Search results for: saturated modeling
21 Design and Fabrication of AI-Driven Kinetic Facades with Soft Robotics for Optimized Building Energy Performance
Authors: Mohammadreza Kashizadeh, Mohammadamin Hashemi
Abstract:
This paper explores a kinetic building facade designed for optimal energy capture and architectural expression. The system integrates photovoltaic panels with soft robotic actuators for precise solar tracking, resulting in enhanced electricity generation compared to static facades. Driven by the growing interest in dynamic building envelopes, the exploration of facade systems are necessitated. Increased energy generation and regulation of energy flow within buildings are potential benefits offered by integrating photovoltaic (PV) panels as kinetic elements. However, incorporating these technologies into mainstream architecture presents challenges due to the complexity of coordinating multiple systems. To address this, the design leverages soft robotic actuators, known for their compliance, resilience, and ease of integration. Additionally, the project investigates the potential for employing Large Language Models (LLMs) to streamline the design process. The research methodology involved design development, material selection, component fabrication, and system assembly. Grasshopper (GH) was employed within the digital design environment for parametric modeling and scripting logic, and an LLM was experimented with to generate Python code for the creation of a random surface with user-defined parameters. Various techniques, including casting, Three-dimensional 3D printing, and laser cutting, were utilized to fabricate physical components. A modular assembly approach was adopted to facilitate installation and maintenance. A case study focusing on the application of this facade system to an existing library building at Polytechnic University of Milan is presented. The system is divided into sub-frames to optimize solar exposure while maintaining a visually appealing aesthetic. Preliminary structural analyses were conducted using Karamba3D to assess deflection behavior and axial loads within the cable net structure. Additionally, Finite Element (FE) simulations were performed in Abaqus to evaluate the mechanical response of the soft robotic actuators under pneumatic pressure. To validate the design, a physical prototype was created using a mold adapted for a 3D printer's limitations. Casting Silicone Rubber Sil 15 was used for its flexibility and durability. The 3D-printed mold components were assembled, filled with the silicone mixture, and cured. After demolding, nodes and cables were 3D-printed and connected to form the structure, demonstrating the feasibility of the design. This work demonstrates the potential of soft robotics and Artificial Intelligence (AI) for advancements in sustainable building design and construction. The project successfully integrates these technologies to create a dynamic facade system that optimizes energy generation and architectural expression. While limitations exist, this approach paves the way for future advancements in energy-efficient facade design. Continued research efforts will focus on cost reduction, improved system performance, and broader applicability.Keywords: artificial intelligence, energy efficiency, kinetic photovoltaics, pneumatic control, soft robotics, sustainable building
Procedia PDF Downloads 2820 Flood Risk Assessment for Agricultural Production in a Tropical River Delta Considering Climate Change
Authors: Chandranath Chatterjee, Amina Khatun, Bhabagrahi Sahoo
Abstract:
With the changing climate, precipitation events are intensified in the tropical river basins. Since these river basins are significantly influenced by the monsoonal rainfall pattern, critical impacts are observed on the agricultural practices in the downstream river reaches. This study analyses the crop damage and associated flood risk in terms of net benefit in the paddy-dominated tropical Indian delta of the Mahanadi River. The Mahanadi River basin lies in eastern part of the Indian sub-continent and is greatly affected by the southwest monsoon rainfall extending from the month of June to September. This river delta is highly flood-prone and has suffered from recurring high floods, especially after the 2000s. In this study, the lumped conceptual model, Nedbør Afstrømnings Model (NAM) from the suite of MIKE models, is used for rainfall-runoff modeling. The NAM model is laterally integrated with the MIKE11-Hydrodynamic (HD) model to route the runoffs up to the head of the delta region. To obtain the precipitation-derived future projected discharges at the head of the delta, nine Global Climate Models (GCMs), namely, BCC-CSM1.1(m), GFDL-CM3, GFDL-ESM2G, HadGEM2-AO, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC5, MIROC-ESM-CHEM and NorESM1-M, available in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) archive are considered. These nine GCMs are previously found to best-capture the Indian Summer Monsoon rainfall. Based on the performance of the nine GCMs in reproducing the historical discharge pattern, three GCMs (HadGEM2-AO, IPSL-CM5A-MR and MIROC-ESM-CHEM) are selected. A higher Taylor Skill Score is considered as the GCM selection criteria. Thereafter, the 10-year return period design flood is estimated using L-moments based flood frequency analysis for the historical and three future projected periods (2010-2039, 2040-2069 and 2070-2099) under Representative Concentration Pathways (RCP) 4.5 and 8.5. A non-dimensional hydrograph analysis is performed to obtain the hydrographs for the historical/projected 10-year return period design floods. These hydrographs are forced into the calibrated and validated coupled 1D-2D hydrodynamic model, MIKE FLOOD, to simulate the flood inundation in the delta region. Historical and projected flood risk is defined based on the information about the flood inundation simulated by the MIKE FLOOD model and the inundation depth-damage-duration relationship of a normal rice variety cultivated in the river delta. In general, flood risk is expected to increase in all the future projected time periods as compared to the historical episode. Further, in comparison to the 2010s (2010-2039), an increased flood risk in the 2040s (2040-2069) is shown by all the three selected GCMs. However, the flood risk then declines in the 2070s as we move towards the end of the century (2070-2099). The methodology adopted herein for flood risk assessment is one of its kind and may be implemented in any world-river basin. The results obtained from this study can help in future flood preparedness by implementing suitable flood adaptation strategies.Keywords: flood frequency analysis, flood risk, global climate models (GCMs), paddy cultivation
Procedia PDF Downloads 7219 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs
Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu
Abstract:
This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network
Procedia PDF Downloads 6218 Structural Behavior of Subsoil Depending on Constitutive Model in Calculation Model of Pavement Structure-Subsoil System
Authors: M. Kadela
Abstract:
The load caused by the traffic movement should be transferred in the road constructions in a harmless way to the pavement as follows: − on the stiff upper layers of the structure (e.g. layers of asphalt: abrading and binding), and − through the layers of principal and secondary substructure, − on the subsoil, directly or through an improved subsoil layer. Reliable description of the interaction proceeding in a system “road construction – subsoil” should be in such case one of the basic requirements of the assessment of the size of internal forces of structure and its durability. Analyses of road constructions are based on: − elements of mechanics, which allows to create computational models, and − results of the experiments included in the criteria of fatigue life analyses. Above approach is a fundamental feature of commonly used mechanistic methods. They allow to use in the conducted evaluations of the fatigue life of structures arbitrarily complex numerical computational models. Considering the work of the system “road construction – subsoil”, it is commonly accepted that, as a result of repetitive loads on the subsoil under pavement, the growth of relatively small deformation in the initial phase is recognized, then this increase disappears, and the deformation takes the character completely reversible. The reliability of calculation model is combined with appropriate use (for a given type of analysis) of constitutive relationships. Phenomena occurring in the initial stage of the system “road construction – subsoil” is unfortunately difficult to interpret in the modeling process. The classic interpretation of the behavior of the material in the elastic-plastic model (e-p) is that elastic phase of the work (e) is undergoing to phase (e-p) by increasing the load (or growth of deformation in the damaging structure). The paper presents the essence of the calibration process of cooperating subsystem in the calculation model of the system “road construction – subsoil”, created for the mechanistic analysis. Calibration process was directed to show the impact of applied constitutive models on its deformation and stress response. The proper comparative base for assessing the reliability of created. This work was supported by the on-going research project “Stabilization of weak soil by application of layer of foamed concrete used in contact with subsoil” (LIDER/022/537/L-4/NCBR/2013) financed by The National Centre for Research and Development within the LIDER Programme. M. Kadela is with the Department of Building Construction Elements and Building Structures on Mining Areas, Building Research Institute, Silesian Branch, Katowice, Poland (phone: +48 32 730 29 47; fax: +48 32 730 25 22; e-mail: m.kadela@ itb.pl). models should be, however, the actual, monitored system “road construction – subsoil”. The paper presents too behavior of subsoil under cyclic load transmitted by pavement layers. The response of subsoil to cyclic load is recorded in situ by the observation system (sensors) installed on the testing ground prepared for this purpose, being a part of the test road near Katowice, in Poland. A different behavior of the homogeneous subsoil under pavement is observed for different seasons of the year, when pavement construction works as a flexible structure in summer, and as a rigid plate in winter. Albeit the observed character of subsoil response is the same regardless of the applied load and area values, this response can be divided into: - zone of indirect action of the applied load; this zone extends to the depth of 1,0 m under the pavement, - zone of a small strain, extending to about 2,0 m.Keywords: road structure, constitutive model, calculation model, pavement, soil, FEA, response of soil, monitored system
Procedia PDF Downloads 35317 Familiarity with Intercultural Conflicts and Global Work Performance: Testing a Theory of Recognition Primed Decision-Making
Authors: Thomas Rockstuhl, Kok Yee Ng, Guido Gianasso, Soon Ang
Abstract:
Two meta-analyses show that intercultural experience is not related to intercultural adaptation or performance in international assignments. These findings have prompted calls for a deeper grounding of research on international experience in the phenomenon of global work. Two issues, in particular, may limit current understanding of the relationship between international experience and global work performance. First, intercultural experience is too broad a construct that may not sufficiently capture the essence of global work, which to a large part involves sensemaking and managing intercultural conflicts. Second, the psychological mechanisms through which intercultural experience affects performance remains under-explored, resulting in a poor understanding of how experience is translated into learning and performance outcomes. Drawing on recognition primed decision-making (RPD) research, the current study advances a cognitive processing model to highlight the importance of intercultural conflict familiarity. Compared to intercultural experience, intercultural conflict familiarity is a more targeted construct that captures individuals’ previous exposure to dealing with intercultural conflicts. Drawing on RPD theory, we argue that individuals’ intercultural conflict familiarity enhances their ability to make accurate judgments and generate effective responses when intercultural conflicts arise. In turn, the ability to make accurate situation judgements and effective situation responses is an important predictor of global work performance. A relocation program within a multinational enterprise provided the context to test these hypotheses using a time-lagged, multi-source field study. Participants were 165 employees (46% female; with an average of 5 years of global work experience) from 42 countries who relocated from country to regional offices as part a global restructuring program. Within the first two weeks of transfer to the regional office, employees completed measures of their familiarity with intercultural conflicts, cultural intelligence, cognitive ability, and demographic information. They also completed an intercultural situational judgment test (iSJT) to assess their situation judgment and situation response. The iSJT comprised four validated multimedia vignettes of challenging intercultural work conflicts and prompted employees to provide protocols of their situation judgment and situation response. Two research assistants, trained in intercultural management but blind to the study hypotheses, coded the quality of employee’s situation judgment and situation response. Three months later, supervisors rated employees’ global work performance. Results using multilevel modeling (vignettes nested within employees) support the hypotheses that greater familiarity with intercultural conflicts is positively associated with better situation judgment, and that situation judgment mediates the effect of intercultural familiarity on situation response quality. Also, aggregated situation judgment and situation response quality both predicted supervisor-rated global work performance. Theoretically, our findings highlight the important but under-explored role of familiarity with intercultural conflicts; a shift in attention from the general nature of international experience assessed in terms of number and length of overseas assignments. Also, our cognitive approach premised on RPD theory offers a new theoretical lens to understand the psychological mechanisms through which intercultural conflict familiarity affects global work performance. Third, and importantly, our study contributes to the global talent identification literature by demonstrating that the cognitive processes engaged in resolving intercultural conflicts predict actual performance in the global workplace.Keywords: intercultural conflict familiarity, job performance, judgment and decision making, situational judgment test
Procedia PDF Downloads 17816 Spectroscopic Study of the Anti-Inflammatory Action of Propofol and Its Oxidant Derivatives: Inhibition of the Myeloperoxidase Activity and of the Superoxide Anions Production by Neutrophils
Authors: Pauline Nyssen, Ange Mouithys-Mickalad, Maryse Hoebeke
Abstract:
Inflammation is a complex physiological phenomenon involving chemical and enzymatic mechanisms. Polymorphonuclear neutrophil leukocytes (PMNs) play an important role by producing reactive oxygen species (ROS) and releasing myeloperoxidase (MPO), a pro-oxidant enzyme. Released both in the phagolysosome and the extracellular medium, MPO produces during its peroxidase and halogenation cycles oxidant species, including hypochlorous acid, involved in the destruction of pathogen agents, like bacteria or viruses. Inflammatory pathologies, like rheumatoid arthritis, atherosclerosis induce an excessive stimulation of the PMNs and, therefore, an uncontrolled release of ROS and MPO in the extracellular medium, causing severe damages to the surrounding tissues and biomolecules such as proteins, lipids, and DNA. The treatment of chronic inflammatory pathologies remains a challenge. For many years, MPO has been used as a target for the development of effective treatments. Numerous studies have been focused on the design of new drugs presenting more efficient MPO inhibitory properties. However, some designed inhibitors can be toxic. An alternative consists of assessing the potential inhibitory action of clinically-known molecules, having antioxidant activity. Propofol, 2,6-diisopropyl phenol, which is used as an intravenous anesthetic agent, meets these requirements. Besides its anesthetic action employed to induce a sedative state during surgery or in intensive care units, propofol and its injectable form Diprivan indeed present antioxidant properties and act as ROS and free radical scavengers. A study has also evidenced the ability of propofol to inhibit the formation of the neutrophil extracellular traps fibers, which are important to trap pathogen microorganisms during the inflammation process. The aim of this study was to investigate the potential inhibitory action mechanism of propofol and Diprivan on MPO activity. To go into the anti-inflammatory action of propofol in-depth, two of its oxidative derivatives, 2,6-diisopropyl-1,4-p-benzoquinone (PPFQ) and 3,5,3’,5’-tetra isopropyl-(4,4’)-diphenoquinone (PPFDQ), were studied regarding their inhibitory action. Specific immunological extraction followed by enzyme detection (SIEFED) and molecular modeling have evidenced the low anti-catalytic action of propofol. Stopped-flow absorption spectroscopy and direct MPO activity analysis have proved that propofol acts as a reversible MPO inhibitor by interacting as a reductive substrate in the peroxidase cycle and promoting the accumulation of redox compound II. Overall, Diprivan exhibited a weaker inhibitory action than the active molecule propofol. In contrast, PPFQ seemed to bind and obstruct the enzyme active site, preventing the trigger of the MPO oxidant cycles. PPFQ induced a better chlorination cycle inhibition at basic and neutral pH in comparison to propofol. PPFDQ did not show any MPO inhibition activity. The three interest molecules have also demonstrated their inhibition ability on an important step of the inflammation pathway, the PMNs superoxide anions production, thanks to EPR spectroscopy and chemiluminescence. In conclusion, propofol presents an interesting immunomodulatory activity by acting as a reductive substrate in the peroxidase cycle of MPO, slowing down its activity, whereas PPFQ acts more as an anti-catalytic substrate. Although PPFDQ has no impact on MPO, it can act on the inflammation process by inhibiting the superoxide anions production by PMNs.Keywords: Diprivan, inhibitor, myeloperoxidase, propofol, spectroscopy
Procedia PDF Downloads 14615 Seismic Stratigraphy of the First Deposits of the Kribi-Campo Offshore Sub-basin (Gulf of Guinea): Pre-cretaceous Early Marine Incursion and Source Rocks Modeling
Authors: Mike-Franck Mienlam Essi, Joseph Quentin Yene Atangana, Mbida Yem
Abstract:
The Kribi-Campo sub-basin belongs to the southern domain of the Cameroon Atlantic Margin in the Gulf of Guinea. It is the African homologous segment of the Sergipe-Alagoas Basin, located at the northeast side of the Brazil margin. The onset of the seafloor spreading period in the Southwest African Margin in general and the study area particularly remains controversial. Various studies locate this event during the Cretaceous times (Early Aptian to Late Albian), while others suggested that this event occurred during Pre-Cretaceous period (Palaeozoic or Jurassic). This work analyses 02 Cameroon Span seismic lines to re-examine the Early marine incursion period of the study area for a better understanding of the margin evolution. The methodology of analysis in this study is based on the delineation of the first seismic sequence, using the reflector’s terminations tracking and the analysis of its internal reflections associated to the external configuration of the package. The results obtained indicate from the bottom upwards that the first deposits overlie a first seismic horizon (H1) associated to “onlap” terminations at its top and underlie a second horizon which shows “Downlap” terminations at its top (H2). The external configuration of this package features a prograded fill pattern, and it is observed within the depocenter area with discontinuous reflections that pinch out against the basement. From east to west, this sequence shows two seismic facies (SF1 and SF2). SF1 has parallel to subparallel reflections, characterized by high amplitude, and SF2 shows parallel and stratified reflections, characterized by low amplitude. The distribution of these seismic facies reveals a lateral facies variation observed. According to the fundamentals works on seismic stratigraphy and the literature review of the geological context of the study area, particularly, the stratigraphical natures of the identified horizons and seismic facies have been highlighted. The seismic horizons H1 and H2 correspond to Top basement and “Downlap Surface,” respectively. SF1 indicates continental sediments (Sands/Sandstone) and SF2 marine deposits (shales, clays). Then, the prograding configuration observed suggests a marine regression. The correlation of these results with the lithochronostratigraphic chart of Sergipe-Alagoas Basin reveals that the first marine deposits through the study area are dated from Pre-Cretaceous times (Palaeozoic or Jurassic). The first deposits onto the basement represents the end of a cycle of sedimentation. The hypothesis of Mike.F. Mienlam Essi is with the Earth Sciences Department of the Faculty of Science of the University of Yaoundé I, P.O. BOX 812 CAMEROON (e-mail: [email protected]). Joseph.Q. Yene Atangana is with the Earth Sciences Department of the Faculty of Science of the University of Yaoundé I, P.O. BOX 812 CAMEROON (e-mail: [email protected]). Mbida Yem is with the Earth Sciences Department of the Faculty of Science of the University of Yaoundé I, P.O. BOX 812 CAMEROON (e-mail: [email protected]). Cretaceous seafloor spreading through the study area is the onset of another cycle of sedimentation. Furthermore, the presence of marine sediments into the first deposits implies that this package could contain marine source rocks. The spatial tracking of these deposits reveals that they could be found in some onshore parts of the Kribi-Campo area or even in the northern side.Keywords: cameroon span seismic, early marine incursion, kribi-campo sub-basin, pre-cretaceous period, sergipe-alagoas basin
Procedia PDF Downloads 10714 A Multivariate Exploratory Data Analysis of a Crisis Text Messaging Service in Order to Analyse the Impact of the COVID-19 Pandemic on Mental Health in Ireland
Authors: Hamda Ajmal, Karen Young, Ruth Melia, John Bogue, Mary O'Sullivan, Jim Duggan, Hannah Wood
Abstract:
The Covid-19 pandemic led to a range of public health mitigation strategies in order to suppress the SARS-CoV-2 virus. The drastic changes in everyday life due to lockdowns had the potential for a significant negative impact on public mental health, and a key public health goal is to now assess the evidence from available Irish datasets to provide useful insights on this issue. Text-50808 is an online text-based mental health support service, established in Ireland in 2020, and can provide a measure of revealed distress and mental health concerns across the population. The aim of this study is to explore statistical associations between public mental health in Ireland and the Covid-19 pandemic. Uniquely, this study combines two measures of emotional wellbeing in Ireland: (1) weekly text volume at Text-50808, and (2) emotional wellbeing indicators reported by respondents of the Amárach public opinion survey, carried out on behalf of the Department of Health, Ireland. For this analysis, a multivariate graphical exploratory data analysis (EDA) was performed on the Text-50808 dataset dated from 15th June 2020 to 30th June 2021. This was followed by time-series analysis of key mental health indicators including: (1) the percentage of daily/weekly texts at Text-50808 that mention Covid-19 related issues; (2) the weekly percentage of people experiencing anxiety, boredom, enjoyment, happiness, worry, fear and stress in Amárach survey; and Covid-19 related factors: (3) daily new Covid-19 case numbers; (4) daily stringency index capturing the effect of government non-pharmaceutical interventions (NPIs) in Ireland. The cross-correlation function was applied to measure the relationship between the different time series. EDA of the Text-50808 dataset reveals significant peaks in the volume of texts on days prior to level 3 lockdown and level 5 lockdown in October 2020, and full level 5 lockdown in December 2020. A significantly high positive correlation was observed between the percentage of texts at Text-50808 that reported Covid-19 related issues and the percentage of respondents experiencing anxiety, worry and boredom (at a lag of 1 week) in Amárach survey data. There is a significant negative correlation between percentage of texts with Covid-19 related issues and percentage of respondents experiencing happiness in Amárach survey. Daily percentage of texts at Text-50808 that reported Covid-19 related issues to have a weak positive correlation with daily new Covid-19 cases in Ireland at a lag of 10 days and with daily stringency index of NPIs in Ireland at a lag of 2 days. The sudden peaks in text volume at Text-50808 immediately prior to new restrictions in Ireland indicate an association between a rise in mental health concerns following the announcement of new restrictions. There is also a high correlation between emotional wellbeing variables in the Amárach dataset and the number of weekly texts at Text-50808, and this confirms that Text-50808 reflects overall public sentiment. This analysis confirms the benefits of the texting service as a community surveillance tool for mental health in the population. This initial EDA will be extended to use multivariate modeling to predict the effect of additional Covid-19 related factors on public mental health in Ireland.Keywords: COVID-19 pandemic, data analysis, digital health, mental health, public health, digital health
Procedia PDF Downloads 14213 Marketing and Business Intelligence and Their Impact on Products and Services Through Understanding Based on Experiential Knowledge of Customers in Telecommunications Companies
Authors: Ali R. Alshawawreh, Francisco Liébana-Cabanillas, Francisco J. Blanco-Encomienda
Abstract:
Collaboration between marketing and business intelligence (BI) is crucial in today's ever-evolving business landscape. These two domains play pivotal roles in molding customers' experiential knowledge. Marketing insights offer valuable information regarding customer needs, preferences, and behaviors. Conversely, BI facilitates data-driven decision-making, leading to heightened operational efficiency, product quality, and customer satisfaction. Customer experiential knowledge (CEK) encompasses customers' implicit comprehension of consumption experiences influenced by diverse factors, including social and cultural influences. This study primarily focuses on telecommunications companies in Jordan, scrutinizing how experiential customer knowledge mediates the relationship between marketing intelligence and business intelligence. Drawing on theoretical frameworks such as the resource-based view (RBV) and service-dominant logic (SDL), the research aims to comprehend how organizations utilize their resources, particularly knowledge, to foster Evolution. Employing a quantitative research approach, the study collected and analyzed primary data to explore hypotheses. Structural equation modeling (SEM) facilitated by Smart PLS software evaluated the relationships between the constructs, followed by mediation analysis to assess the indirect associations in the model. The study findings offer insights into the intricate dynamics of organizational Creation, uncovering the interconnected relationships between business intelligence, customer experiential knowledge-based innovation (CEK-DI), marketing intelligence (MI), and product and service innovation (PSI), underscoring the pivotal role of advanced intelligence capabilities in developing innovative practices rooted in a profound understanding of customer experiences. Furthermore, the positive impact of BI on PSI reaffirms the significance of data-driven decision-making in shaping the innovation landscape. The significant impact of CEK-DI on PSI highlights the critical role of customer experiences in driving an organization. Companies that actively integrate customer insights into their opportunity creation processes are more likely to create offerings that match customer expectations, which drives higher levels of product and service sophistication. Additionally, the positive and significant impact of MI on CEK-DI underscores the critical role of market insights in shaping evolutionary strategies. While the relationship between MI and PSI is positive, the slightly weaker significance level indicates a subtle association, suggesting that while MI contributes to the development of ideas, In conclusion, the study emphasizes the fundamental role of intelligence capabilities, especially artificial intelligence, emphasizing the need for organizations to leverage market and customer intelligence to achieve effective and competitive innovation practices. Collaborative efforts between marketing and business intelligence serve as pivotal drivers of development, influencing customer experiential knowledge and shaping organizational strategies and practices. Future research could adopt longitudinal designs and gather data from various sectors to offer broader insights. Additionally, the study focuses on the effects of marketing intelligence, business intelligence, customer experiential knowledge, and innovation, but other unexamined variables may also influence innovation processes. Future studies could investigate additional factors, mediators, or moderators, including the role of emerging technologies like AI and machine learning in driving innovation.Keywords: marketing intelligence, business intelligence, product, customer experiential knowledge-driven innovation
Procedia PDF Downloads 2912 A Parallel Cellular Automaton Model of Tumor Growth for Multicore and GPU Programming
Authors: Manuel I. Capel, Antonio Tomeu, Alberto Salguero
Abstract:
Tumor growth from a transformed cancer-cell up to a clinically apparent mass spans through a range of spatial and temporal magnitudes. Through computer simulations, Cellular Automata (CA) can accurately describe the complexity of the development of tumors. Tumor development prognosis can now be made -without making patients undergo through annoying medical examinations or painful invasive procedures- if we develop appropriate CA-based software tools. In silico testing mainly refers to Computational Biology research studies of application to clinical actions in Medicine. To establish sound computer-based models of cellular behavior, certainly reduces costs and saves precious time with respect to carrying out experiments in vitro at labs or in vivo with living cells and organisms. These aim to produce scientifically relevant results compared to traditional in vitro testing, which is slow, expensive, and does not generally have acceptable reproducibility under the same conditions. For speeding up computer simulations of cellular models, specific literature shows recent proposals based on the CA approach that include advanced techniques, such the clever use of supporting efficient data structures when modeling with deterministic stochastic cellular automata. Multiparadigm and multiscale simulation of tumor dynamics is just beginning to be developed by the concerned research community. The use of stochastic cellular automata (SCA), whose parallel programming implementations are open to yield a high computational performance, are of much interest to be explored up to their computational limits. There have been some approaches based on optimizations to advance in multiparadigm models of tumor growth, which mainly pursuit to improve performance of these models through efficient memory accesses guarantee, or considering the dynamic evolution of the memory space (grids, trees,…) that holds crucial data in simulations. In our opinion, the different optimizations mentioned above are not decisive enough to achieve the high performance computing power that cell-behavior simulation programs actually need. The possibility of using multicore and GPU parallelism as a promising multiplatform and framework to develop new programming techniques to speed-up the computation time of simulations is just starting to be explored in the few last years. This paper presents a model that incorporates parallel processing, identifying the synchronization necessary for speeding up tumor growth simulations implemented in Java and C++ programming environments. The speed up improvement that specific parallel syntactic constructs, such as executors (thread pools) in Java, are studied. The new tumor growth parallel model is proved using implementations with Java and C++ languages on two different platforms: chipset Intel core i-X and a HPC cluster of processors at our university. The parallelization of Polesczuk and Enderling model (normally used by researchers in mathematical oncology) proposed here is analyzed with respect to performance gain. We intend to apply the model and overall parallelization technique presented here to solid tumors of specific affiliation such as prostate, breast, or colon. Our final objective is to set up a multiparadigm model capable of modelling angiogenesis, or the growth inhibition induced by chemotaxis, as well as the effect of therapies based on the presence of cytotoxic/cytostatic drugs.Keywords: cellular automaton, tumor growth model, simulation, multicore and manycore programming, parallel programming, high performance computing, speed up
Procedia PDF Downloads 24211 Impact of Simulated Brain Interstitial Fluid Flow on the Chemokine CXC-Chemokine-Ligand-12 Release From an Alginate-Based Hydrogel
Authors: Wiam El Kheir, Anais Dumais, Maude Beaudoin, Bernard Marcos, Nick Virgilio, Benoit Paquette, Nathalie Faucheux, Marc-Antoine Lauzon
Abstract:
The high infiltrative pattern of glioblastoma multiforme cells (GBM) is the main cause responsible for the actual standard treatments failure. The tumor high heterogeneity, the interstitial fluid flow (IFF) and chemokines guides GBM cells migration in the brain parenchyma resulting in tumor recurrence. Drug delivery systems emerged as an alternative approach to develop effective treatments for the disease. Some recent studies have proposed to harness the effect CXC-lchemokine-ligand-12 to direct and control the cancer cell migration through delivery system. However, the dynamics of the brain environment on the delivery system remains poorly understood. Nanoparticles (NPs) and hydrogels are known as good carriers for the encapsulation of different agents and control their release. We studied the release of CXCL12 (free or loaded into NPs) from an alginate-based hydrogel under static and indirect perfusion (IP) conditions. Under static conditions, the main phenomena driving CXCL12 release from the hydrogel was diffusion with the presence of strong interactions between the positively charged CXCL12 and the negatively charge alginate. CXCL12 release profiles were independent from the initial mass loadings. Afterwards, we demonstrated that the release could tuned by loading CXCL12 into Alginate/Chitosan-Nanoparticles (Alg/Chit-NPs) and embedded them into alginate-hydrogel. The initial burst release was substantially attenuated and the overall cumulative release percentages of 21%, 16% and 7% were observed for initial mass loadings of 0.07, 0.13 and 0.26 µg, respectively, suggesting stronger electrostatic interactions. Results were mathematically modeled based on Fick’s second law of diffusion framework developed previously to estimate the effective diffusion coefficient (Deff) and the mass transfer coefficient. Embedding the CXCL12 into NPs decreased the Deff an order of magnitude, which was coherent with experimental data. Thereafter, we developed an in-vitro 3D model that takes into consideration the convective contribution of the brain IFF to study CXCL12 release in an in-vitro microenvironment that mimics as faithfully as possible the human brain. From is unique design, the model also allowed us to understand the effect of IP on CXCL12 release in respect to time and space. Four flow rates (0.5, 3, 6.5 and 10 µL/min) which may increase CXCL12 release in-vivo depending on the tumor location were assessed. Under IP, cumulative percentages varying between 4.5-7.3%, 23-58.5%, 77.8-92.5% and 89.2-95.9% were released for the three initial mass loadings of 0.08, 0.16 and 0.33 µg, respectively. As the flow rate increase, IP culture conditions resulted in a higher release of CXCL12 compared to static conditions as the convection contribution became the main driving mass transport phenomena. Further, depending on the flow rate, IP had a direct impact on CXCL12 distribution within the simulated brain tissue, which illustrates the importance of developing such 3D in-vitro models to assess the efficiency of a delivery system targeting the brain. In future work, using this very model, we aim to understand the impact of the different phenomenon occurring on GBM cell behaviors in response to the resulting chemokine gradient subjected to various flow while allowing them to express their invasive characteristics in an in-vitro microenvironment that mimics the in-vivo brain parenchyma.Keywords: 3D culture system, chemokines gradient, glioblastoma multiforme, kinetic release, mathematical modeling
Procedia PDF Downloads 8210 Pharmacophore-Based Modeling of a Series of Human Glutaminyl Cyclase Inhibitors to Identify Lead Molecules by Virtual Screening, Molecular Docking and Molecular Dynamics Simulation Study
Authors: Ankur Chaudhuri, Sibani Sen Chakraborty
Abstract:
In human, glutaminyl cyclase activity is highly abundant in neuronal and secretory tissues and is preferentially restricted to hypothalamus and pituitary. The N-terminal modification of β-amyloids (Aβs) peptides by the generation of a pyro-glutamyl (pGlu) modified Aβs (pE-Aβs) is an important process in the initiation of the formation of neurotoxic plaques in Alzheimer’s disease (AD). This process is catalyzed by glutaminyl cyclase (QC). The expression of QC is characteristically up-regulated in the early stage of AD, and the hallmark of the inhibition of QC is the prevention of the formation of pE-Aβs and plaques. A computer-aided drug design (CADD) process was employed to give an idea for the designing of potentially active compounds to understand the inhibitory potency against human glutaminyl cyclase (QC). This work elaborates the ligand-based and structure-based pharmacophore exploration of glutaminyl cyclase (QC) by using the known inhibitors. Three dimensional (3D) quantitative structure-activity relationship (QSAR) methods were applied to 154 compounds with known IC50 values. All the inhibitors were divided into two sets, training-set, and test-sets. Generally, training-set was used to build the quantitative pharmacophore model based on the principle of structural diversity, whereas the test-set was employed to evaluate the predictive ability of the pharmacophore hypotheses. A chemical feature-based pharmacophore model was generated from the known 92 training-set compounds by HypoGen module implemented in Discovery Studio 2017 R2 software package. The best hypothesis was selected (Hypo1) based upon the highest correlation coefficient (0.8906), lowest total cost (463.72), and the lowest root mean square deviation (2.24Å) values. The highest correlation coefficient value indicates greater predictive activity of the hypothesis, whereas the lower root mean square deviation signifies a small deviation of experimental activity from the predicted one. The best pharmacophore model (Hypo1) of the candidate inhibitors predicted comprised four features: two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature. The Hypo1 was validated by several parameters such as test set activity prediction, cost analysis, Fischer's randomization test, leave-one-out method, and heat map of ligand profiler. The predicted features were then used for virtual screening of potential compounds from NCI, ASINEX, Maybridge and Chembridge databases. More than seven million compounds were used for this purpose. The hit compounds were filtered by drug-likeness and pharmacokinetics properties. The selective hits were docked to the high-resolution three-dimensional structure of the target protein glutaminyl cyclase (PDB ID: 2AFU/2AFW) to filter these hits further. To validate the molecular docking results, the most active compound from the dataset was selected as a reference molecule. From the density functional theory (DFT) study, ten molecules were selected based on their highest HOMO (highest occupied molecular orbitals) energy and the lowest bandgap values. Molecular dynamics simulations with explicit solvation systems of the final ten hit compounds revealed that a large number of non-covalent interactions were formed with the binding site of the human glutaminyl cyclase. It was suggested that the hit compounds reported in this study could help in future designing of potent inhibitors as leads against human glutaminyl cyclase.Keywords: glutaminyl cyclase, hit lead, pharmacophore model, simulation
Procedia PDF Downloads 1309 Interpretable Deep Learning Models for Medical Condition Identification
Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji
Abstract:
Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.Keywords: deep learning, interpretability, attention, big data, medical conditions
Procedia PDF Downloads 898 Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications
Authors: Asma Omri, Iheb Sifaoui, Sofiane Sayahi, Hichem Besbes
Abstract:
Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety.Keywords: ballistocardiogram, FMCW Radar, vital sign monitoring, LSTM
Procedia PDF Downloads 727 Risks for Cyanobacteria Harmful Algal Blooms in Georgia Piedmont Waterbodies Due to Land Management and Climate Interactions
Authors: Sam Weber, Deepak Mishra, Susan Wilde, Elizabeth Kramer
Abstract:
The frequency and severity of cyanobacteria harmful blooms (CyanoHABs) have been increasing over time, with point and non-point source eutrophication and shifting climate paradigms being blamed as the primary culprits. Excessive nutrients, warm temperatures, quiescent water, and heavy and less regular rainfall create more conducive environments for CyanoHABs. CyanoHABs have the potential to produce a spectrum of toxins that cause gastrointestinal stress, organ failure, and even death in humans and animals. To promote enhanced, proactive CyanoHAB management, risk modeling using geospatial tools can act as predictive mechanisms to supplement current CyanoHAB monitoring, management and mitigation efforts. The risk maps would empower water managers to focus their efforts on high risk water bodies in an attempt to prevent CyanoHABs before they occur, and/or more diligently observe those waterbodies. For this research, exploratory spatial data analysis techniques were used to identify the strongest predicators for CyanoHAB blooms based on remote sensing-derived cyanobacteria cell density values for 771 waterbodies in the Georgia Piedmont and landscape characteristics of their watersheds. In-situ datasets for cyanobacteria cell density, nutrients, temperature, and rainfall patterns are not widely available, so free gridded geospatial datasets were used as proxy variables for assessing CyanoHAB risk. For example, the percent of a watershed that is agriculture was used as a proxy for nutrient loading, and the summer precipitation within a watershed was used as a proxy for water quiescence. Cyanobacteria cell density values were calculated using atmospherically corrected images from the European Space Agency’s Sentinel-2A satellite and multispectral instrument sensor at a 10-meter ground resolution. Seventeen explanatory variables were calculated for each watershed utilizing the multi-petabyte geospatial catalogs available within the Google Earth Engine cloud computing interface. The seventeen variables were then used in a multiple linear regression model, and the strongest predictors of cyanobacteria cell density were selected for the final regression model. The seventeen explanatory variables included land cover composition, winter and summer temperature and precipitation data, topographic derivatives, vegetation index anomalies, and soil characteristics. Watershed maximum summer temperature, percent agriculture, percent forest, percent impervious, and waterbody area emerged as the strongest predictors of cyanobacteria cell density with an adjusted R-squared value of 0.31 and a p-value ~ 0. The final regression equation was used to make a normalized cyanobacteria cell density index, and a Jenks Natural Break classification was used to assign waterbodies designations of low, medium, or high risk. Of the 771 waterbodies, 24.38% were low risk, 37.35% were medium risk, and 38.26% were high risk. This study showed that there are significant relationships between free geospatial datasets representing summer maximum temperatures, nutrient loading associated with land use and land cover, and the area of a waterbody with cyanobacteria cell density. This data analytics approach to CyanoHAB risk assessment corroborated the literature-established environmental triggers for CyanoHABs, and presents a novel approach for CyanoHAB risk mapping in waterbodies across the greater southeastern United States.Keywords: cyanobacteria, land use/land cover, remote sensing, risk mapping
Procedia PDF Downloads 2106 Catastrophic Health Expenditures: Evaluating the Effectiveness of Nepal's National Health Insurance Program Using Propensity Score Matching and Doubly Robust Methodology
Authors: Simrin Kafle, Ulrika Enemark
Abstract:
Catastrophic health expenditure (CHE) is a critical issue in low- and middle-income countries like Nepal, exacerbating financial hardship among vulnerable households. This study assesses the effectiveness of Nepal’s National Health Insurance Program (NHIP), launched in 2015, to reduce out-of-pocket (OOP) healthcare costs and mitigate CHE. Conducted in Pokhara Metropolitan City, the study used an analytical cross-sectional design, sampling 1276 households through a two-stage random sampling method. Data was collected via face-to-face interviews between May and October 2023. The analysis was conducted using SPSS version 29, incorporating propensity score matching to minimize biases and create comparable groups of enrolled and non-enrolled households in the NHIP. PSM helped reduce confounding effects by matching households with similar baseline characteristics. Additionally, a doubly robust methodology was employed, combining propensity score adjustment with regression modeling to enhance the reliability of the results. This comprehensive approach ensured a more accurate estimation of the impact of NHIP enrollment on CHE. Among the 1276 samples, 534 households (41.8%) were enrolled in NHIP. Of them, 84.3% of households renewed their insurance card, though some cited long waiting times, lack of medications, and complex procedures as barriers to renewal. Approximately 57.3% of households reported known diseases before enrollment, with 49.8% attending routine health check-ups in the past year. The primary motivation for enrollment was encouragement from insurance employees (50.2%). The data indicates that 12.5% of enrolled households experienced CHE versus 7.5% among non-enrolled. Enrollment into NHIP does not contribute to lower CHE (AOR: 1.98, 95% CI: 1.21-3.24). Key factors associated with increased CHE risk were presence of non-communicable diseases (NCDs) (AOR: 3.94, 95% CI: 2.10-7.39), acute illnesses/injuries (AOR: 6.70, 95% CI: 3.97-11.30), larger household size (AOR: 3.09, 95% CI: 1.81-5.28), and households below the poverty line (AOR: 5.82, 95% CI: 3.05-11.09). Other factors such as gender, education level, caste/ethnicity, presence of elderly members, and under-five children also showed varying associations with CHE, though not all were statistically significant. The study concludes that enrollment in the NHIP does not significantly reduce the risk of CHE. The reason for this could be inadequate coverage, where high-cost medicines, treatments, and transportation costs are not fully included in the insurance package, leading to significant out-of-pocket expenses. We also considered the long waiting time, lack of medicines, and complex procedures for the utilization of NHIP benefits, which might result in the underuse of covered services. Finally, gaps in enrollment and retention might leave certain households vulnerable to CHE despite the existence of NHIP. Key factors contributing to increased CHE include NCDs, acute illnesses, larger household sizes, and poverty. To improve the program’s effectiveness, it is recommended that NHIP benefits and coverage be expanded to better protect against high healthcare costs. Additionally, simplifying the renewal process, addressing long waiting times, and enhancing the availability of services could improve member satisfaction and retention. Targeted financial protection measures should be implemented for high-risk groups, and efforts should be made to increase awareness and encourage routine health check-ups to prevent severe health issues that contribute to CHE.Keywords: catastrophic health expenditure, effectiveness, national health insurance program, Nepal
Procedia PDF Downloads 235 Leveraging Digital Transformation Initiatives and Artificial Intelligence to Optimize Readiness and Simulate Mission Performance across the Fleet
Authors: Justin Woulfe
Abstract:
Siloed logistics and supply chain management systems throughout the Department of Defense (DOD) has led to disparate approaches to modeling and simulation (M&S), a lack of understanding of how one system impacts the whole, and issues with “optimal” solutions that are good for one organization but have dramatic negative impacts on another. Many different systems have evolved to try to understand and account for uncertainty and try to reduce the consequences of the unknown. As the DoD undertakes expansive digital transformation initiatives, there is an opportunity to fuse and leverage traditionally disparate data into a centrally hosted source of truth. With a streamlined process incorporating machine learning (ML) and artificial intelligence (AI), advanced M&S will enable informed decisions guiding program success via optimized operational readiness and improved mission success. One of the current challenges is to leverage the terabytes of data generated by monitored systems to provide actionable information for all levels of users. The implementation of a cloud-based application analyzing data transactions, learning and predicting future states from current and past states in real-time, and communicating those anticipated states is an appropriate solution for the purposes of reduced latency and improved confidence in decisions. Decisions made from an ML and AI application combined with advanced optimization algorithms will improve the mission success and performance of systems, which will improve the overall cost and effectiveness of any program. The Systecon team constructs and employs model-based simulations, cutting across traditional silos of data, aggregating maintenance, and supply data, incorporating sensor information, and applying optimization and simulation methods to an as-maintained digital twin with the ability to aggregate results across a system’s lifecycle and across logical and operational groupings of systems. This coupling of data throughout the enterprise enables tactical, operational, and strategic decision support, detachable and deployable logistics services, and configuration-based automated distribution of digital technical and product data to enhance supply and logistics operations. As a complete solution, this approach significantly reduces program risk by allowing flexible configuration of data, data relationships, business process workflows, and early test and evaluation, especially budget trade-off analyses. A true capability to tie resources (dollars) to weapon system readiness in alignment with the real-world scenarios a warfighter may experience has been an objective yet to be realized to date. By developing and solidifying an organic capability to directly relate dollars to readiness and to inform the digital twin, the decision-maker is now empowered through valuable insight and traceability. This type of educated decision-making provides an advantage over the adversaries who struggle with maintaining system readiness at an affordable cost. The M&S capability developed allows program managers to independently evaluate system design and support decisions by quantifying their impact on operational availability and operations and support cost resulting in the ability to simultaneously optimize readiness and cost. This will allow the stakeholders to make data-driven decisions when trading cost and readiness throughout the life of the program. Finally, sponsors are available to validate product deliverables with efficiency and much higher accuracy than in previous years.Keywords: artificial intelligence, digital transformation, machine learning, predictive analytics
Procedia PDF Downloads 1584 Design of DNA Origami Structures Using LAMP Products as a Combined System for the Detection of Extended Spectrum B-Lactamases
Authors: Kalaumari Mayoral-Peña, Ana I. Montejano-Montelongo, Josué Reyes-Muñoz, Gonzalo A. Ortiz-Mancilla, Mayrin Rodríguez-Cruz, Víctor Hernández-Villalobos, Jesús A. Guzmán-López, Santiago García-Jacobo, Iván Licona-Vázquez, Grisel Fierros-Romero, Rosario Flores-Vallejo
Abstract:
The group B-lactamic antibiotics include some of the most frequently used small drug molecules against bacterial infections. Nevertheless, an alarming decrease in their efficacy has been reported due to the emergence of antibiotic-resistant bacteria. Infections caused by bacteria expressing extended Spectrum B-lactamases (ESBLs) are difficult to treat and account for higher morbidity and mortality rates, delayed recovery, and high economic burden. According to the Global Report on Antimicrobial Resistance Surveillance, it is estimated that mortality due to resistant bacteria will ascend to 10 million cases per year worldwide. These facts highlight the importance of developing low-cost and readily accessible detection methods of drug-resistant ESBLs bacteria to prevent their spread and promote accurate and fast diagnosis. Bacterial detection is commonly done using molecular diagnostic techniques, where PCR stands out for its high performance. However, this technique requires specialized equipment not available everywhere, is time-consuming, and has a high cost. Loop-Mediated Isothermal Amplification (LAMP) is an alternative technique that works at a constant temperature, significantly decreasing the equipment cost. It yields double-stranded DNA of several lengths with repetitions of the target DNA sequence as a product. Although positive and negative results from LAMP can be discriminated by colorimetry, fluorescence, and turbidity, there is still a large room for improvement in the point-of-care implementation. DNA origami is a technique that allows the formation of 3D nanometric structures by folding a large single-stranded DNA (scaffold) into a determined shape with the help of short DNA sequences (staples), which hybridize with the scaffold. This research aimed to generate DNA origami structures using LAMP products as scaffolds to improve the sensitivity to detect ESBLs in point-of-care diagnosis. For this study, the coding sequence of the CTM-X-15 ESBL of E. coli was used to generate the LAMP products. The set of LAMP primers were designed using PrimerExplorerV5. As a result, a target sequence of 200 nucleotides from CTM-X-15 ESBL was obtained. Afterward, eight different DNA origami structures were designed using the target sequence in the SDCadnano and analyzed with CanDo to evaluate the stability of the 3D structures. The designs were constructed minimizing the total number of staples to reduce costs and complexity for point-of-care applications. After analyzing the DNA origami designs, two structures were selected. The first one was a zig-zag flat structure, while the second one was a wall-like shape. Given the sequence repetitions in the scaffold sequence, both were able to be assembled with only 6 different staples each one, ranging between 18 to 80 nucleotides. Simulations of both structures were performed using scaffolds of different sizes yielding stable structures in all the cases. The generation of the LAMP products were tested by colorimetry and electrophoresis. The formation of the DNA structures was analyzed using electrophoresis and colorimetry. The modeling of novel detection methods through bioinformatics tools allows reliable control and prediction of results. To our knowledge, this is the first study that uses LAMP products and DNA-origami in combination to delect ESBL-producing bacterial strains, which represent a promising methodology for diagnosis in the point-of-care.Keywords: beta-lactamases, antibiotic resistance, DNA origami, isothermal amplification, LAMP technique, molecular diagnosis
Procedia PDF Downloads 2193 Exploring Symptoms, Causes and Treatments of Feline Pruritus Using Thematic Analysis of Pet Owner Social Media Posts
Authors: Sitira Williams, Georgina Cherry, Andrea Wright, Kevin Wells, Taran Rai, Richard Brown, Travis Street, Alasdair Cook
Abstract:
Social media sources (50) were identified, keywords defined by veterinarians and organised into 6 topics known to be indicative of feline pruritus: body areas, behaviors, symptoms, diagnosis, and treatments. These were augmented using academic literature, a cat owner survey, synonyms, and Google Trends. The content was collected using a social intelligence solution, with keywords tagged and filtered. Data were aggregated and de-duplicated. SL content matching body areas, behaviors and symptoms were reviewed manually, and posts were marked relevant if: posted by a pet owner, identifying an itchy cat and not duplicated. A sub-set of 493 posts published from 2009-2022 was used for reflexive thematic analysis in NVIVO (Burlington, MA) to identify themes. Five themes were identified: allergy, pruritus, additional behaviors, unusual or undesirable behaviors, diagnosis, and treatment. Most (258) posts reported the cat was excessively licking, itching, and scratching. The majority were indoor cats and were less playful and friendly when itchy. Half of these posts did not indicate a known cause of pruritus. Bald spots and scabs (123) were reported, often causing swelling and fur loss, and 56 reported bumps, lumps, and dry patches. Other impacts on the cat’s quality of life were ear mites, cat self-trauma and stress. Seven posts reported their cats’ symptoms caused them ongoing anxiety and depression. Cats with food allergies to poultry (often chicken and beef) causing bald spots featured in 23 posts. Veterinarians advised switching to a raw food diet and/or changing their bowls. Some cats got worse after switching, leaving owners’ needs unmet. Allergic reactions to flea bites causing excessive itching, red spots, scabs, and fur loss were reported in 13 posts. Some (3) posts indicated allergic reactions to medication. Cats with seasonal and skin allergies, causing sneezing, scratching, headshaking, watery eyes, and nasal discharge, were reported 17 times. Eighty-five posts identified additional behaviors. Of these, 13 reported their cat’s burst pimple or insect bite. Common behaviors were headshaking, rubbing, pawing at their ears, and aggressively chewing. In some cases, bites or pimples triggered previously unseen itchiness, making the cat irritable. Twenty-four reported their cat had anxiety: overgrooming, itching, losing fur, hiding, freaking out, breathing quickly, sleeplessness, hissing and vocalising. Most reported these cats as having itchy skin, fleas, and bumps. Cats were commonly diagnosed with an ear infection, ringworm, acne, or kidney disease. Acne was diagnosed in cats with an allergy flare-up or overgrooming. Ear infections were diagnosed in itchy cats with mites or other parasites. Of the treatments mentioned, steroids were most frequently used, then anti-parasitics, including flea treatments and oral medication (steroids, antibiotics). Forty-six posts reported distress following poor outcomes after medication or additional vet consultations. SL provides veterinarians with unique insights. Verbatim comments highlight the detrimental effects of pruritus on pets and owner quality of life. This study demonstrates the need for veterinarians to communicate management and treatment options more effectively to relieve owner frustrations. Data analysis could be scaled up using machine learning for topic modeling.Keywords: content analysis, feline, itch, pruritus, social media, thematic analysis, veterinary dermatology
Procedia PDF Downloads 1882 Geomechanics Properties of Tuzluca (Eastern. Turkey) Bedded Rock Salt and Geotechnical Safety
Authors: Mehmet Salih Bayraktutan
Abstract:
Geomechanical properties of Rock Salt Deposits in Tuzluca Salt Mine Area (Eastern Turkey) are studied for modeling the operation- excavation strategy. The purpose of this research focused on calculating the critical value of span height- which will meet the safety requirements. The Mine Site Tuzluca Hills consist of alternating parallel bedding of Salt ( NaCl ) and Gypsum ( CaS04 + 2 H20) rocks. Rock Salt beds are more resistant than narrow Gypsum interlayers. Rock Salt beds formed almost 97 percent of the total height of the Hill. Therefore, the geotechnical safety of Galleries depends on the mechanical criteria of Rock Salt Cores. General deposition of Tuzluca Basin was finally completed by Tuzluca Evaporites, as for the uppermost stratigraphic unit. They are currently running mining operations performed by classic mechanical excavation, room and pillar method. Rooms and Pillars are currently experiencing an initial stage of fracturing in places. Geotechnical safety of the whole mining area evaluated by Rock Mass Rating (RMR), Rock Quality Designation (RQD) spacing of joints, and the interaction of groundwater and fracture system. In general, bedded rock salt Show large lateral deformation capacity (while deformation modulus stays in relative small values, here E= 9.86 GPa). In such litho-stratigraphic environments, creep is a critical mechanism in failure. Rock Salt creep rate in steady-state is greater than interbedding layers. Under long-lasted compressive stresses, creep may cause shear displacements, partly using bedding planes. Eventually, steady-state creep in time returns to accelerated stages. Uniaxial compression creep tests on specimens were performed to have an idea of rock salt strength. To give an idea, on Rock Salt cores, average axial strength and strain are found as 18 - 24 MPa and 0.43-0.45 %, respectively. Uniaxial Compressive strength of 26- 32 MPa, from bedded rock salt cores. Elastic modulus is comparatively low, but lateral deformation of the rock salt is high under the uniaxial compression stress state. Poisson ratio = 0.44, break load = 156 kN, cohesion c= 12.8 kg/cm2, specific gravity SG=2.17 gr/cm3. Fracture System; spacing of fractures, joints, faults, offsets are evaluated under acting geodynamic mechanism. Two sand beds, each 4-6 m thick, exist near to upper level and at the top of the evaporating sequence. They act as aquifers and keep infiltrated water on top for a long duration, which may result in the failure of roofs or pillars. Two major active seismic ( N30W and N70E ) striking Fault Planes and parallel fracture strands have seismically triggered moderate risk of structural deformation of rock salt bedding sequence. Earthquakes and Floods are two prevailing sources of geohazards in this region—the seismotectonic activity of the Mine Site based on the crossing framework of Kagizman Faults and Igdir Faults. Dominant Hazard Risk sources include; a) Weak mechanical properties of rock salt, gypsum, anhydrite beds-creep. b) Physical discontinuities cutting across the thick parallel layers of Evaporite Mass, c) Intercalated beds of weak cemented or loose sand, clayey sandy sediments. On the other hand, absorbing the effects of salt-gyps parallel bedded deposits on seismic wave amplitudes has a reducing effect on the Rock Mass.Keywords: bedded rock salt, creep, failure mechanism, geotechnical safety
Procedia PDF Downloads 1881 From Linear to Circular Model: An Artificial Intelligence-Powered Approach in Fosso Imperatore
Authors: Carlotta D’Alessandro, Giuseppe Ioppolo, Katarzyna Szopik-Depczyńska
Abstract:
— The growing scarcity of resources and the mounting pressures of climate change, water pollution, and chemical contamination have prompted societies, governments, and businesses to seek ways to minimize their environmental impact. To combat climate change, and foster sustainability, Industrial Symbiosis (IS) offers a powerful approach, facilitating the shift toward a circular economic model. IS has gained prominence in the European Union's policy framework as crucial enabler of resource efficiency and circular economy practices. The essence of IS lies in the collaborative sharing of resources such as energy, material by-products, waste, and water, thanks to geographic proximity. It can be exemplified by eco-industrial parks (EIPs), which are natural environments for boosting cooperation and resource sharing between businesses. EIPs are characterized by group of businesses situated in proximity, connected by a network of both cooperative and competitive interactions. They represent a sustainable industrial model aimed at reducing resource use, waste, and environmental impact while fostering economic and social wellbeing. IS, combined with Artificial Intelligence (AI)-driven technologies, can further optimize resource sharing and efficiency within EIPs. This research, supported by the “CE_IPs” project, aims to analyze the potential for IS and AI, in advancing circularity and sustainability at Fosso Imperatore. The Fosso Imperatore Industrial Park in Nocera Inferiore, Italy, specializes in agriculture and the industrial transformation of agricultural products, particularly tomatoes, tobacco, and textile fibers. This unique industrial cluster, centered around tomato cultivation and processing, also includes mechanical engineering enterprises and agricultural packaging firms. To stimulate the shift from a traditional to a circular economic model, an AI-powered Local Development Plan (LDP) is developed for Fosso Imperatore. It can leverage data analytics, predictive modeling, and stakeholder engagement to optimize resource utilization, reduce waste, and promote sustainable industrial practices. A comprehensive SWOT analysis of the AI-powered LDP revealed several key factors influencing its potential success and challenges. Among the notable strengths and opportunities arising from AI implementation are reduced processing times, fewer human errors, and increased revenue generation. Furthermore, predictive analytics minimize downtime, bolster productivity, and elevate quality while mitigating workplace hazards. However, the integration of AI also presents potential weaknesses and threats, including significant financial investment, since implementing and maintaining AI systems can be costly. The widespread adoption of AI could lead to job losses in certain sectors. Lastly, AI systems are susceptible to cyberattacks, posing risks to data security and operational continuity. Moreover, an Analytic Hierarchy Process (AHP) analysis was employed to yield a prioritized ranking of the outlined AI-driven LDP practices based on the stakeholder input, ensuring a more comprehensive and representative understanding of their relative significance for achieving sustainability in Fosso Imperatore Industrial Park. While this study provides valuable insights into the potential of AIpowered LDP at the Fosso Imperatore, it is important to note that the findings may not be directly applicable to all industrial parks, particularly those with different sizes, geographic locations, or industry compositions. Additional study is necessary to scrutinize the generalizability of these results and to identify best practices for implementing AI-driven LDP in diverse contexts.Keywords: artificial intelligence, climate change, Fosso Imperatore, industrial park, industrial symbiosis
Procedia PDF Downloads 23