Search results for: multilayer network
639 Summer STEM Institute in Environmental Science and Data Sciencefor Middle and High School Students at Pace University
Authors: Lauren B. Birney
Abstract:
Summer STEM Institute for Middle and High School Students at Pace University The STEM Collaboratory NYC® Summer Fellows Institute takes place on Pace University’s New York City campus during July and provides the following key features for all participants: (i) individual meetings with Pace faculty to discuss and refine future educational goals; (ii) mentorship, guidance, and new friendships with program leaders; and (iii) guest lectures from professionals in STEM disciplines and businesses. The Summer STEM Institute allows middle school and high school students to work in teams to conceptualize, develop, and build native mobile applications that teach and reinforce skills in the sciences and mathematics. These workshops enhance students’STEM problem solving techniques and teach advanced methods of computer science and engineering. Topics include: big data and analytics at the Big Data lab at Seidenberg, Data Science focused on social and environmental advancement and betterment; Natural Disasters and their Societal Influences; Algal Blooms and Environmental Impacts; Green CitiesNYC; STEM jobs and growth opportunities for the future; renew able energy and sustainable infrastructure; and climate and the economy. In order to better align the existing Summer STEM, Institute with the CCERS model and expand the overall network, Pace is actively recruiting new content area specialists from STEM industries and private sector enterprises to participate in an enhanced summer institute in order to1) nurture student progress and connect summer learning to school year curriculum, 2) increase peer-to-peer collaboration amongst STEM professionals and private sector technologists, and 3) develop long term funding and sponsorship opportunities for corporate sector partners to support CCERS schools and programs directly.Keywords: environmental restoration science, citizen science, data science, STEM
Procedia PDF Downloads 85638 Great-Grandparents: Inter and Transgenerational Relationships Involved in the Family
Authors: Emily Schuler, Cristina M. S. B. Dias
Abstract:
The increase of human aging is a phenomenon observed in world scale and allows the experience of several roles within the family. Nowadays grandparents can see their grandchildren growing up and having children, becoming great-grandparents, and thus adding another generation in the network of relationships. Consequently, more and more multigenerational families are emerging, formed by four or even five generations, and therefore more vertically. Thus, the objective of this research was to understand the role of great-grandparents, as well as the intergenerational repercussions of this role in their lives and that of their relatives. More specifically it was intended: to analyze the meaning of being great-grandparents in the family, from the perspective of each generation; identify the activities performed by their great-grandparents; identify the legacy that the great-grandparents wish to convey; characterize the needs and feelings experienced by the great-grandparents and their families; understand intergenerational relations permeated by the presence of great-grandparents among family members. It is a multiple case study with four families consisting of four generations and a family with five generations, thus totaling twenty-two participants; three great-grandmothers, two great-grandfathers, and one great-great-grandmother. As for the other generations, five children, grandchildren, great-grandchildren, and a great-great-grandchild were interviewed. As a research instrument, a semi-directed interview was used, with a specific script for each generation, as well as a questionnaire with the sociodemographic data of the participants. The data were analyzed through thematic content analysis. The main results pointed out the following: 1) As for the feelings experienced when becoming great-grandparents, they reported joy, satisfaction, and gratitude; 2) The support provided by them, most of the time, is of the emotional type; 3) The family relationship appeared quite significant, being characterized especially in the form of visits; 4) Conflicts exist, but seem to be circumvented with wisdom and much respect; 5) The legacies transmitted by them are related to faith, solidarity, education, and order; 6) The meaning of being great-grandmother is intimately linked to the feeling of transcendence, the sense of having fulfilled the purpose of life and also its continuity in grandchildren and great-grandchildren. In other generations, the appreciation of the great-grandparents, perceived as wise people, has been observed and can contribute as teachers to the new generations. It is hoped to give visibility to this generation still little studied in our country.Keywords: great-grandparents, intergenerational relation, multigenerational families, transgenerational legacies
Procedia PDF Downloads 171637 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.Keywords: mathematical sciences, data analytics, advances, unveiling
Procedia PDF Downloads 93636 Dynamic Web-Based 2D Medical Image Visualization and Processing Software
Authors: Abdelhalim. N. Mohammed, Mohammed. Y. Esmail
Abstract:
In the course of recent decades, medical imaging has been dominated by the use of costly film media for review and archival of medical investigation, however due to developments in networks technologies and common acceptance of a standard digital imaging and communication in medicine (DICOM) another approach in light of World Wide Web was produced. Web technologies successfully used in telemedicine applications, the combination of web technologies together with DICOM used to design a web-based and open source DICOM viewer. The Web server allowance to inquiry and recovery of images and the images viewed/manipulated inside a Web browser without need for any preinstalling software. The dynamic site page for medical images visualization and processing created by using JavaScript and HTML5 advancements. The XAMPP ‘apache server’ is used to create a local web server for testing and deployment of the dynamic site. The web-based viewer connected to multiples devices through local area network (LAN) to distribute the images inside healthcare facilities. The system offers a few focal points over ordinary picture archiving and communication systems (PACS): easy to introduce, maintain and independently platforms that allow images to display and manipulated efficiently, the system also user-friendly and easy to integrate with an existing system that have already been making use of web technologies. The wavelet-based image compression technique on which 2-D discrete wavelet transform used to decompose the image then wavelet coefficients are transmitted by entropy encoding after threshold to decrease transmission time, stockpiling cost and capacity. The performance of compression was estimated by using images quality metrics such as mean square error ‘MSE’, peak signal to noise ratio ‘PSNR’ and compression ratio ‘CR’ that achieved (83.86%) when ‘coif3’ wavelet filter is used.Keywords: DICOM, discrete wavelet transform, PACS, HIS, LAN
Procedia PDF Downloads 160635 Efficacy and Mechanisms of Acupuncture for Depression: A Meta-Analysis of Clinical and Preclinical Evidence
Authors: Yimeng Zhang
Abstract:
Major depressive disorder (MDD) is a prevalent mental health condition with a substantial economic impact and limited treatment options. Acupuncture has gained attention as a promising non-pharmacological intervention for alleviating depressive symptoms. However, its mechanisms and clinical effectiveness remain incompletely understood. This meta-analysis aims to (1) synthesize existing evidence on the mechanisms and clinical effectiveness of acupuncture for depression and (2) compare these findings with pharmacological interventions, providing insights for future research. Evidence from animal models and clinical studies indicates that acupuncture may enhance hippocampal and network neuroplasticity and reduce brain inflammation, potentially alleviating depressive disorders. Clinical studies suggest that acupuncture can effectively relieve primary depression, particularly in milder cases, and is beneficial in managing post-stroke depression, pain-related depression, and postpartum depression, both as a standalone and adjunctive treatment. Notably, combining acupuncture with antidepressant pharmacotherapy appears to enhance treatment outcomes and reduce medication side effects, addressing a critical issue in conventional drug therapy's high dropout rates. This meta-analysis, encompassing 12 studies and 710 participants, draws data from eight digital databases (PubMed, EMBASE, Web of Science, EBSCOhost, CNKI, CBM, Wangfang, and CQVIP) covering the period from 2012 to 2022. Utilizing Stata software 15.0, the meta-analysis employed random-effects and fixed-effects models to assess the distribution of depression in Traditional Chinese Medicine (TCM). The results underscore the substantial evidence supporting acupuncture's beneficial effects on depression. However, the small sample sizes of many clinical trials raise concerns about the generalizability of the findings, indicating a need for further research to validate these outcomes and optimize acupuncture's role in treating depression.Keywords: Chinese medicine, acupuncture, depression, meta-analysis
Procedia PDF Downloads 35634 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model
Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis
Abstract:
Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry
Procedia PDF Downloads 225633 Influence of Ammonia Emissions on Aerosol Formation in Northern and Central Europe
Authors: A. Aulinger, A. M. Backes, J. Bieser, V. Matthias, M. Quante
Abstract:
High concentrations of particles pose a threat to human health. Thus, legal maximum concentrations of PM10 and PM2.5 in ambient air have been steadily decreased over the years. In central Europe, the inorganic species ammonium sulphate and ammonium nitrate make up a large fraction of fine particles. Many studies investigate the influence of emission reductions of sulfur- and nitrogen oxides on aerosol concentration. Here, we focus on the influence of ammonia (NH3) emissions. While emissions of sulphate and nitrogen oxides are quite well known, ammonia emissions are subject to high uncertainty. This is due to the uncertainty of location, amount, time of fertilizer application in agriculture, and the storage and treatment of manure from animal husbandry. For this study, we implemented a crop growth model into the SMOKE emission model. Depending on temperature, local legislation, and crop type individual temporal profiles for fertilizer and manure application are calculated for each model grid cell. Additionally, the diffusion from soils and plants and the direct release from open and closed barns are determined. The emission data was used as input for the Community Multiscale Air Quality (CMAQ) model. Comparisons to observations from the EMEP measurement network indicate that the new ammonia emission module leads to a better agreement of model and observation (for both ammonia and ammonium). Finally, the ammonia emission model was used to create emission scenarios. This includes emissions based on future European legislation, as well as a dynamic evaluation of the influence of different agricultural sectors on particle formation. It was found that a reduction of ammonia emissions by 50% lead to a 24% reduction of total PM2.5 concentrations during winter time in the model domain. The observed reduction was mainly driven by reduced formation of ammonium nitrate. Moreover, emission reductions during winter had a larger impact than during the rest of the year.Keywords: ammonia, ammonia abatement strategies, ctm, seasonal impact, secondary aerosol formation
Procedia PDF Downloads 351632 Strong Ground Motion Characteristics Revealed by Accelerograms in Ms8.0 Wenchuan Earthquake
Authors: Jie Su, Zhenghua Zhou, Yushi Wang, Yongyi Li
Abstract:
The ground motion characteristics, which are given by the analysis of acceleration records, underlie the formulation and revision of the seismic design code of structural engineering. China Digital Strong Motion Network had recorded a lot of accelerograms of main shock from 478 permanent seismic stations, during the Ms8.0 Wenchuan earthquake on 12th May, 2008. These accelerograms provided a large number of essential data for the analysis of ground motion characteristics of the event. The spatial distribution characteristics, rupture directivity effect, hanging-wall and footwall effect had been studied based on these acceleration records. The results showed that the contours of horizontal peak ground acceleration and peak velocity were approximately parallel to the seismogenic fault which demonstrated that the distribution of the ground motion intensity was obviously controlled by the spatial extension direction of the seismogenic fault. Compared with the peak ground acceleration (PGA) recorded on the sites away from which the front of the fault rupture propagates, the PGA recorded on the sites toward which the front of the fault rupture propagates had larger amplitude and shorter duration, which indicated a significant rupture directivity effect. With the similar fault distance, the PGA of the hanging-wall is apparently greater than that of the foot-wall, while the peak velocity fails to observe this rule. Taking account of the seismic intensity distribution of Wenchuan Ms8.0 earthquake, the shape of strong ground motion contours was significantly affected by the directional effect in the regions with Chinese seismic intensity level VI ~ VIII. However, in the regions whose Chinese seismic intensity level are equal or greater than VIII, the mutual positional relationship between the strong ground motion contours and the surface outcrop trace of the fault was evidently influenced by the hanging-wall and foot-wall effect.Keywords: hanging-wall and foot-wall effect, peak ground acceleration, rupture directivity effect, strong ground motion
Procedia PDF Downloads 350631 Female Entrepreneurship in Transitional Economies: An In-Depth Comparative Study about Challenges Facing Female Entrepreneurs in Nigeria and Egypt
Authors: Dina Mohamed Ayman, Rafieu Akin
Abstract:
In an attempt to increase the female total entrepreneurial activities (TEA) within Egypt and Nigeria, this paper aims to investigate the challenges facing female entrepreneurs operating in Egypt, in relative to Nigeria. In this regard, both researchers undertook a qualitative approach due to the scarcity of the literature reviewed on the topic; in those particular countries, and as an in-depth comparative mode. Therefore, ten Egyptian entrepreneurs in relative to ten Nigerian entrepreneurs were in-depth investigated. The research findings prove that female entrepreneurs face complex problems for being both gender and country-specific. Regarding the gender-specific obstacles, the work/life imbalance due to the scarcity of child-care nurseries and the prevalence of the gender-role division while performing the house chores rather than the concept of co-operation, acted as a main source of cultural challenge because women are considered mostly as 'housewives'. However, interestingly, this specific gender-discrimination challenge is proven to have no grounded effect in terms of the business-establishment and daily dealings neither in Egypt nor Nigeria, as one of the sample exclaimed 'as long as you pay, then no gender difference is set on the table'. Other country-specific challenges facing female entrepreneurs, lied in, the aggregate weak entrepreneurial framework governing both countries, also, women faced the difficulty of access to financial institutions with collateral requirements that are usually "hardly to be met", besides, the absence of the "micro-credit-Grameen-banks" concept. As well, the scarcity of incubators and business training centers providing network, consultancy and well-trained workforce to female entrepreneurs constitute a major hurdle for women entrepreneurs operating in both countries. Finally, this paper will conclude the research by offering a set of public-policy recommendations to pave the way for females to choose self-employment as a career path.Keywords: entrepreneurship, female entrepreneurship, obstacles, framework conditions, culture, micro-credit
Procedia PDF Downloads 371630 [Keynote Speech]: Curiosity, Innovation and Technological Advancements Shaping the Future of Science, Technology, Engineering and Mathematics Education
Authors: Ana Hol
Abstract:
We live in a constantly changing environment where technology has become an integral component of our day to day life. We rely heavily on mobile devices, we search for data via web, we utilise smart home sensors to create the most suited ambiences and we utilise applications to shop, research, communicate and share data. Heavy reliance on technology therefore is creating new connections between STEM (Science, Technology, Engineering and Mathematics) fields which in turn rises a question of what the STEM education of the future should be like? This study was based on the reviews of the six Australian Information Systems students who undertook an international study tour to India where they were given an opportunity to network, communicate and meet local students, staff and business representatives and from them learn about the local business implementations, local customs and regulations. Research identifies that if we are to continue to implement and utilise electronic devices on the global scale, such as for example implement smart cars that can smoothly cross borders, we will need the workforce that will have the knowledge about the cars themselves, their parts, roads and transport networks, road rules, road sensors, road monitoring technologies, graphical user interfaces, movement detection systems as well as day to day operations, legal rules and regulations of each region and country, insurance policies, policing and processes so that the wide array of sensors can be controlled across country’s borders. In conclusion, it can be noted that allowing students to learn about the local conditions, roads, operations, business processes, customs and values in different countries is giving students a cutting edge advantage as such knowledge cannot be transferred via electronic sources alone. However once understanding of each problem or project is established, multidisciplinary innovative STEM projects can be smoothly conducted.Keywords: STEM, curiosity, innovation, advancements
Procedia PDF Downloads 199629 Data Confidentiality in Public Cloud: A Method for Inclusion of ID-PKC Schemes in OpenStack Cloud
Authors: N. Nalini, Bhanu Prakash Gopularam
Abstract:
The term data security refers to the degree of resistance or protection given to information from unintended or unauthorized access. The core principles of information security are the confidentiality, integrity and availability, also referred as CIA triad. Cloud computing services are classified as SaaS, IaaS and PaaS services. With cloud adoption the confidential enterprise data are moved from organization premises to untrusted public network and due to this the attack surface has increased manifold. Several cloud computing platforms like OpenStack, Eucalyptus, Amazon EC2 offer users to build and configure public, hybrid and private clouds. While the traditional encryption based on PKI infrastructure still works in cloud scenario, the management of public-private keys and trust certificates is difficult. The Identity based Public Key Cryptography (also referred as ID-PKC) overcomes this problem by using publicly identifiable information for generating the keys and works well with decentralized systems. The users can exchange information securely without having to manage any trust information. Another advantage is that access control (role based access control policy) information can be embedded into data unlike in PKI where it is handled by separate component or system. In OpenStack cloud platform the keystone service acts as identity service for authentication and authorization and has support for public key infrastructure for auto services. In this paper, we explain OpenStack security architecture and evaluate the PKI infrastructure piece for data confidentiality. We provide method to integrate ID-PKC schemes for securing data while in transit and stored and explain the key measures for safe guarding data against security attacks. The proposed approach uses JPBC crypto library for key-pair generation based on IEEE P1636.3 standard and secure communication to other cloud services.Keywords: data confidentiality, identity based cryptography, secure communication, open stack key stone, token scoping
Procedia PDF Downloads 384628 Spatial and Temporal Evaluations of Disinfection By-Products Formation in Coastal City Distribution Systems of Turkey
Authors: Vedat Uyak
Abstract:
Seasonal variations of trihalomethanes (THMs) and haloacetic acids (HAAs) concentrations were investigated within three distribution systems of a coastal city of Istanbul, Turkey. Moreover, total trihalomethanes and other organics concentration were also analyzed. The investigation was based on an intensive 16 month (2009-2010) sampling program, undertaken during the spring, summer, fall and winter seasons. Four THM (chloroform, dichlorobromomethane, chlorodibromomethane, bromoform), and nine HAA (the most commonly occurring one being dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA); other compounds are monochloroacetic acid (MCAA), monobromoacetic acid (MBAA), dibromoacetic acid (DBAA), tribromoacetic acid (TBAA), bromochloroacetic acid (BCAA), bromodichloroacetic acid (BDCAA) and chlorodibromoacetic acid (CDBAA)) species and other water quality and operational parameters were monitored at points along the distribution system between the treatment plant and the system’s extremity. The effects of coastal water sources, seasonal variation and spatial variation were examined. The results showed that THMs and HAAs concentrations vary significantly between treated waters and water at the distribution networks. When water temperature exceeds 26°C in summer, the THMs and HAAs levels are 0.8 – 1.1, and 0.4 – 0.9 times higher than treated water, respectively. While when water temperature is below 12°C in the winter, the measured THMs and HAAs concentrations at the system’s extremity were very rarely higher than 100 μg/L, and 60 μg/L, respectively. The highest THM concentrations occurred in the Buyukcekmece distribution system, with an average total HAA concentration of 92 μg/L. Moreover, the lowest THM levels were observed in the Omerli distribution network, with a mean concentration of 7 μg/L. For HAA levels, the maximum concentrations again were observed in the Buyukcekmece distribution system, with an average total HAA concentration of 57 μg/l. High spatial and seasonal variation of disinfection by-products in the drinking water of Istanbul was attributed of illegal wastewater discharges to water supplies of Istanbul city.Keywords: disinfection byproducts, drinking water, trihalomethanes, haloacetic acids, seasonal variation
Procedia PDF Downloads 152627 The Influence of Mycelium Species and Incubation Protocols on Heat and Moisture Transfer Properties of Mycelium-Based Composites
Authors: Daniel Monsalve, Takafumi Noguchi
Abstract:
Mycelium-based composites (MBC) are made by growing living mycelium on lignocellulosic fibres to create a porous composite material which can be lightweight, and biodegradable, making them suitable as a sustainable thermal insulation. Thus, they can help to reduce material extraction while improving the energy efficiency of buildings, especially when agricultural by-products are used. However, as MBC are hygroscopic materials, moisture can reduce their thermal insulation efficiency. It is known that surface growth, or “mycelium skin”, can form a natural coating due to the hydrophobic properties in the mycelium cell wall. Therefore, this research aims to biofabricate a homogeneous mycelium skin and measure its influence on the final composite material by testing material properties such as thermal conductivity, vapour permeability and water absorption by partial immersion over 24 hours. In addition, porosity, surface morphology and chemical composition were also analyzed. The white-rot fungi species Pleurotus ostreatus, Ganoderma lucidum, and Trametes versicolor were grown on 10 mm hemp fibres (Cannabis sativa), and three different biofabrication protocols were used during incubation, varying the time and surface treatment, including the addition of pre-colonised sawdust. The results indicate that density can be reduced by colonisation time, which will favourably impact thermal conductivity but will negatively affect vapour and liquid water control. Additionally, different fungi can exhibit different resistance to prolonged water absorption, and due to osmotic sensitivity, mycelium skin may also diminish moisture control. Finally, a collapse in the mycelium network after water immersion was observed through SEM, indicating how the microstructure is affected, which is also dependent on fungi species and the type of skin achieved. These results help to comprehend the differences and limitations of three of the most common species used for MBC fabrication and how precise engineering is needed to effectively control the material output.Keywords: mycelium, thermal conductivity, vapor permeability, water absorption
Procedia PDF Downloads 41626 Off-Body Sub-GHz Wireless Channel Characterization for Dairy Cows in Barns
Authors: Said Benaissa, David Plets, Emmeric Tanghe, Jens Trogh, Luc Martens, Leen Vandaele, Annelies Van Nuffel, Frank A. M. Tuyttens, Bart Sonck, Wout Joseph
Abstract:
The herd monitoring and managing - in particular the detection of ‘attention animals’ that require care, treatment or assistance is crucial for effective reproduction status, health, and overall well-being of dairy cows. In large sized farms, traditional methods based on direct observation or analysis of video recordings become labour-intensive and time-consuming. Thus, automatic monitoring systems using sensors have become increasingly important to continuously and accurately track the health status of dairy cows. Wireless sensor networks (WSNs) and internet-of-things (IoT) can be effectively used in health tracking of dairy cows to facilitate herd management and enhance the cow welfare. Since on-cow measuring devices are energy-constrained, a proper characterization of the off-body wireless channel between the on-cow sensor nodes and the back-end base station is required for a power-optimized deployment of these networks in barns. The aim of this study was to characterize the off-body wireless channel in indoor (barns) environment at 868 MHz using LoRa nodes. LoRa is an emerging wireless technology mainly targeted at WSNs and IoT networks. Both large scale fading (i.e., path loss) and temporal fading were investigated. The obtained path loss values as a function of the transmitter-receiver separation were well fitted by a lognormal path loss model. The path loss showed an additional increase of 4 dB when the wireless node was actually worn by the cow. The temporal fading due to movement of other cows was well described by Rician distributions with a K-factor of 8.5 dB. Based on this characterization, network planning and energy consumption optimization of the on-body wireless nodes could be performed, which enables the deployment of reliable dairy cow monitoring systems.Keywords: channel, channel modelling, cow monitoring, dairy cows, health monitoring, IoT, LoRa, off-body propagation, PLF, propagation
Procedia PDF Downloads 318625 A Multi Criteria Approach for Prioritization of Low Volume Rural Roads for Maintenance and Improvement
Authors: L. V. S. S. Phaneendra Bolem, S. Shankar
Abstract:
Low Volume Rural Roads (LVRRs) constitute an integral component of the road system in all countries. These encompass all aspects of the social and economic development of rural communities. It is known that on a worldwide basis the number of low traffic roads far exceeds the length of high volume roads. Across India, 90% of the roads are LVRRs, and they often form the most important link in terms of providing access to educational, medical, recreational and commercial activities in local and regional areas. In the recent past, Government of India (GoI), with the initiation of the ambitious programme namely 'Pradhan Mantri Gram Sadak Yojana' (PMGSY) gave greater importance to LVRRs realizing their role in economic development of rural communities. The vast expansion of the road network has brought connectivity to the rural areas of the country. Further, it is noticed that due to increasing axle loads and lack of timely maintenance, is accelerated the process of deterioration of LVRRs. In addition to this due to limited budget for maintenance of these roads systematic and scientific approach in utilizing the available resources has been necessitated. This would enable better prioritization and ranking for the maintenance and make ‘all-weather roads’. Taking this into account the present study has adopted a multi-criteria approach. The multi-criteria approach includes parameters such as social, economic, environmental and pavement condition as the main criterion and some sub-criteria to find the best suitable parameters and their weight. For this purpose the expert’s opinion survey was carried out using Delphi Technique (DT) considering Likert scale, pairwise comparison and ranking methods and entire data was analyzed. Finally, this study developed the maintenance criterion considering the socio-economic, environmental and pavement condition parameters for effective maintenance of low volume roads based on the engineering judgment.Keywords: Delphi technique, experts opinion survey, low volume rural road maintenance, multi criteria analysis
Procedia PDF Downloads 166624 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System Under Uncertainty
Authors: Ben Khayut, Lina Fabri, Maya Avikhana
Abstract:
The models of the modern Artificial Narrow Intelligence (ANI) cannot: a) independently and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, cognize, infer, and more in state of Uncertainty, and changes in situations, and environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU) using a neural network as its computational memory, operating under uncertainty, and activating its functions by perception, identification of real objects, fuzzy situational control, forming images of these objects, modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, and images, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, Wisdom, analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge in the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of Situational Control, Fuzzy Logic, Psycholinguistics, Informatics, and modern possibilities of Data Science were applied. The proposed self-controlled System of Brain and Mind is oriented on use as a plug-in in multilingual subject Applications.Keywords: computational brain, mind, psycholinguistic, system, under uncertainty
Procedia PDF Downloads 177623 Image Processing-Based Maize Disease Detection Using Mobile Application
Authors: Nathenal Thomas
Abstract:
In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot
Procedia PDF Downloads 74622 The Political Economy of Green Trade in the Context of US-China Trade War: A Case Study of US Biofuels and Soybeans
Authors: Tonghua Li
Abstract:
Under the neoliberal corporate food regime, biofuels are a double-edged sword that exacerbates tensions between national food security and trade in green agricultural products. Biofuels have the potential to help achieve green sustainable development goals, but they threaten food security by exacerbating competition for land and changing global food trade patterns. The U.S.-China trade war complicates this debate. Under the influence of different political and corporate coordination mechanisms in China and the US, trade disputes can have different impacts on sustainable agricultural practices. This paper develops an actor-centred ‘network governance framework’ focusing on trade in soybean and corn-based biofuels to explain how trade wars can change the actions of governmental and non-governmental actors in the context of oligopolistic competition and market concentration in agricultural trade. There is evidence that the US-China trade decoupling exacerbates the conflict between national security, free trade in agriculture, and the realities and needs of green and sustainable energy development. The US government's trade policies reflect concerns about China's relative gains, leading to a loss of trade profits, making it impossible for the parties involved to find a balance between the three objectives and, consequently, to get into a biofuels and soybean industry dilemma. Within the setting of prioritizing national security and strategic interests, the government has replaced the dominant position of large agribusiness in the neoliberal food system, and the goal of environmental sustainability has been marginalized by high politics. In contrast, China faces tensions in the trade war between food security self-sufficiency policy and liberal sustainable trade, but the state-capitalist model ensures policy coordination and coherence in trade diversion and supply chain adjustment. Despite ongoing raw material shortages and technological challenges, China remains committed to playing a role in global environmental governance and promoting green trade objectives.Keywords: food security, green trade, biofuels, soybeans, US-China trade war
Procedia PDF Downloads 7621 Railway Process Automation to Ensure Human Safety with the Aid of IoT and Image Processing
Authors: K. S. Vedasingha, K. K. M. T. Perera, K. I. Hathurusinghe, H. W. I. Akalanka, Nelum Chathuranga Amarasena, Nalaka R. Dissanayake
Abstract:
Railways provide the most convenient and economically beneficial mode of transportation, and it has been the most popular transportation method among all. According to the past analyzed data, it reveals a considerable number of accidents which occurred at railways and caused damages to not only precious lives but also to the economy of the countries. There are some major issues which need to be addressed in railways of South Asian countries since they fall under the developing category. The goal of this research is to minimize the influencing aspect of railway level crossing accidents by developing the “railway process automation system”, as there are high-risk areas that are prone to accidents, and safety at these places is of utmost significance. This paper describes the implementation methodology and the success of the study. The main purpose of the system is to ensure human safety by using the Internet of Things (IoT) and image processing techniques. The system can detect the current location of the train and close the railway gate automatically. And it is possible to do the above-mentioned process through a decision-making system by using past data. The specialty is both processes working parallel. As usual, if the system fails to close the railway gate due to technical or a network failure, the proposed system can identify the current location and close the railway gate through a decision-making system, which is a revolutionary feature. The proposed system introduces further two features to reduce the causes of railway accidents. Railway track crack detection and motion detection are those features which play a significant role in reducing the risk of railway accidents. Moreover, the system is capable of detecting rule violations at a level crossing by using sensors. The proposed system is implemented through a prototype, and it is tested with real-world scenarios to gain the above 90% of accuracy.Keywords: crack detection, decision-making, image processing, Internet of Things, motion detection, prototype, sensors
Procedia PDF Downloads 177620 Tourism Development and Planning in Rwanda
Authors: Ntachobazi bosco
Abstract:
Tourism Development and Planning in Rwanda: Rwanda, a small landlocked country located in the heart of Africa, has experienced significant growth in its tourism industry in recent years. The country’s stunning natural beauty, rich cultural heritage, and warm hospitality have made it an attractive destination for travelers from around the world. However, to ensure sustainable tourism development and planning, the Rwandan government has implemented various strategies and policies to promote responsible tourism practices. Infrastructure Development: To support the growth of the tourism industry, the Rwandan government has invested heavily in infrastructure development. This includes the construction of new hotels, resorts, and lodges, as well as the upgrading of existing facilities. The government has also improved the country’s transportation network, including the construction of new airports and the upgrading of existing ones. Conservation Efforts: Rwanda is home to several national parks and reserves, including the famous Volcanoes National Park, which is known for its mountain gorilla populations. To protect these natural wonders, the Rwandan government has implemented conservation efforts, such as the establishment of protected areas and the development of sustainable tourism practices. Community-Based Tourism: Community-based tourism is a key component of Rwanda’s tourism development strategy. The government has established several community-based tourism programs, which aim to involve local communities in the tourism industry and provide them with economic benefits. These programs include homestays, village tours, and cultural performances. Sustainable Tourism Practices: To promote sustainable tourism practices, the Rwandan government has implemented several initiatives, such as the use of eco-friendly accommodations and the promotion of responsible wildlife viewing practices. The government has also established the Rwanda Tourism Board, which is responsible for promoting and regulating the tourism industry. Challenges and Opportunities: Despite the growth of the tourism industry in Rwanda, several challenges need to be addressed, such as the lack of skilled labor and the need for more infrastructure development. However, there are also several opportunities for the industry, such as the potential for ecotourism and the growth of the meetings, incentives, conventions, and exhibitions (MICE) market.Keywords: tourism, in rwanda, developent, in africa
Procedia PDF Downloads 62619 Exploring Well-Being: Lived Experiences and Assertions From a Marginalized Perspective
Authors: Ritwik Saha, Anindita Chaudhuri
Abstract:
The psychological dimension of work-based mobility of the contemporary time in the context of the ever-changing socio-economic process mounting the interest to address the consequential issues of quality of life and well-being of the migrant section of society. The negotiation with the fluidity of the job market and the changing psychosocial dimensions within and between psychosocial relations may disentangle the resilience as well as the mechanism of diligence toward migrant (marginal) life. The work-based mobility and its associated phenomena have highly impacted the migrant’s quality of life especially the marginalized (socioeconomically weak) ones along with their family members staying away from them. The subjective experiences of the journey of their migrant life and reconstruction of the psychosocial being in terms of existence and well-being at the host place are the minimal addressed issues in migrant literature. Hence this gap instigates to bring forth the issue with the present study exploring the phenomenal aspects of lived experiences, resilience, and sense-making of the well-being of migrant living by the marginalized migrant people engaging in unorganized space. In doing so qualitative research method was followed, and semi-structured interviews were used for data collection from the four selected migrant groups (Fuchkawala, Bhunjawala, Bhari - drinking water supplier, Construction worker) as they migrated to Kolkata and its metropolis area from different states of India, Five participants from each group (20 participants in total) age range between 20 to 45 were interviewed physically and participants’ observatory notes were taken to capture their lived experiences, audio recordings were transcribed and analyzed systematically following Charmaz’s three-layer coding of grounded theory. Being truthful to daily industry, the strong desire to build children’s future, the mastering mechanism to dual existence, use of traditional social network these four themes emerges after analysis of the data. However, incorporating fate as their usual way of life and making sense of well-being through their assertion is another evolving aspect of migrant life.Keywords: lived experiences, marginal living, resilience, sense-making process, well-being
Procedia PDF Downloads 61618 Robustness of the Deep Chroma Extractor and Locally-Normalized Quarter Tone Filters in Automatic Chord Estimation under Reverberant Conditions
Authors: Luis Alvarado, Victor Poblete, Isaac Gonzalez, Yetzabeth Gonzalez
Abstract:
In MIREX 2016 (http://www.music-ir.org/mirex), the deep neural network (DNN)-Deep Chroma Extractor, proposed by Korzeniowski and Wiedmer, reached the highest score in an audio chord recognition task. In the present paper, this tool is assessed under acoustic reverberant environments and distinct source-microphone distances. The evaluation dataset comprises The Beatles and Queen datasets. These datasets are sequentially re-recorded with a single microphone in a real reverberant chamber at four reverberation times (0 -anechoic-, 1, 2, and 3 s, approximately), as well as four source-microphone distances (32, 64, 128, and 256 cm). It is expected that the performance of the trained DNN will dramatically decrease under these acoustic conditions with signals degraded by room reverberation and distance to the source. Recently, the effect of the bio-inspired Locally-Normalized Cepstral Coefficients (LNCC), has been assessed in a text independent speaker verification task using speech signals degraded by additive noise at different signal-to-noise ratios with variations of recording distance, and it has also been assessed under reverberant conditions with variations of recording distance. LNCC showed a performance so high as the state-of-the-art Mel Frequency Cepstral Coefficient filters. Based on these results, this paper proposes a variation of locally-normalized triangular filters called Locally-Normalized Quarter Tone (LNQT) filters. By using the LNQT spectrogram, robustness improvements of the trained Deep Chroma Extractor are expected, compared with classical triangular filters, and thus compensating the music signal degradation improving the accuracy of the chord recognition system.Keywords: chord recognition, deep neural networks, feature extraction, music information retrieval
Procedia PDF Downloads 232617 Genetics, Law and Society: Regulating New Genetic Technologies
Authors: Aisling De Paor
Abstract:
Scientific and technological developments are driving genetics and genetic technologies into the public sphere. Scientists are making genetic discoveries as to the make up of the human body and the cause and effect of disease, diversity and disability amongst individuals. Technological innovation in the field of genetics is also advancing, with the development of genetic testing, and other emerging genetic technologies, including gene editing (which offers the potential for genetic modification). In addition to the benefits for medicine, health care and humanity, these genetic advances raise a range of ethical, legal and societal concerns. From an ethical perspective, such advances may, for example, change the concept of humans and what it means to be human. Science may take over in conceptualising human beings, which may push the boundaries of existing human rights. New genetic technologies, particularly gene editing techniques create the potential to stigmatise disability, by highlighting disability or genetic difference as something that should be eliminated or anticipated. From a disability perspective, use (and misuse) of genetic technologies raise concerns about discrimination and violations to the dignity and integrity of the individual. With an acknowledgement of the likely future orientation of genetic science, and in consideration of the intersection of genetics and disability, this paper highlights the main concerns raised as genetic science and technology advances (particularly with gene editing developments), and the consequences for disability and human rights. Through the use of traditional doctrinal legal methodologies, it investigates the use (and potential misuse) of gene editing as creating the potential for a unique form of discrimination and stigmatization to develop, as well as a potential gateway to a form of new, subtle eugenics. This article highlights the need to maintain caution as to the use, application and the consequences of genetic technologies. With a focus on the law and policy position in Europe, it examines the need to control and regulate these new technologies, particularly gene editing. In addition to considering the need for regulation, this paper highlights non-normative approaches to address this area, including awareness raising and education, public discussion and engagement with key stakeholders in the field and the development of a multifaceted genetics advisory network.Keywords: disability, gene-editing, genetics, law, regulation
Procedia PDF Downloads 360616 Distraction from Pain: An fMRI Study on the Role of Age-Related Changes in Executive Functions
Authors: Katharina M. Rischer, Angelika Dierolf, Ana M. Gonzalez-Roldan, Pedro Montoya, Fernand Anton, Marian van der Meulen
Abstract:
Even though age has been associated with increased and prolonged episodes of pain, little is known about potential age-related changes in the ˈtop-downˈ modulation of pain, such as cognitive distraction from pain. The analgesic effects of distraction result from competition for attentional resources in the prefrontal cortex (PFC), a region that is also involved in executive functions. Given that the PFC shows pronounced age-related atrophy, distraction may be less effective in reducing pain in older compared to younger adults. The aim of this study was to investigate the influence of aging on task-related analgesia and the underpinning neural mechanisms, with a focus on the role of executive functions in distraction from pain. In a first session, 64 participants (32 young adults: 26.69 ± 4.14 years; 32 older adults: 68.28 ± 7.00 years) completed a battery of neuropsychological tests. In a second session, participants underwent a pain distraction paradigm, while fMRI images were acquired. In this paradigm, participants completed a low (0-back) and a high (2-back) load condition of a working memory task while receiving either warm or painful thermal stimuli to their lower arm. To control for age-related differences in sensitivity to pain and perceived task difficulty, stimulus intensity, and task speed were individually calibrated. Results indicate that both age groups showed significantly reduced activity in a network of regions involved in pain processing when completing the high load distraction task; however, young adults showed a larger neural distraction effect in different parts of the insula and the thalamus. Moreover, better executive functions, in particular inhibitory control abilities, were associated with a larger behavioral and neural distraction effect. These findings clearly demonstrate that top-down control of pain is affected in older age, and could explain the higher vulnerability for older adults to develop chronic pain. Moreover, our findings suggest that the assessment of executive functions may be a useful tool for predicting the efficacy of cognitive pain modulation strategies in older adults.Keywords: executive functions, cognitive pain modulation, fMRI, PFC
Procedia PDF Downloads 144615 Sustainability through Resilience: How Emergency Responders Cope with Stressors
Authors: Sophie Kroeling, Agnetha Schuchardt
Abstract:
Striving for sustainability brings a lot of challenges for different fields of interest, e. g. security or health concerns. In Germany, civil protection is predominantly carried out by emergency responders who perform essential tasks of civil protection. Based on theoretical concepts of different psychological stress theories this contribution focuses on the question, how the resilience of emergency responders can be improved. The goal is to identify resources and successful coping strategies that help to prevent and reduce negative outcomes during or after stressful events. The paper will present results from a qualitative analysis of semi-structured qualitative interviews with 20 emergency responders. These results provide insights into the complexity of coping processes (e. g. controlling the situation, downplaying perceived personal threats through humor) and show the diversity of stressors (like complexity of the disastrous situation, intrusive press and media, or lack of social support within the organization). Self-efficacy expectation was a very important resource for coping with stressful situations. The results served as a starting point for a quantitative survey (that was conducted in March 2017), the development of education and training tools for emergency responders and the improvement of critical incident stress management processes. First results from the quantitative study with more than 700 participants show that, e. g., the emergency responders use social coping within their private social network and also within their aid organization and that both are correlated to resilience. Moreover, missing information, bureaucratic problems and social conflicts within the organization are events that the majority of the participants considered very onerous. Further results from regression analysis will be presented. The proposed paper will combine findings from the qualitative study with the quantitative results, illustrating figures and correlations with respective statements from the interviews. At the end, suggestions for the improvement of the emergency responder’s resilience are given and it is discussed how this can make a contribution to strive for civil security and furthermore a sustainable development.Keywords: civil security, emergency responders, stress, resilience, resources
Procedia PDF Downloads 144614 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation
Authors: Peiming Li
Abstract:
This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.Keywords: federated learning system, block chain, decentralized oracles, hidden markov model
Procedia PDF Downloads 63613 Improving Cell Type Identification of Single Cell Data by Iterative Graph-Based Noise Filtering
Authors: Annika Stechemesser, Rachel Pounds, Emma Lucas, Chris Dawson, Julia Lipecki, Pavle Vrljicak, Jan Brosens, Sean Kehoe, Jason Yap, Lawrence Young, Sascha Ott
Abstract:
Advances in technology make it now possible to retrieve the genetic information of thousands of single cancerous cells. One of the key challenges in single cell analysis of cancerous tissue is to determine the number of different cell types and their characteristic genes within the sample to better understand the tumors and their reaction to different treatments. For this analysis to be possible, it is crucial to filter out background noise as it can severely blur the downstream analysis and give misleading results. In-depth analysis of the state-of-the-art filtering methods for single cell data showed that they do, in some cases, not separate noisy and normal cells sufficiently. We introduced an algorithm that filters and clusters single cell data simultaneously without relying on certain genes or thresholds chosen by eye. It detects communities in a Shared Nearest Neighbor similarity network, which captures the similarities and dissimilarities of the cells by optimizing the modularity and then identifies and removes vertices with a weak clustering belonging. This strategy is based on the fact that noisy data instances are very likely to be similar to true cell types but do not match any of these wells. Once the clustering is complete, we apply a set of evaluation metrics on the cluster level and accept or reject clusters based on the outcome. The performance of our algorithm was tested on three datasets and led to convincing results. We were able to replicate the results on a Peripheral Blood Mononuclear Cells dataset. Furthermore, we applied the algorithm to two samples of ovarian cancer from the same patient before and after chemotherapy. Comparing the standard approach to our algorithm, we found a hidden cell type in the ovarian postchemotherapy data with interesting marker genes that are potentially relevant for medical research.Keywords: cancer research, graph theory, machine learning, single cell analysis
Procedia PDF Downloads 112612 Optimum Dimensions of Hydraulic Structures Foundation and Protections Using Coupled Genetic Algorithm with Artificial Neural Network Model
Authors: Dheyaa W. Abbood, Rafa H. AL-Suhaili, May S. Saleh
Abstract:
A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs length sand their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy.The optimization carried out subjected to constraints that ensure a safe structure against the uplift pressure force and sufficient protection length at the downstream side of the structure to overcome an excessive exit gradient. The Geo-studios oft ware, was used to analyze 1200 different cases. For each case the length of protection and volume of structure required to satisfy the safety factors mentioned previously were estimated. An ANN model was developed and verified using these cases input-output sets as its data base. A MatLAB code was written to perform a genetic algorithm optimization modeling coupled with this ANN model using a formulated optimization model. A sensitivity analysis was done for selecting the cross-over probability, the mutation probability and level ,the number of population, the position of the crossover and the weights distribution for all the terms of the objective function. Results indicate that the most factor that affects the optimum solution is the number of population required. The minimum value that gives stable global optimum solution of this parameters is (30000) while other variables have little effect on the optimum solution.Keywords: inclined cutoff, optimization, genetic algorithm, artificial neural networks, geo-studio, uplift pressure, exit gradient, factor of safety
Procedia PDF Downloads 324611 What Children Do and Do Not Like about Taking Part in Sport: Using Focus Groups to Investigate Thoughts and Feelings of Children with Hearing Loss
Authors: S. Somerset, D. J. Hoare, P. Leighton
Abstract:
Limited participation in physical activity and sport has been linked to poorer mental and physical health in children. Studies have shown that children who participate in sports benefit from improved social skills, self-confidence, communication skills and a better quality of life. Children who participate in sport are also more likely to continue their participation into their adult life. Deaf or hard of hearing children should have the same opportunities to participate in sport and receive the benefits as their hearing peers. Anecdotal evidence suggests this isn’t always the case. This is concerning given there are 45,000 children in the UK with permanent hearing loss. The aim of this study was to understand what encourages or discourages deaf or hard of hearing children to take part in sports. Ethical approval for the study was obtained from the University of Nottingham School of Medicine ethics committee. We conducted eight focus groups with deaf or hard of hearing children aged 10 to 15 years. A total of 45 children (19 male, 26 female) recruited from local schools and sports clubs took part. Information was gathered on the children’s thoughts and feelings about participation in sport. This included whether they played sports and who with, whether they did or did not like sport, and why they got involved in sport. Focus groups were audio recorded and transcribed. Transcripts were analysed using thematic analysis. Several key themes were identified as being associated with levels of sports participation. These included friendships, family and communication. Deaf or hard of hearing children with active siblings had participated in more sports. Communication was a common theme throughout regardless of the type of hearing-assistive technology a child used. Children found communication easier during sport if they were allowed to use their technology and had particular difficulty during sports such as swimming. Children expressed a desire not to have to identify themselves at a club as having a hearing loss. This affected their confidence when participating in sport. Not surprisingly, children who are deaf or hard of hearing are more likely to participate in sport if they have a good support network of parents, coaches and friends. The key barriers to participation for these children are communication, lack of visual information, lack of opportunity and a lack of awareness. By addressing these issues more deaf and hard of hearing children will take part in sport and will continue their participation.Keywords: barrier, children, deaf, participation, hard of hearing, sport
Procedia PDF Downloads 423610 The Sociology of the Facebook: An Exploratory Study
Authors: Liana Melissa E. de la Rosa, Jayson P. Ada
Abstract:
This exploratory study was conducted to determine the sociology of the Facebook. Specifically, it aimed to know the socio-demographic profile of the respondents in terms of age, sex, year level and monthly allowance; find out the common usage of Facebook to the respondents; identify the features of Facebook that are commonly used by the respondents; understand the benefits and risks of using the Facebook; determine how frequent the respondents use the Facebook; and find out if there is a significant relationship between socio-demographic profile of the respondents and their Facebook usage. This study used the exploratory research design and correlational design employing research survey questionnaire as its main data gathering instrument. Students of the University of Eastern Philippines were selected as the respondents of this study through quota sampling. Ten (10) students were randomly selected from each college of the university. Based on the findings of this study, the following conclusion were drawn: The majority of the respondents are aged 18 and 21 old, female, are third year students, and have monthly allowance of P 2,000 above. On the respondents’ usage of Facebook, the majority of use the Facebook on a daily basis for one to two (1-2) hours everyday. And most users used Facebook by renting a computer in an internet cafe. On the use of Facebook, most users have created their profiles mainly to connect with people and gain new friends. The most commonly used features of Facebook, are: photos application, like button, wall, notification, friend, chat, network, groups and “like” pages status updates, messages and inbox and events. While the other Facebook features that are seldom used by the respondents are games, news feed, user name, video sharing and notes. And the least used Facebook features are questions, poke feature, credits and the market place. The respondents stated that the major benefit that the Facebook has given to its users is its ability to keep in touch with family members or friends while the main risk identified is that the users can become addicted to the Internet. On the tests of relationships between the respondents’ use of Facebook and the four (4) socio-demographic profile variables: age, sex, year level, and month allowance, were found to be not significantly related to the respondents’ use of the Facebook. While the variable found to be significantly related was gender.Keywords: Facebook, sociology, social networking, exploratory study
Procedia PDF Downloads 289