energy Management Systems (HEMS). The paper also focuses on educating consumers and helping them make more informed decisions while using the HEMS. A combined approach of technical and user perspective has been selected to develop a novel HEMS-product-service combination in a more comprehensive manner. The current HEMS switches on/off the energy intensive appliances based on the fluctuating electricity tariffs, but with weather forecasting, it is possible to shift the time of use of energy intensive appliances to maximum electricity production from the renewable energy system installed in the house. Also, it is possible to estimate the heating/cooling load of the house for the day ahead demand. Hence, relevant insight is gained in the expected energy production and consumption load for the next day, facilitating better (more efficient, peak shaved, cheaper, etc.) energy management practices for smart homes. In literature, on the user perspective, it has been observed that consumers lose interest in using HEMS after three to four months. Therefore, to further help in better energy management practices, the new system had to be designed in a way that consumers would sustain their interaction with the system on a structural basis. It is hypothesized that, if consumers feel more comfortable with using such system, it would lead to a prolonged usage, including more energy savings and hence financial savings. To test the hypothesis, a survey for the HEMS is conducted, to which 59 valid responses were recorded. Analysis of the survey helped in designing a system which imparts better information about the energy production and consumption to the consumers. It is also found from the survey that, consumers like a variety of options and they do not like a constant reminder of what they should do. Hence, the final system is designed to encourage consumers to make an informed decision about their energy usage with a wide variety of behavioral options available. It is envisaged that the new system will be tested in several pioneering smart energy grid projects in both the Netherlands and India, with a continued ‘design thinking’ approach, combining the technical and user perspective, as the basis for further improvements.Keywords: weather forecasting, smart grid, renewable energy forecasting, user defined HEMS
Procedia PDF Downloads 23212237 Role of Nano Gelatin and Hydrogel Based Scaffolds in Odontogenic Differentiation of Human Dental Pulp Stem Cells
Authors: Husain S. Yawer, Vasim Raja Panwar, Nidhi Priya
Abstract:
The objective of this study is to evaluate and compare the role of nano-gelatin and Bioengineered Scaffolds on the attachment, proliferation, and osteogenic differentiation of human dental pulp stem cells (DPSCs). Tooth decay and early fall have each been one of the most prevailing dental disorders which cause physical and emotional suffering and compromise the patient's quality of life. The design of novel scaffolding materials will be based on mimicking the architecture of natural dental extracellular matrix which may provide as in vivo environments for proper cell growth. This methodology will involve the combination of nano-fibred gelatin as well as biodegradable hydrogel based tooth scaffold. We have measured and optimized the Dental Pulp Stem Cells growth profile in cultures carried out on collagen-coated plastic surface, however, for tissue regeneration study, we aim to develop an enhanced microenvironment for stem cell growth and dental tissue regeneration. We believe biomimetic cell adhesion and scaffolds might provide a near in vivo growth environment for proper growth and differentiation of human DPSCs, which further help in dentin/pulp tissue regeneration.Keywords: nano-gelatin, stem cells, dental pulp, scaffold
Procedia PDF Downloads 33012236 Prevalence of Methylenetetrahydrofolate Reductase A1298C Variant in Tunisian Childhood Acute Lymphoblastic Leukemia
Authors: Rim Frikha, Maha Ben Jema, Moez Elloumi, Tarek Rebai
Abstract:
Background: Acute lymphoblastic leukemia (ALL); a common blood cancer characterized by the interaction between genetic and environmental factors. Methylenetetrahydrofolate reductase (MTHFR) is an essential folate metabolic enzyme in the processes of DNA synthesis and methylation. A common functional variant of the MTHFR gene, the A1298C, which induces disturbances in folate metabolism, may affect susceptibility to ALL. Objective: The present study aimed to assess the prevalence of MTHFR polymorphism A1298 > C in Tunisian children with ALL. Materials and Methods: A total of 28 Tunisian ALL children were enrolled in this study. Genomic DNA was extracted from whole venous blood collected in ethylenediaminetetraacetic acid (EDTA). Genotyping was carried out with restriction fragment length polymorphism (RFLP) using MboII restriction enzyme. Genotype distribution and allele frequency of MTHFR A1298C was calculated in ALL patients. Results: The A1298C variant of MTHFR was found in 11(19.6%) heterozygous and one homozygous patient (3.5%). Conclusions: This result highlights that A1298C polymorphism of MTHFR is common in Tunisian childhood ALL and suggests that this variant may have a potential role in leukemogenesis. Genotyping of large samples and different ethnicities are required to validate these findings.Keywords: methylenetetrahydrofolate reductase, acute lymphoblastic leukemia, A1298C variant, prevalence
Procedia PDF Downloads 13512235 Revolutionizing Gaming Setup Design: Utilizing Generative and Iterative Methods to Prop and Environment Design, Transforming the Landscape of Game Development Through Automation and Innovation
Authors: Rashmi Malik, Videep Mishra
Abstract:
The practice of generative design has become a transformative approach for an efficient way of generating multiple iterations for any design project. The conventional way of modeling the game elements is very time-consuming and requires skilled artists to design. A 3D modeling tool like 3D S Max, Blender, etc., is used traditionally to create the game library, which will take its stipulated time to model. The study is focused on using the generative design tool to increase the efficiency in game development at the stage of prop and environment generation. This will involve procedural level and customized regulated or randomized assets generation. The paper will present the system design approach using generative tools like Grasshopper (visual scripting) and other scripting tools to automate the process of game library modeling. The script will enable the generation of multiple products from the single script, thus creating a system that lets designers /artists customize props and environments. The main goal is to measure the efficacy of the automated system generated to create a wide variety of game elements, further reducing the need for manual content creation and integrating it into the workflow of AAA and Indie Games.Keywords: iterative game design, generative design, gaming asset automation, generative game design
Procedia PDF Downloads 7012234 Biosurfactant: A Greener Approach for Enhanced Concrete Rheology and Strength
Authors: Olivia Anak Rayeg, Clotilda Binti Petrus, Arnel Reanturco Ascotia, Ang Chung Huap, Caroline Marajan, Rudy Tawie Joseph Sipi
Abstract:
Concrete is essential for global infrastructure, yet enhancing its rheology and strength in an environmentally sustainable manner remains a significant challenge. Conventional chemical admixtures often pose environmental and health risks. This study explores the use of a phospholipid biosurfactant, derived from Rhizopus oryzae, as an environmentally friendly admixture in concrete. Various concentrations of the biosurfactant were integrated into fresh concrete, partially replacing the water content. The inclusion of the biosurfactant markedly enhanced the workability of the concrete, as demonstrated by Vertical Slump, Slump Flow, and T50 tests. After a 28-day curing period, the concrete's mechanical properties were assessed through compressive strength and bonding tests. Results revealed that substituting up to 10% of the water with the biosurfactant not only improved workability but also significantly increased both compressive and flexural strength. These findings highlight the potential of phospholipid biosurfactant as a biodegradable and non-toxic alternative to traditional admixtures, enhancing both structural integrity and sustainability in concrete. This approach reduces environmental impact and production costs, marking a significant advancement in sustainable construction technology.Keywords: concrete rheology, green admixture, fungal biosurfactant, phospholipids, rhizopus oryzae
Procedia PDF Downloads 4312233 Interdisciplinary Integrated Physical Education Program Using a Philosophical Approach
Authors: Ellie Abdi, Susana Juniu
Abstract:
The purpose of this presentation is to describe an interdisciplinary teaching program that integrates physical education concepts using a philosophical approach. The presentation includes a review of: a) the philosophy of American education, b) the philosophy of sports and physical education, c) the interdisciplinary physical education program, d) professional development programs, (e) the Success of this physical education program, f) future of physical education. This unique interdisciplinary program has been implemented in an urban school physical education discipline in East Orange, New Jersey for over 10 years. During the program the students realize that the bodies go through different experiences. The body becomes a place where a child can recognize in an enjoyable way to express and perceive particular feelings or mental states. Children may distinguish themselves to have high abilities in the social or other domains but low abilities in the field of athletics. The goal of this program for the individuals is to discover new skills, develop and demonstrate age appropriate mastery level at different tasks, therefore the program consists of 9 to 12 sports, including many game. Each successful experience increases the awareness ability. Engaging in sports and physical activities are social movements involving groups of children in situations such as teams, friends, and recreational settings, which serve as a primary socializing agent for teaching interpersonal skills. As a result of this presentation the audience will reflect and explore how to structure a physical education program to integrate interdisciplinary subjects with philosophical concepts.Keywords: interdisciplinary disciplines, philosophical concepts, physical education, interdisciplinary teaching program
Procedia PDF Downloads 49512232 Genetic Identification of Crop Cultivars Using Barcode System
Authors: Kesavan Markkandan, Ha Young Park, Seung-Il Yoo, Sin-Gi Park, Junhyung Park
Abstract:
For genetic identification of crop cultivars, insertions/deletions (InDel) markers have been preferred currently because they are easy to use, PCR based, co-dominant and relatively abundant. However, new InDels need to be developed for genetic studies of new varieties due to the difference of allele frequencies in InDels among the population groups. These new varieties are evolved with low levels of genetic diversity in specific genome loci with high recombination rate. In this study, we described soybean barcode system approach based on InDel makers, each of which is specific to a variation block (VB), where the genomes split by all assumed recombination sites. Firstly, VBs in crop cultivars were mined for transferability to VB-specific InDel markers. Secondly, putative InDels in the VB regions were identified for the development of barcode system by analyzing particular cultivar’s whole genome data. Thirdly, common VB-specific InDels from all cultivars were selected by gel electrophoresis, which were converted as 2D barcode types according to comparing amplicon polymorphisms in the five cultivars to the reference cultivar. Finally, the polymorphism of the selected markers was assessed with other cultivars, and the barcode system that allows a clear distinction among those cultivars is described. The same approach can be applicable for other commercial crops. Hence, VB-based genetic identification not only minimize the molecular markers but also useful for assessing cultivars and for marker-assisted breeding in other crop species.Keywords: variation block, polymorphism, InDel marker, genetic identification
Procedia PDF Downloads 38012231 Participatory Air Quality Monitoring in African Cities: Empowering Communities, Enhancing Accountability, and Ensuring Sustainable Environments
Authors: Wabinyai Fidel Raja, Gideon Lubisa
Abstract:
Air pollution is becoming a growing concern in Africa due to rapid industrialization and urbanization, leading to implications for public health and the environment. Establishing a comprehensive air quality monitoring network is crucial to combat this issue. However, conventional methods of monitoring are insufficient in African cities due to the high cost of setup and maintenance. To address this, low-cost sensors (LCS) can be deployed in various urban areas through the use of participatory air quality network siting (PAQNS). PAQNS involves stakeholders from the community, local government, and private sector working together to determine the most appropriate locations for air quality monitoring stations. This approach improves the accuracy and representativeness of air quality monitoring data, engages and empowers community members, and reflects the actual exposure of the population. Implementing PAQNS in African cities can build trust, promote accountability, and increase transparency in the air quality management process. However, challenges to implementing this approach must be addressed. Nonetheless, improving air quality is essential for protecting public health and promoting a sustainable environment. Implementing participatory and data-informed air quality monitoring can take a significant step toward achieving these important goals in African cities and beyond.Keywords: low-cost sensors, participatory air quality network siting, air pollution, air quality management
Procedia PDF Downloads 9212230 Comparison of Intraocular Pressure Measurement Prior and Following Full Intracorneal Ring Implantation in Patient with Keratoconus by Three Different Instruments
Authors: Seyed Aliasghar Mosavi, Mostafa Naderi, Khosrow Jadidi, Amir Hashem Mohammadi
Abstract:
To study the measurement of intraocular pressure (IOP) before and after implantation of intrastromal corneal ring (MyoRing) in patients with keratoconus. Setting: Baqiyatallah University of Medical Sciences, Tehran, Iran. Methods: We compared the IOP of 13 eyes which underwent MyoRing implantation prior and six months post operation using Goldman applanation (as gold standard), Icare, and Corvis ST (uncorrected, corrected and corrected with cornea biomechanics). Results: The resulting intraocular pressure measurements prior to surgery, Icare, Corvis (corrected with cornea biomechanics) overestimated the IOP, however measurements by Corvis uncorrected underestimate the IOP. The resulting intraocular pressure measurements after surgery, Icare, Corvis (corrected with cornea biomechanics) overestimated the IOP but measurements by Corvis uncorrected underestimate the IOP. Conclusion: Consistent intraocular pressure measurements on eyes with Myoring in keratoconus can be obtained with the Goldman applanation tonometer as the gold standard measurement. We were not able to obtain consistent results when we measured the IOP by Icare and Corvis prior and after surgery.Keywords: intraocular pressure, MyoRing, Keratoconus, Goldmann applanation, Icare, Corvis ST
Procedia PDF Downloads 24312229 Analysis of Bed Load Sediment Transport Mataram-Babarsari Irrigation Canal
Authors: Agatha Padma Laksitaningtyas, Sumiyati Gunawan
Abstract:
Mataram Irrigation Canal has 31,2 km length, is the main irrigation canal in Special Region Province of Yogyakarta, connecting Progo River on the west side and Opak River on the east side. It has an important role as the main water carrier distribution for various purposes such as agriculture, fishery, and plantation which should be free from sediment material. Bed Load Sediment is the basic sediment that will make the sediment process on the irrigation canal. Sediment process is a simultaneous event that can make deposition sediment at the base of irrigation canal and can make the height of elevation water change, it will affect the availability of water to be used for irrigation functions. To predict the amount of drowning sediments in the irrigation canal using two methods: Meyer-Peter and Muller’s Method which is an energy approach method and Einstein Method which is a probabilistic approach. Speed measurement using floating method and using current meters. The channel geometry is measured directly in the field. The basic sediment of the channel is taken in the field by taking three samples from three different points. The result of the research shows that by using the formula Meyer -Peter Muller get the result of 60,75799 kg/s, whereas with Einsten’s Method get result of 13,06461 kg/s. the results may serve as a reference for dredging the sediments on the channel so as not to disrupt the flow of water in irrigation canal.Keywords: bed load, sediment, irrigation, Mataram canal
Procedia PDF Downloads 22912228 Land Cover Remote Sensing Classification Advanced Neural Networks Supervised Learning
Authors: Eiman Kattan
Abstract:
This study aims to evaluate the impact of classifying labelled remote sensing images conventional neural network (CNN) architecture, i.e., AlexNet on different land cover scenarios based on two remotely sensed datasets from different point of views such as the computational time and performance. Thus, a set of experiments were conducted to specify the effectiveness of the selected convolutional neural network using two implementing approaches, named fully trained and fine-tuned. For validation purposes, two remote sensing datasets, AID, and RSSCN7 which are publicly available and have different land covers features were used in the experiments. These datasets have a wide diversity of input data, number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in training, validation, and testing. As a result, the fully trained approach has achieved a trivial result for both of the two data sets, AID and RSSCN7 by 73.346% and 71.857% within 24 min, 1 sec and 8 min, 3 sec respectively. However, dramatic improvement of the classification performance using the fine-tuning approach has been recorded by 92.5% and 91% respectively within 24min, 44 secs and 8 min 41 sec respectively. The represented conclusion opens the opportunities for a better classification performance in various applications such as agriculture and crops remote sensing.Keywords: conventional neural network, remote sensing, land cover, land use
Procedia PDF Downloads 37012227 Parametric Modeling for Survival Data with Competing Risks Using the Generalized Gompertz Distribution
Authors: Noora Al-Shanfari, M. Mazharul Islam
Abstract:
The cumulative incidence function (CIF) is a fundamental approach for analyzing survival data in the presence of competing risks, which estimates the marginal probability for each competing event. Parametric modeling of CIF has the advantage of fitting various shapes of CIF and estimates the impact of covariates with maximum efficiency. To calculate the total CIF's covariate influence using a parametric model., it is essential to parametrize the baseline of the CIF. As the CIF is an improper function by nature, it is necessary to utilize an improper distribution when applying parametric models. The Gompertz distribution, which is an improper distribution, is limited in its applicability as it only accounts for monotone hazard shapes. The generalized Gompertz distribution, however, can adapt to a wider range of hazard shapes, including unimodal, bathtub, and monotonic increasing or decreasing hazard shapes. In this paper, the generalized Gompertz distribution is used to parametrize the baseline of the CIF, and the parameters of the proposed model are estimated using the maximum likelihood approach. The proposed model is compared with the existing Gompertz model using the Akaike information criterion. Appropriate statistical test procedures and model-fitting criteria will be used to test the adequacy of the model. Both models are applied to the ‘colon’ dataset, which is available in the “biostat3” package in R.Keywords: competing risks, cumulative incidence function, improper distribution, parametric modeling, survival analysis
Procedia PDF Downloads 10412226 Testicular Dose and Associated Risk from Common Pelvis Radiation Therapy in Iran
Authors: Ahmad Shanei, Milad Baradaran-Ghahfarokhi
Abstract:
This study aimed to investigate testicular dose (TD) and the associated risk of heritable disease from common pelvis radiotherapy of male patients in Iran. In this work, the relation between TD and changes in beam energy, pelvis size, source to skin distance (SSD) and beam directions (anterior or posterior) were also evaluated. The values of TDs were measured on 67 randomly selected male patients during common pelvis radiotherapy using 1.17 and 1.33 MeV, Theratron Cobalt-60 unit at SSD of 80 cm and 9 MV, Neptun 10 PC and 18 MV, GE Saturne 20 at SSD of 100 cm at Seyed-Al Shohada Hospital, Isfahan, Iran. Results showed that the maximum TD was up to 12% of the tumor dose. Considering the risk factor for radiation-induced heritable disorders of 0.1% per Sv, an excess risk of hereditary disorders of 72 per 10000 births was conservatively calculated. There was a significant difference in the measured TD using different treatment machines and energies (P < 0.001). The TD at 100 cm SSD were much less than that for 80 cm SSD (P <0.001). The Pearson Correlation test showed that, as expected, there was a strong correlation between TD and patient’s pelvis size (r = 0.275, P <0.001). Using the student’s t-tests, it was found that, there was not a significant difference between TD and beam direction (P = 0.231). Iranian male patients undergoing pelvic radiotherapy have the potential of receiving a TD of more than 1 Gy which might result in temporary azoospermia. The risk for induction of hereditary disorders in future generations should be considered as low but not negligible in comparison with the correspondent nominal risk.Keywords: pelvis radiotherapy, testicular dose, infertility, hereditary effects
Procedia PDF Downloads 54512225 Clustered Regularly Interspaced Short Palindromic Repeat/cas9-Based Lateral Flow and Fluorescence Diagnostics for Rapid Pathogen Detection
Authors: Mark Osborn
Abstract:
Clustered, regularly interspaced short palindromic repeat (CRISPR/Cas) proteins can be designed to bind specified DNA and RNA sequences and hold great promise for the accurate detection of nucleic acids for diagnostics. Commercially available reagents were integrated into a CRISPR/Cas9-based lateral flow assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences with single-base specificity. This approach requires minimal equipment and represents a simplified platform for field-based deployment. A rapid, multiplex fluorescence CRISPR/Cas9 nuclease cleavage assay capable of detecting and differentiating SARS-CoV-2, influenza A and B, and respiratory syncytial virus in a single reaction was also developed. These findings provide proof of principle for CRISPR/Cas9 point-of-care diagnosis that can detect specific SARS-CoV-2 strain(s). Further, Cas9 cleavage allows for a scalable fluorescent platform for identifying respiratory viral pathogens with overlapping symptomology. Collectively, this approach is a facile platform for diagnostics with broad application to user-defined sequence interrogation and detection.Keywords: CRISPR/Cas9, lateral flow assay, SARS-Co-V2, single-nucleotide resolution
Procedia PDF Downloads 18412224 The Role of Clinical Pharmacist Intervention in Collaborative Drug Therapy Management to Improve Outcomes and Decrease Hospitalization in Heart Failure Clinic
Authors: Sanaa Mekdad, Leenah Alsayed
Abstract:
Pharmacists play an important role in the CDTM in the care of patients with heart failure (HF). CDTM allows specialized, dedicated clinical pharmacists in a formal agreement in collaborative practice with physicians. Thus, the aim of this study is to investigate the role of cardiology clinical pharmacists in CDTM in decreasing hospitalization and cost. We studied patients with left ventricular systolic dysfunction in a cluster-randomized selection in a tertiary care center. We allocated 296 patients to pharmacist intervention from 1480 patients. Results: With an acceptance rate of 86%, we documented 696 interventions carried out by clinical pharmacists in cardiology. The average intervention was 2.4 patients, and the admission after interventions decreased from 0.79 to. 0.24 (p value = 0.001). Conclusions: In HF CDTM, clinical pharmacists play a crucial role in enhancing medication management, patient education, and lifestyle modification of patients with chronic heart failure. These efforts improve patients' outcomes and lower costs by reducing hospitalization and other associated expenses.Keywords: cardiology, medication management, heart failure, outpatient therapy, pharmacist-based services, chronic heart failure, heart failure recommendations, CDTM, Middle East, pharmacist-based services, quality of life, pharmacist
Procedia PDF Downloads 6912223 Plethora of Drivers Transforming Colonial Cities: The Case of Allahabad
Authors: Akanksha Gupta, Vishal Dubey
Abstract:
In the Neoliberal era, there has been a much-talked discourse about urban issues that arise from a narrow approach of the single rationality of market-driven planning in Indian cities. More to this, India's urban planning is already jeopardized by the captious shortage of infrastructure, a cluster of incoherent governing bodies and implementation mechanism, leading cities to lie in the plethora of urban challenges. In this context, Allahabad (now known as Prayagraj) a city in North India is not an exception. Once known as the most planned splendid Colonial city of the British regime in India collapsed phenomenally because of the incompetent approach of planning machinery, straightforward market-driven accession and lack of attention on urban equity and sustainability. Particularly Civil Lines a Colonial neighbourhood, reached to the zenith of the glorified legacy of the Colonial era, transformed into filthy and congested urban form. Contextually this study contemplates and assesses the chronological episodes of major changes in land management reforms and policies under the ad hoc approach of political economy and land use planning which radically degraded the living environment in the present context. This study would empirically showcase the selected sample area detailing some of the major consequences in terms of gradual change in urban morphology, land use, and function. Here the method of study is primarily a qualitative study implying oral history and other historical methods to exhibit the idiom of planning conundrum. This subsequently reflects the repercussions translated into major issues like unclear land titles, encroachment, and unauthorized development and mushrooming of informal and squatter settlements. In nutshell, the study seeks to distinct out the limitations of the land reform and land management policies, which impacted the general degradation to the beautiful setting of Colonial neighbourhood. The Colonial legacy of Civil Lines now exists in the traces of history- memories of people, who once took pride in its serenity have now witnessed the transformation bit by bit till neo-liberal market forces completely swallow it.Keywords: civil lines, land reforms, policies, urban challenges
Procedia PDF Downloads 11712222 Microfinance for the Marginalised: The Impact of the Rojiroti Approach in India
Authors: Gil Yaron, Rebecca Gordon, John Best, Sunil Choudhary
Abstract:
There have been a number of studies examining the impact of microfinance; however, the magnitude of impact varies across regions, and there has been mixed evidence due to the differences in the nature of interventions, context and the way in which microfinance is implemented. The Rojiroti approach to microfinance involves the creation of women's self-help groups (SHGs), rotated loans from savings and subsequent credit from a Bihar-based NGO. Rojiroti serves customers who are significantly poorer and more marginalised than those typically served by microfinance in India. In the data analysed, more than 90 percent of members are from scheduled caste and tribes (62 percent) or other disadvantaged castes. This paper analyses the impact of Rojiroti microfinance using panel data on 740 new SHG members and 340 women in matched control sites at baseline and after 18 months. We consider changes in assets, children's education, women's mobility and domestic violence among other indicators. These results show significant gains for Rojiroti borrowers relative to control sites for important, but not all, variables. Comparison with more longstanding SHGs (at least 36 months) helps to explain how the borrowing patterns of poor and marginalised SHG members evolve. The context of this intervention is also important; in this case, innovative microfinance is provided too much poorer and marginalised women than is typically the case, and so the results seen are in contrast to numerous studies that show little or no effect of microfinance on the lives of their clients.Keywords: microfinance, gender, impact, pro-poor
Procedia PDF Downloads 15712221 LTE Modelling of a DC Arc Ignition on Cold Electrodes
Authors: O. Ojeda Mena, Y. Cressault, P. Teulet, J. P. Gonnet, D. F. N. Santos, MD. Cunha, M. S. Benilov
Abstract:
The assumption of plasma in local thermal equilibrium (LTE) is commonly used to perform electric arc simulations for industrial applications. This assumption allows to model the arc using a set of magneto-hydromagnetic equations that can be solved with a computational fluid dynamic code. However, the LTE description is only valid in the arc column, whereas in the regions close to the electrodes the plasma deviates from the LTE state. The importance of these near-electrode regions is non-trivial since they define the energy and current transfer between the arc and the electrodes. Therefore, any accurate modelling of the arc must include a good description of the arc-electrode phenomena. Due to the modelling complexity and computational cost of solving the near-electrode layers, a simplified description of the arc-electrode interaction was developed in a previous work to study a steady high-pressure arc discharge, where the near-electrode regions are introduced at the interface between arc and electrode as boundary conditions. The present work proposes a similar approach to simulate the arc ignition in a free-burning arc configuration following an LTE description of the plasma. To obtain the transient evolution of the arc characteristics, appropriate boundary conditions for both the near-cathode and the near-anode regions are used based on recent publications. The arc-cathode interaction is modeled using a non-linear surface heating approach considering the secondary electron emission. On the other hand, the interaction between the arc and the anode is taken into account by means of the heating voltage approach. From the numerical modelling, three main stages can be identified during the arc ignition. Initially, a glow discharge is observed, where the cold non-thermionic cathode is uniformly heated at its surface and the near-cathode voltage drop is in the order of a few hundred volts. Next, a spot with high temperature is formed at the cathode tip followed by a sudden decrease of the near-cathode voltage drop, marking the glow-to-arc discharge transition. During this stage, the LTE plasma also presents an important increase of the temperature in the region adjacent to the hot spot. Finally, the near-cathode voltage drop stabilizes at a few volts and both the electrode and plasma temperatures reach the steady solution. The results after some seconds are similar to those presented for thermionic cathodes.Keywords: arc-electrode interaction, thermal plasmas, electric arc simulation, cold electrodes
Procedia PDF Downloads 12212220 Algorithms Inspired from Human Behavior Applied to Optimization of a Complex Process
Authors: S. Curteanu, F. Leon, M. Gavrilescu, S. A. Floria
Abstract:
Optimization algorithms inspired from human behavior were applied in this approach, associated with neural networks models. The algorithms belong to human behaviors of learning and cooperation and human competitive behavior classes. For the first class, the main strategies include: random learning, individual learning, and social learning, and the selected algorithms are: simplified human learning optimization (SHLO), social learning optimization (SLO), and teaching-learning based optimization (TLBO). For the second class, the concept of learning is associated with competitiveness, and the selected algorithms are sports-inspired algorithms (with Football Game Algorithm, FGA and Volleyball Premier League, VPL) and Imperialist Competitive Algorithm (ICA). A real process, the synthesis of polyacrylamide-based multicomponent hydrogels, where some parameters are difficult to obtain experimentally, is considered as a case study. Reaction yield and swelling degree are predicted as a function of reaction conditions (acrylamide concentration, initiator concentration, crosslinking agent concentration, temperature, reaction time, and amount of inclusion polymer, which could be starch, poly(vinyl alcohol) or gelatin). The experimental results contain 175 data. Artificial neural networks are obtained in optimal form with biologically inspired algorithm; the optimization being perform at two level: structural and parametric. Feedforward neural networks with one or two hidden layers and no more than 25 neurons in intermediate layers were obtained with values of correlation coefficient in the validation phase over 0.90. The best results were obtained with TLBO algorithm, correlation coefficient being 0.94 for an MLP(6:9:20:2) – a feedforward neural network with two hidden layers and 9 and 20, respectively, intermediate neurons. Good results obtained prove the efficiency of the optimization algorithms. More than the good results, what is important in this approach is the simulation methodology, including neural networks and optimization biologically inspired algorithms, which provide satisfactory results. In addition, the methodology developed in this approach is general and has flexibility so that it can be easily adapted to other processes in association with different types of models.Keywords: artificial neural networks, human behaviors of learning and cooperation, human competitive behavior, optimization algorithms
Procedia PDF Downloads 10812219 Filtering Intrusion Detection Alarms Using Ant Clustering Approach
Authors: Ghodhbani Salah, Jemili Farah
Abstract:
With the growth of cyber attacks, information safety has become an important issue all over the world. Many firms rely on security technologies such as intrusion detection systems (IDSs) to manage information technology security risks. IDSs are considered to be the last line of defense to secure a network and play a very important role in detecting large number of attacks. However the main problem with today’s most popular commercial IDSs is generating high volume of alerts and huge number of false positives. This drawback has become the main motivation for many research papers in IDS area. Hence, in this paper we present a data mining technique to assist network administrators to analyze and reduce false positive alarms that are produced by an IDS and increase detection accuracy. Our data mining technique is unsupervised clustering method based on hybrid ANT algorithm. This algorithm discovers clusters of intruders’ behavior without prior knowledge of a possible number of classes, then we apply K-means algorithm to improve the convergence of the ANT clustering. Experimental results on real dataset show that our proposed approach is efficient with high detection rate and low false alarm rate.Keywords: intrusion detection system, alarm filtering, ANT class, ant clustering, intruders’ behaviors, false alarms
Procedia PDF Downloads 40412218 Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma
Authors: Kemka C. Ihemelandu, Chukwuemeka U. Ihemelandu
Abstract:
The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.Keywords: melanoma, convolutional neural network, momentum, batch hyperparameter
Procedia PDF Downloads 101