Search results for: modified model
14434 Modeling Usage Patterns of Mobile App Service in App Market Using Hidden Markov Model
Authors: Yangrae Cho, Jinseok Kim, Yongtae Park
Abstract:
Mobile app service ecosystem has been abruptly emerged, explosively grown, and dynamically transformed. In contrast with product markets in which product sales directly cause increment in firm’s income, customer’s usage is less visible but more valuable in service market. Especially, the market situation with cutthroat competition in mobile app store makes securing and keeping of users as vital. Although a few service firms try to manage their apps’ usage patterns by fitting on S-curve or applying other forecasting techniques, the time series approaches based on past sequential data are subject to fundamental limitation in the market where customer’s attention is being moved unpredictably and dynamically. We therefore propose a new conceptual approach for detecting usage pattern of mobile app service with Hidden Markov Model (HMM) which is based on the dual stochastic structure and mainly used to clarify unpredictable and dynamic sequential patterns in voice recognition or stock forecasting. Our approach could be practically utilized for app service firms to manage their services’ lifecycles and academically expanded to other markets.Keywords: mobile app service, usage pattern, Hidden Markov Model, pattern detection
Procedia PDF Downloads 33714433 Modeling and Optimization of Nanogenerator for Energy Harvesting
Authors: Fawzi Srairi, Abderrahmane Dib
Abstract:
Recently, the desire for a self-powered micro and nanodevices has attracted a great interest of using sustainable energy sources. Further, the ultimate goal of nanogenerator is to harvest energy from the ambient environment in which a self-powered device based on these generators is needed. With the development of nanogenerator-based circuits design and optimization, the building of new device simulator is necessary for the study and the synthesis of electromechanical parameters of this type of models. In the present article, both numerical modeling and optimization of piezoelectric nanogenerator based on zinc oxide have been carried out. They aim to improve the electromechanical performances, robustness, and synthesis process for nanogenerator. The proposed model has been developed for a systematic study of the nanowire morphology parameters in stretching mode. In addition, heuristic optimization technique, namely, particle swarm optimization has been implemented for an analytic modeling and an optimization of nanogenerator-based process in stretching mode. Moreover, the obtained results have been tested and compared with conventional model where a good agreement has been obtained for excitation mode. The developed nanogenerator model can be generalized, extended and integrated into simulators devices to study nanogenerator-based circuits.Keywords: electrical potential, heuristic algorithms, numerical modeling, nanogenerator
Procedia PDF Downloads 30814432 Assessing Functional Structure in European Marine Ecosystems Using a Vector-Autoregressive Spatio-Temporal Model
Authors: Katyana A. Vert-Pre, James T. Thorson, Thomas Trancart, Eric Feunteun
Abstract:
In marine ecosystems, spatial and temporal species structure is an important component of ecosystems’ response to anthropological and environmental factors. Although spatial distribution patterns and fish temporal series of abundance have been studied in the past, little research has been allocated to the joint dynamic spatio-temporal functional patterns in marine ecosystems and their use in multispecies management and conservation. Each species represents a function to the ecosystem, and the distribution of these species might not be random. A heterogeneous functional distribution will lead to a more resilient ecosystem to external factors. Applying a Vector-Autoregressive Spatio-Temporal (VAST) model for count data, we estimate the spatio-temporal distribution, shift in time, and abundance of 140 species of the Eastern English Chanel, Bay of Biscay and Mediterranean Sea. From the model outputs, we determined spatio-temporal clusters, calculating p-values for hierarchical clustering via multiscale bootstrap resampling. Then, we designed a functional map given the defined cluster. We found that the species distribution within the ecosystem was not random. Indeed, species evolved in space and time in clusters. Moreover, these clusters remained similar over time deriving from the fact that species of a same cluster often shifted in sync, keeping the overall structure of the ecosystem similar overtime. Knowing the co-existing species within these clusters could help with predicting data-poor species distribution and abundance. Further analysis is being performed to assess the ecological functions represented in each cluster.Keywords: cluster distribution shift, European marine ecosystems, functional distribution, spatio-temporal model
Procedia PDF Downloads 19514431 An Optimization Model for the Arrangement of Assembly Areas Considering Time Dynamic Area Requirements
Authors: Michael Zenker, Henrik Prinzhorn, Christian Böning, Tom Strating
Abstract:
Large-scale products are often assembled according to the job-site principle, meaning that during the assembly the product is located at a fixed position, while the area requirements are constantly changing. On one hand, the product itself is growing with each assembly step, whereas varying areas for storage, machines or working areas are temporarily required. This is an important factor when arranging products to be assembled within the factory. Currently, it is common to reserve a fixed area for each product to avoid overlaps or collisions with the other assemblies. Intending to be large enough to include the product and all adjacent areas, this reserved area corresponds to the superposition of the maximum extents of all required areas of the product. In this procedure, the reserved area is usually poorly utilized over the course of the entire assembly process; instead a large part of it remains unused. If the available area is a limited resource, a systematic arrangement of the products, which complies with the dynamic area requirements, will lead to an increased area utilization and productivity. This paper presents the results of a study on the arrangement of assembly objects assuming dynamic, competing area requirements. First, the problem situation is extensively explained, and existing research on associated topics is described and evaluated on the possibility of an adaptation. Then, a newly developed mathematical optimization model is introduced. This model allows an optimal arrangement of dynamic areas, considering logical and practical constraints. Finally, in order to quantify the potential of the developed method, some test series results are presented, showing the possible increase in area utilization.Keywords: dynamic area requirements, facility layout problem, optimization model, product assembly
Procedia PDF Downloads 23314430 Dynamic Simulation for Surface Wear Prognosis of the Main Bearings in the Internal Combustion Engine
Authors: Yanyan Zhang, Ziyu Diao, Zhentao Liu, Ruidong Yan
Abstract:
The wear character of the main bearing is one of the critical indicators for the overhaul of an internal combustion engine, and the aim of this paper is to reveal the dynamic wear mechanism of the main bearings. A numerical simulation model combined multi-body dynamic equations of the engine, the average Reynolds equations of the bearing lubricant, asperity contact and wear model of the joint surfaces were established under typical operating conditions. The wear results were verified by experimental data, and then the influence of operating conditions, bearing clearance and cylinder pressure on the wear character of selected main bearings were analyzed. The results show that the contribution degree of different working conditions on the wear profile and depth of each bearing is obviously different, and the increase of joint clearance or cylinder pressure will accelerate the wear. The numerical model presented can be used to wear prognosis for joints and provide guidance for optimization design of sliding bearings.Keywords: dynamic simulation, multi-body dynamics, sliding bearing, surface wear
Procedia PDF Downloads 14914429 Practicing Inclusion for Hard of Hearing and Deaf Students in Regular Schools in Ethiopia
Authors: Mesfin Abebe Molla
Abstract:
This research aims to examine the practices of inclusion of the hard of hearing and deaf students in regular schools. It also focuses on exploring strategies for optimal benefits of students with Hard of Hearing and Deaf (HH-D) from inclusion. Concurrent mixed methods research design was used to collect quantitative and qualitative data. The instruments used to gather data for this study were questionnaire, semi- structured interview, and observations. A total of 102 HH-D students and 42 primary and High School teachers were selected using simple random sampling technique and used as participants to collect quantitative data. Non-probability sampling technique was also employed to select 14 participants (4-school principals, 6-teachers and 4-parents of HH-D students) and they were interviewed to collect qualitative data. Descriptive and inferential statistical techniques (independent sample t-test, one way ANOVA and Multiple regressions) were employed to analyze quantitative data. Qualitative data were also analyzed qualitatively by theme analysis. The findings reported that there were individual principals’, teachers’ and parents’ strong commitment and efforts for practicing inclusion of HH-D students effectively; however, most of the core values of inclusion were missing in both schools. Most of the teachers (78.6 %) and HH-D students (75.5%) had negative attitude and considerable reservations about the feasibility of inclusion of HH-D students in both schools. Furthermore, there was a statistically significant difference of attitude toward to inclusion between the two school’s teachers and the teachers’ who had taken and had not taken additional training on IE and sign language. The study also indicated that there was a statistically significant difference of attitude toward to inclusion between hard of hearing and deaf students. However, the overall contribution of the demographic variables of teachers and HH-D students on their attitude toward inclusion is not statistically significant. The finding also showed that HH-D students did not have access to modified curriculum which would maximize their abilities and help them to learn together with their hearing peers. In addition, there is no clear and adequate direction for the medium of instruction. Poor school organization and management, lack of commitment, financial resources, collaboration and teachers’ inadequate training on Inclusive Education (IE) and sign language, large class size, inappropriate assessment procedure, lack of trained deaf adult personnel who can serve as role model for HH-D students and lack of parents and community members’ involvement were some of the major factors that affect the practicing inclusion of students HH-D. Finally, recommendations are made to improve the practices of inclusion of HH-D students and to make inclusion of HH-D students an integrated part of Ethiopian education based on the findings of the study.Keywords: deaf, hard of hearing, inclusion, regular schools
Procedia PDF Downloads 34314428 A Fuzzy Hybrıd Decısıon Support System for Naval Base Place Selectıon in a Foreıgn Country
Authors: Latif Yanar, Muharrem Kaçan
Abstract:
In this study, an Analytic Hierarchy Process and Analytic Network Process Decision Support System (DSS) model for determination of a navy base place in another country is proposed together with a decision support software (DESTEC 1.0) developed using C Sharp programming language. The proposed software also has the ability of performing the fuzzy models (Fuzzy AHP and Fuzzy ANP) of the proposed DSS to cope with the ambiguous and linguistic nature of the model. The AHP and ANP model, for a decision support for selecting the best place among the alternatives, including the criteria and alternatives, is developed and solved by the experts from Turkish Navy and Turkish academicians related to international relations branches of the universities in Turkey. Also, the questionnaires used for weighting of the criteria and the alternatives are filled by these experts.Some of our alternatives are: economic and political stability of the third country, the effect of another super power in that country, historical relations, security in that country, social facilities in the city in which the base will be built, the transportation security and difficulty from a main city that have an airport to the city will have the base etc. Over 20 criteria like these are determined which are categorized in social, political, economic and military aspects. As a result all the criteria and three alternatives are evaluated by different people who have background and experience to weight the criteria and alternatives as it must be in AHP and ANP evaluation system. The alternatives got their degrees all between 0 – 1 and the total is 1. At the end the DSS advices one of the alternatives as the best one to the decision maker according to the developed model and the evaluations of the experts.Keywords: analytic hierarchical process, analytic network process, fuzzy logic, naval base place selection, multiple criteria decision making
Procedia PDF Downloads 39114427 Dry Friction Fluctuations in Plain Journal Bearings
Authors: James Moran, Anusarn Permsuwan
Abstract:
This paper compares oscillations in the dry friction coefficient in different journal bearings. Measurements are made of the average and standard deviation in the coefficient of friction as a function of sliding velocity. The standard deviation of the friction coefficient changed dramatically with sliding velocity. The magnitude and frequency of the oscillations were a function of the velocity. A numerical model was developed for the frictional oscillations. There was good agreement between the model and results. Five different materials were used as the sliding surfaces in the experiments, Aluminum, Bronze, Mild Steel, Stainless Steel, and Nylon.Keywords: Coulomb friction, dynamic friction, non-lubricated bearings, frictional oscillations
Procedia PDF Downloads 36714426 Role of Yeast-Based Bioadditive on Controlling Lignin Inhibition in Anaerobic Digestion Process
Authors: Ogemdi Chinwendu Anika, Anna Strzelecka, Yadira Bajón-Fernández, Raffaella Villa
Abstract:
Anaerobic digestion (AD) has been used since time in memorial to take care of organic wastes in the environment, especially for sewage and wastewater treatments. Recently, the rising demand/need to increase renewable energy from organic matter has caused the AD substrates spectrum to expand and include a wider variety of organic materials such as agricultural residues and farm manure which is annually generated at around 140 billion metric tons globally. The problem, however, is that agricultural wastes are composed of materials that are heterogeneous and too difficult to degrade -particularly lignin, that make up about 0–40% of the total lignocellulose content. This study aimed to evaluate the impact of varying concentrations of lignin on biogas yields and their subsequent response to a commercial yeast-based bioadditive in batch anaerobic digesters. The experiments were carried out in batches for a retention time of 56 days with different lignin concentrations (200 mg, 300 mg, 400 mg, 500 mg, and 600 mg) treated to different conditions to first determine the concentration of the bioadditive that was most optimal for overall process improvement and yields increase. The batch experiments were set up using 130 mL bottles with a working volume of 60mL, maintained at 38°C in an incubator shaker (150rpm). Digestate obtained from a local plant operating at mesophilic conditions was used as the starting inoculum, and commercial kraft lignin was used as feedstock. Biogas measurements were carried out using the displacement method and were corrected to standard temperature and pressure using standard gas equations. Furthermore, the modified Gompertz equation model was used to non-linearly regress the resulting data to estimate gas production potential, production rates, and the duration of lag phases as indicatives of degrees of lignin inhibition. The results showed that lignin had a strong inhibitory effect on the AD process, and the higher the lignin concentration, the more the inhibition. Also, the modelling showed that the rates of gas production were influenced by the concentrations of the lignin substrate added to the system – the higher the lignin concentrations in mg (0, 200, 300, 400, 500, and 600) the lower the respective rate of gas production in ml/gVS.day (3.3, 2.2, 2.3, 1.6, 1.3, and 1.1), although the 300 mg increased by 0.1 ml/gVS.day over that of the 200 mg. The impact of the yeast-based bioaddition on the rate of production was most significant in the 400 mg and 500 mg as the rate was improved by 0.1 ml/gVS.day and 0.2 ml/gVS.day respectively. This indicates that agricultural residues with higher lignin content may be more responsive to inhibition alleviation by yeast-based bioadditive; therefore, further study on its application to the AD of agricultural residues of high lignin content will be the next step in this research.Keywords: anaerobic digestion, renewable energy, lignin valorisation, biogas
Procedia PDF Downloads 9214425 Remote Criminal Proceedings as Implication to Rethink the Principles of Criminal Procedure
Authors: Inga Žukovaitė
Abstract:
This paper aims to present postdoc research on remote criminal proceedings in court. In this period, when most countries have introduced the possibility of remote criminal proceedings in their procedural laws, it is not only possible to identify the weaknesses and strengths of the legal regulation but also assess the effectiveness of the instrument used and to develop an approach to the process. The example of some countries (for example, Italy) shows, on the one hand, that criminal procedure, based on orality and immediacy, does not lend itself to easy modifications that pose even a slight threat of devaluation of these principles in a society with well-established traditions of this procedure. On the other hand, such strong opposition and criticism make us ask whether we are facing the possibility of rethinking the traditional ways to understand the safeguards in order to preserve their essence without devaluing their traditional package but looking for new components to replace or compensate for the so-called “loss” of safeguards. The reflection on technological progress in the field of criminal procedural law indicates the need to rethink, on the basis of fundamental procedural principles, the safeguards that can replace or compensate for those that are in crisis as a result of the intervention of technological progress. Discussions in academic doctrine on the impact of technological interventions on the proceedings as such or on the limits of such interventions refer to the principles of criminal procedure as to a point of reference. In the context of the inferiority of technology, scholarly debate still addresses the issue of whether the court will not gradually become a mere site for the exercise of penal power with the resultant consequences – the deformation of the procedure itself as a physical ritual. In this context, this work seeks to illustrate the relationship between remote criminal proceedings in court and the principle of immediacy, the concept of which is based on the application of different models of criminal procedure (inquisitorial and adversarial), the aim is to assess the challenges posed for legal regulation by the interaction of technological progress with the principles of criminal procedure. The main hypothesis to be tested is that the adoption of remote proceedings is directly linked to the prevailing model of criminal procedure, arguing that the more principles of the inquisitorial model are applied to the criminal process, the more remote criminal trial is acceptable, and conversely, the more the criminal process is based on an adversarial model, more the remote criminal process is seen as incompatible with the principle of immediacy. In order to achieve this goal, the following tasks are set: to identify whether there is a difference in assessing remote proceedings with the immediacy principle between the adversarial model and the inquisitorial model, to analyse the main aspects of the regulation of remote criminal proceedings based on the examples of different countries (for example Lithuania, Italy, etc.).Keywords: remote criminal proceedings, principle of orality, principle of immediacy, adversarial model inquisitorial model
Procedia PDF Downloads 6814424 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-François Plante, Michel Gamache
Abstract:
This study introduces the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs' processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW's ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. it employ gradient descent and backpropagation to train ML-IDW, comparing its performance against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. the results highlight the efficacy of ML-IDW, particularly in handling complex spatial datasets, exhibiting lower mean square error in regression and higher F1 score in classification.Keywords: deep learning, multi-layer neural networks, gradient descent, spatial interpolation, inverse distance weighting
Procedia PDF Downloads 5414423 Automating 2D CAD to 3D Model Generation Process: Wall pop-ups
Authors: Mohit Gupta, Chialing Wei, Thomas Czerniawski
Abstract:
In this paper, we have built a neural network that can detect walls on 2D sheets and subsequently create a 3D model in Revit using Dynamo. The training set includes 3500 labeled images, and the detection algorithm used is YOLO. Typically, engineers/designers make concentrated efforts to convert 2D cad drawings to 3D models. This costs a considerable amount of time and human effort. This paper makes a contribution in automating the task of 3D walls modeling. 1. Detecting Walls in 2D cad and generating 3D pop-ups in Revit. 2. Saving designer his/her modeling time in drafting elements like walls from 2D cad to 3D representation. An object detection algorithm YOLO is used for wall detection and localization. The neural network is trained over 3500 labeled images of size 256x256x3. Then, Dynamo is interfaced with the output of the neural network to pop-up 3D walls in Revit. The research uses modern technological tools like deep learning and artificial intelligence to automate the process of generating 3D walls without needing humans to manually model them. Thus, contributes to saving time, human effort, and money.Keywords: neural networks, Yolo, 2D to 3D transformation, CAD object detection
Procedia PDF Downloads 14414422 Bathymetric Change of Brahmaputra River and Its Influence on Flooding Scenario
Authors: Arup Kumar Sarma, Rohan Kar
Abstract:
The development of physical model of River like Brahmaputra, which finds its origin in the Chema Yundung glacier of Tibet and flows through India and Bangladesh, is always expensive and very much time consuming. With the advancement of computational technique, mathematical modeling has found wide application. MIKE 21C is one such commercial software, developed by Danish Hydraulic Institute (DHI), with the depth-averaged approach and a two-dimensional curvilinear finite-difference model, which is capable of modeling hydrodynamic and morphological processes with some limitations. The main purpose of this study are to generate bathymetry of the River Brahmaputra starting from “Sadia” at upstream to “Dhubri,” at downstream stretching a distance of approximately 695 km, for four different years: 1957, 1971, 1977, and 1981 over the grid generated in the MIKE 21C and to carry out the hydrodynamic simulation for these years to analyze the effect of bathymetry change on the surface water elevation. The study has established that bathymetric change can influence the flood level significantly in some of the river reaches and therefore the modification or updating of regular bathymetry is very much essential for the reliable flood routing in alluvial rivers.Keywords: bathymetry, brahmaputra river, hydrodynamic model, surface water elevation
Procedia PDF Downloads 45514421 Supersymmetry versus Compositeness: 2-Higgs Doublet Models Tell the Story
Authors: S. De Curtis, L. Delle Rose, S. Moretti, K. Yagyu
Abstract:
Supersymmetry and compositeness are the two prevalent paradigms providing both a solution to the hierarchy problem and motivation for a light Higgs boson state. An open door towards the solution is found in the context of 2-Higgs Doublet Models (2HDMs), which are necessary to supersymmetry and natural within compositeness in order to enable Electro-Weak Symmetry Breaking. In scenarios of compositeness, the two isospin doublets arise as pseudo Nambu-Goldstone bosons from the breaking of SO(6). By calculating the Higgs potential at one-loop level through the Coleman-Weinberg mechanism from the explicit breaking of the global symmetry induced by the partial compositeness of fermions and gauge bosons, we derive the phenomenological properties of the Higgs states and highlight the main signatures of this Composite 2-Higgs Doublet Model at the Large Hadron Collider. These include modifications to the SM-like Higgs couplings as well as production and decay channels of heavier Higgs bosons. We contrast the properties of this composite scenario to the well-known ones established in supersymmetry, with the MSSM being the most notorious example. We show how 2HDM spectra of masses and couplings accessible at the Large Hadron Collider may allow one to distinguish between the two paradigms.Keywords: beyond the standard model, composite Higgs, supersymmetry, Two-Higgs Doublet Model
Procedia PDF Downloads 12714420 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor
Authors: Yash Jain
Abstract:
The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier
Procedia PDF Downloads 16314419 Effect of Installation Method on the Ratio of Tensile to Compressive Shaft Capacity of Piles in Dense Sand
Authors: A. C. Galvis-Castro, R. D. Tovar, R. Salgado, M. Prezzi
Abstract:
It is generally accepted that the shaft capacity of piles in the sand is lower for tensile loading that for compressive loading. So far, very little attention has been paid to the role of the influence of the installation method on the tensile to compressive shaft capacity ratio. The objective of this paper is to analyze the effect of installation method on the tensile to compressive shaft capacity of piles in dense sand as observed in tests on half-circular model pile tests in a half-circular calibration chamber with digital image correlation (DIC) capability. Model piles are either monotonically jacked, jacked with multiple strokes or pre-installed into the dense sand samples. Digital images of the model pile and sand are taken during both the installation and loading stages of each test and processed using the DIC technique to obtain the soil displacement and strain fields. The study provides key insights into the mobilization of shaft resistance in tensile and compressive loading for both displacement and non-displacement piles.Keywords: digital image correlation, piles, sand, shaft resistance
Procedia PDF Downloads 27214418 Synthesis and Characterization of Akermanite Nanoparticles (AMN) as a Bio-Ceramic Nano Powder by Sol-Gel Method for Use in Biomedical
Authors: Seyedmahdi Mousavihashemi
Abstract:
Natural Akermanite (NAM) has been successfully prepared by a modified sol-gel method. Optimization in calcination temperature and mechanical ball milling resulted in a pure and nano-sized powder which characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared Spectroscopy (FT–IR). We hypothesized that nano-sized Akermanite (AM) would mimic more efficiently the nanocrystal structure and function of natural bone apatite, owing to the higher surface area, compare to conventional micron-size Akermanite (AM). Accordingly, we used the unique advantage of nanotechnology to improve novel nano akermanite particles as a potential candidate for bone tissue regeneration whether as a per implant filling powder or in combination with other biomaterials as a composite scaffold. Pure Akermanite (PAM) powders were successfully obtained via a simple sol-gel method followed by calcination at 1250 °C. Mechanical grinding in a ceramic ball mill for 7 hours resulted in akermanite (AM) nanoparticles in the range of about 30- 45 nm.Keywords: biomedical engineering, nano composite, SEM, TEM
Procedia PDF Downloads 23814417 Reaction Kinetics of Biodiesel Production from Refined Cottonseed Oil Using Calcium Oxide
Authors: Ude N. Callistus, Amulu F. Ndidi, Onukwuli D. Okechukwu, Amulu E. Patrick
Abstract:
Power law approximation was used in this study to evaluate the reaction orders of calcium oxide, CaO catalyzed transesterification of refined cottonseed oil and methanol. The kinetics study was carried out at temperatures of 45, 55 and 65 oC. The kinetic parameters such as reaction order 2.02 and rate constant 2.8 hr-1g-1cat, obtained at the temperature of 65 oC best fitted the kinetic model. The activation energy, Ea obtained was 127.744 KJ/mol. The results indicate that the transesterification reaction of the refined cottonseed oil using calcium oxide catalyst is approximately second order reaction.Keywords: refined cottonseed oil, transesterification, CaO, heterogeneous catalysts, kinetic model
Procedia PDF Downloads 54514416 An Improved Amplified Sway Method for Semi-Rigidly Jointed Sway Frames
Authors: Abdul Hakim Chikho
Abstract:
A simple method of calculating satisfactory of the effect of instability on the distribution of in-plane bending moments in unbraced semi-rigidly multistory steel framed structures is presented in this paper. This method, which is a modified form of the current amplified sway method of BS5950: part1:2000, uses an approximate load factor at elastic instability in each storey of a frame which in turn dependent up on the axial loads acting in the columns. The calculated factors are then used to represent the geometrical deformations due to the presence of axial loads, acting in that storey. Only a first order elastic analysis is required to accomplish the calculation. Comparison of the prediction of the proposed method and the current BS5950 amplified sway method with an accurate second order elastic computation shows that the proposed method leads to predictions which are markedly more accurate than the current approach of BS5950.Keywords: improved amplified sway method, steel frames, semi-rigid connections, secondary effects
Procedia PDF Downloads 8714415 The Association between Corporate Social Responsibility Disclosure, Assurance, and Tax Aggressiveness: Evidence from Indonesia
Authors: Eko Budi Santoso
Abstract:
There is a growing interest in Corporate Social Responsibility (CSR) issues in developing countries such as Indonesia. Firms disclose their CSR activities, and some provide assurance to gain recognition as socially responsible firms. However, several of those socially responsible firms involve in tax scandals and raise a question of whether CSR disclosure is used to disguise firm misconduct or as a reflection of socially responsible firms. Specifically, whether firms engage in CSR disclosure and its assurance also responsible for their tax matters. This study examines the association between CSR disclosure and tax aggressiveness and the role of sustainability reporting assurance to the association. This research develops a modified index according to global reporting initiatives to measure CSR disclosure and various measurement for tax aggressiveness. Using a sample of Indonesian go public companies issued CSR disclosure, the empirical result shows that there is an association between CSR disclosure and tax aggressiveness. In addition, results also indicate sustainability reporting assurance moderate those association. The findings suggest that stakeholder in developing countries should examine carefully firms with active CSR disclosure before label it as socially responsible firms. JEL Classification: M14Keywords: CSR disclosure, tax aggressiveness, assurance, business ethics
Procedia PDF Downloads 13914414 Thick Data Analytics for Learning Cataract Severity: A Triplet Loss Siamese Neural Network Model
Authors: Jinan Fiaidhi, Sabah Mohammed
Abstract:
Diagnosing cataract severity is an important factor in deciding to undertake surgery. It is usually conducted by an ophthalmologist or through taking a variety of fundus photography that needs to be examined by the ophthalmologist. This paper carries out an investigation using a Siamese neural net that can be trained with small anchor samples to score cataract severity. The model used in this paper is based on a triplet loss function that takes the ophthalmologist best experience in rating positive and negative anchors to a specific cataract scaling system. This approach that takes the heuristics of the ophthalmologist is generally called the thick data approach, which is a kind of machine learning approach that learn from a few shots. Clinical Relevance: The lens of the eye is mostly made up of water and proteins. A cataract occurs when these proteins at the eye lens start to clump together and block lights causing impair vision. This research aims at employing thick data machine learning techniques to rate the severity of the cataract using Siamese neural network.Keywords: thick data analytics, siamese neural network, triplet-loss model, few shot learning
Procedia PDF Downloads 11114413 A Hybrid of BioWin and Computational Fluid Dynamics Based Modeling of Biological Wastewater Treatment Plants for Model-Based Control
Authors: Komal Rathore, Kiesha Pierre, Kyle Cogswell, Aaron Driscoll, Andres Tejada Martinez, Gita Iranipour, Luke Mulford, Aydin Sunol
Abstract:
Modeling of Biological Wastewater Treatment Plants requires several parameters for kinetic rate expressions, thermo-physical properties, and hydrodynamic behavior. The kinetics and associated mechanisms become complex due to several biological processes taking place in wastewater treatment plants at varying times and spatial scales. A dynamic process model that incorporated the complex model for activated sludge kinetics was developed using the BioWin software platform for an Advanced Wastewater Treatment Plant in Valrico, Florida. Due to the extensive number of tunable parameters, an experimental design was employed for judicious selection of the most influential parameter sets and their bounds. The model was tuned using both the influent and effluent plant data to reconcile and rectify the forecasted results from the BioWin Model. Amount of mixed liquor suspended solids in the oxidation ditch, aeration rates and recycle rates were adjusted accordingly. The experimental analysis and plant SCADA data were used to predict influent wastewater rates and composition profiles as a function of time for extended periods. The lumped dynamic model development process was coupled with Computational Fluid Dynamics (CFD) modeling of the key units such as oxidation ditches in the plant. Several CFD models that incorporate the nitrification-denitrification kinetics, as well as, hydrodynamics was developed and being tested using ANSYS Fluent software platform. These realistic and verified models developed using BioWin and ANSYS were used to plan beforehand the operating policies and control strategies for the biological wastewater plant accordingly that further allows regulatory compliance at minimum operational cost. These models, with a little bit of tuning, can be used for other biological wastewater treatment plants as well. The BioWin model mimics the existing performance of the Valrico Plant which allowed the operators and engineers to predict effluent behavior and take control actions to meet the discharge limits of the plant. Also, with the help of this model, we were able to find out the key kinetic and stoichiometric parameters which are significantly more important for modeling of biological wastewater treatment plants. One of the other important findings from this model were the effects of mixed liquor suspended solids and recycle ratios on the effluent concentration of various parameters such as total nitrogen, ammonia, nitrate, nitrite, etc. The ANSYS model allowed the abstraction of information such as the formation of dead zones increases through the length of the oxidation ditches as compared to near the aerators. These profiles were also very useful in studying the behavior of mixing patterns, effect of aerator speed, and use of baffles which in turn helps in optimizing the plant performance.Keywords: computational fluid dynamics, flow-sheet simulation, kinetic modeling, process dynamics
Procedia PDF Downloads 21014412 Supply Air Pressure Control of HVAC System Using MPC Controller
Authors: P. Javid, A. Aeenmehr, J. Taghavifar
Abstract:
In this paper, supply air pressure of HVAC system has been modeled with second-order transfer function plus dead-time. In HVAC system, the desired input has step changes, and the output of proposed control system should be able to follow the input reference, so the idea of using model based predictive control is proceeded and designed in this paper. The closed loop control system is implemented in MATLAB software and the simulation results are provided. The simulation results show that the model based predictive control is able to control the plant properly.Keywords: air conditioning system, GPC, dead time, air supply control
Procedia PDF Downloads 52714411 Maackiain Attenuates Alpha-Synuclein Accumulation and Improves 6-OHDA-Induced Dopaminergic Neuron Degeneration in Parkinson's Disease Animal Model
Authors: Shao-Hsuan Chien, Ju-Hui Fu
Abstract:
Parkinson’s disease (PD) is a degenerative disorder of the central nervous system that is characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta and motor impairment. Aggregation of α-synuclein in neuronal cells plays a key role in this disease. At present, therapeutics for PD provides moderate symptomatic benefit but is not able to delay the development of this disease. Current efforts for the treatment of PD are to identify new drugs that show slow or arrest progressive course of PD by interfering with a disease-specific pathogenetic process in PD patients. Maackiain is a bioactive compound isolated from the roots of the Chinese herb Sophora flavescens. The purpose of the present study was to assess the potential for maackiain to ameliorate PD in Caenorhabditis elegans models. Our data reveal that maackiain prevents α-synuclein accumulation in the transgenic Caenorhabditis elegans model and also improves dopaminergic neuron degeneration, food-sensing behavior, and life-span in 6-hydroxydopamine-induced Caenorhabditis elegans model, thus indicating its potential as a candidate antiparkinsonian drug.Keywords: maackiain, Parkinson’s disease, dopaminergic neurons, α-Synuclein
Procedia PDF Downloads 19914410 Process Mining as an Ecosystem Platform to Mitigate a Deficiency of Processes Modelling
Authors: Yusra Abdulsalam Alqamati, Ahmed Alkilany
Abstract:
The teaching staff is a distinct group whose impact is on the educational process and which plays an important role in enhancing the quality of the academic education process. To improve the management effectiveness of the academy, the Teaching Staff Management System (TSMS) proposes that all teacher processes be digitized. Since the BPMN approach can accurately describe the processes, it lacks a clear picture of the process flow map, something that the process mining approach has, which is extracting information from event logs for discovery, monitoring, and model enhancement. Therefore, these two methodologies were combined to create the most accurate representation of system operations, the ability to extract data records and mining processes, recreate them in the form of a Petri net, and then generate them in a BPMN model for a more in-depth view of process flow. Additionally, the TSMS processes will be orchestrated to handle all requests in a guaranteed small-time manner thanks to the integration of the Google Cloud Platform (GCP), the BPM engine, and allowing business owners to take part throughout the entire TSMS project development lifecycle.Keywords: process mining, BPM, business process model and notation, Petri net, teaching staff, Google Cloud Platform
Procedia PDF Downloads 14214409 Wall Pressure Fluctuations in Naturally Developing Boundary Layer Flows on Axisymmetric Bodies
Authors: Chinsuk Hong
Abstract:
This paper investigates the characteristics of wall pressure fluctuations in naturally developing boundary layer flows on axisymmetric bodies experimentally. The axisymmetric body has a modified ellipsoidal blunt nose. Flush-mounted microphones are used to measure the wall pressure fluctuations in the boundary layer flow over the body. The measurements are performed in a low noise wind tunnel. It is found that the correlation between the flow regime and the characteristics of the pressure fluctuations is distinct. The process from small fluctuation in laminar flow to large fluctuation in turbulent flow is investigated. Tollmien-Schlichting wave (T-S wave) is found to generate and develop in transition. Because of the T-S wave, the wall pressure fluctuations in the transition region are higher than those in the turbulent boundary layer.Keywords: wall pressure fluctuation, boundary layer flow, transition, turbulent flow, axisymmetric body, flow noise
Procedia PDF Downloads 36014408 Designing Price Stability Model of Red Cayenne Pepper Price in Wonogiri District, Centre Java, Using ARCH/GARCH Method
Authors: Fauzia Dianawati, Riska W. Purnomo
Abstract:
Food and agricultural sector become the biggest sector contributing to inflation in Indonesia. Especially in Wonogiri district, red cayenne pepper was the biggest sector contributing to inflation on 2016. A national statistic proved that in recent five years red cayenne pepper has the highest average level of fluctuation among all commodities. Some factors, like supply chain, price disparity, production quantity, crop failure, and oil price become the possible factor causes high volatility level in red cayenne pepper price. Therefore, this research tries to find the key factor causing fluctuation on red cayenne pepper by using ARCH/GARCH method. The method could accommodate the presence of heteroscedasticity in time series data. At the end of the research, it is statistically found that the second level of supply chain becomes the biggest part contributing to inflation with 3,35 of coefficient in fluctuation forecasting model of red cayenne pepper price. This model could become a reference to the government to determine the appropriate policy in maintaining the price stability of red cayenne pepper.Keywords: ARCH/GARCH, forecasting, red cayenne pepper, volatility, supply chain
Procedia PDF Downloads 18614407 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model
Authors: Amit R. Bhende, G. K. Awari
Abstract:
Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis
Procedia PDF Downloads 43714406 A Model of the Universe without Expansion of Space
Authors: Jia-Chao Wang
Abstract:
A model of the universe without invoking space expansion is proposed to explain the observed redshift-distance relation and the cosmic microwave background radiation (CMB). The main hypothesized feature of the model is that photons traveling in space interact with the CMB photon gas. This interaction causes the photons to gradually lose energy through dissipation and, therefore, experience redshift. The interaction also causes some of the photons to be scattered off their track toward an observer and, therefore, results in beam intensity attenuation. As observed, the CMB exists everywhere in space and its photon density is relatively high (about 410 per cm³). The small average energy of the CMB photons (about 6.3×10⁻⁴ eV) can reduce the energies of traveling photons gradually and will not alter their momenta drastically as in, for example, Compton scattering, to totally blur the images of distant objects. An object moving through a thermalized photon gas, such as the CMB, experiences a drag. The cause is that the object sees a blue shifted photon gas along the direction of motion and a redshifted one in the opposite direction. An example of this effect can be the observed CMB dipole: The earth travels at about 368 km/s (600 km/s) relative to the CMB. In the all-sky map from the COBE satellite, radiation in the Earth's direction of motion appears 0.35 mK hotter than the average temperature, 2.725 K, while radiation on the opposite side of the sky is 0.35 mK colder. The pressure of a thermalized photon gas is given by Pγ = Eγ/3 = αT⁴/3, where Eγ is the energy density of the photon gas and α is the Stefan-Boltzmann constant. The observed CMB dipole, therefore, implies a pressure difference between the two sides of the earth and results in a CMB drag on the earth. By plugging in suitable estimates of quantities involved, such as the cross section of the earth and the temperatures on the two sides, this drag can be estimated to be tiny. But for a photon traveling at the speed of light, 300,000 km/s, the drag can be significant. In the present model, for the dissipation part, it is assumed that a photon traveling from a distant object toward an observer has an effective interaction cross section pushing against the pressure of the CMB photon gas. For the attenuation part, the coefficient of the typical attenuation equation is used as a parameter. The values of these two parameters are determined by fitting the 748 µ vs. z data points compiled from 643 supernova and 105 γ-ray burst observations with z values up to 8.1. The fit is as good as that obtained from the lambda cold dark matter (ΛCDM) model using online cosmological calculators and Planck 2015 results. The model can be used to interpret Hubble's constant, Olbers' paradox, the origin and blackbody nature of the CMB radiation, the broadening of supernova light curves, and the size of the observable universe.Keywords: CMB as the lowest energy state, model of the universe, origin of CMB in a static universe, photon-CMB photon gas interaction
Procedia PDF Downloads 13414405 An Analytical Wall Function for 2-D Shock Wave/Turbulent Boundary Layer Interactions
Authors: X. Wang, T. J. Craft, H. Iacovides
Abstract:
When handling the near-wall regions of turbulent flows, it is necessary to account for the viscous effects which are important over the thin near-wall layers. Low-Reynolds- number turbulence models do this by including explicit viscous and also damping terms which become active in the near-wall regions, and using very fine near-wall grids to properly resolve the steep gradients present. In order to overcome the cost associated with the low-Re turbulence models, a more advanced wall function approach has been implemented within OpenFoam and tested together with a standard log-law based wall function in the prediction of flows which involve 2-D shock wave/turbulent boundary layer interactions (SWTBLIs). On the whole, from the calculation of the impinging shock interaction, the three turbulence modelling strategies, the Lauder-Sharma k-ε model with Yap correction (LS), the high-Re k-ε model with standard wall function (SWF) and analytical wall function (AWF), display good predictions of wall-pressure. However, the SWF approach tends to underestimate the tendency of the flow to separate as a result of the SWTBLI. The analytical wall function, on the other hand, is able to reproduce the shock-induced flow separation and returns predictions similar to those of the low-Re model, using a much coarser mesh.Keywords: SWTBLIs, skin-friction, turbulence modeling, wall function
Procedia PDF Downloads 347