Search results for: causal factor analysis system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42268

Search results for: causal factor analysis system

28 Improving Diagnostic Accuracy of Ankle Syndesmosis Injuries: A Comparison of Traditional Radiographic Measurements and Computed Tomography-Based Measurements

Authors: Yasar Samet Gokceoglu, Ayse Nur Incesu, Furkan Okatar, Berk Nimetoglu, Serkan Bayram, Turgut Akgul

Abstract:

Ankle syndesmosis injuries pose a significant challenge in orthopedic practice due to their potential for prolonged recovery and chronic ankle dysfunction. Accurate diagnosis and management of these injuries are essential for achieving optimal patient outcomes. The use of radiological methods, such as X-ray, computed tomography (CT), and magnetic resonance imaging (MRI), plays a vital role in the accurate diagnosis of syndesmosis injuries in the context of ankle fractures. Treatment options for ankle syndesmosis injuries vary, with surgical interventions such as screw fixation and suture-button implantation being commonly employed. The choice of treatment is influenced by the severity of the injury and the presence of associated fractures. Additionally, the mechanism of injury, such as pure syndesmosis injury or specific fracture types, can impact the stability and management of syndesmosis injuries. Ankle fractures with syndesmosis injury present a complex clinical scenario, requiring accurate diagnosis, appropriate reduction, and tailored management strategies. The interplay between the mechanism of injury, associated fractures, and treatment modalities significantly influences the outcomes of these challenging injuries. The long-term outcomes and patient satisfaction following ankle fractures with syndesmosis injury are crucial considerations in the field of orthopedics. Patient-reported outcome measures, such as the Foot and Ankle Outcome Score (FAOS), provide essential information about functional recovery and quality of life after these injuries. When diagnosing syndesmosis injuries, standard measurements, such as the medial clear space, tibiofibular overlap, tibiofibular clear space, anterior tibiofibular ratio (ATFR), and the anterior-posterior tibiofibular ratio (APTF), are assessed through radiographs and computed tomography (CT) scans. These parameters are critical in evaluating the presence and severity of syndesmosis injuries, enabling clinicians to choose the most appropriate treatment approach. Despite advancements in diagnostic imaging, challenges remain in accurately diagnosing and treating ankle syndesmosis injuries. Traditional diagnostic parameters, while beneficial, may not capture the full extent of the injury or provide sufficient information to guide therapeutic decisions. This gap highlights the need for exploring additional diagnostic parameters that could enhance the accuracy of syndesmosis injury diagnoses and inform treatment strategies more effectively. The primary goal of this research is to evaluate the usefulness of traditional radiographic measurements in comparison to new CT-based measurements for diagnosing ankle syndesmosis injuries. Specifically, this study aims to assess the accuracy of conventional parameters, including medial clear space, tibiofibular overlap, tibiofibular clear space, ATFR, and APTF, in contrast with the recently proposed CT-based measurements such as the delta and gamma angles. Moreover, the study intends to explore the relationship between these diagnostic parameters and functional outcomes, as measured by the Foot and Ankle Outcome Score (FAOS). Establishing a correlation between specific diagnostic measurements and FAOS scores will enable us to identify the most reliable predictors of functional recovery following syndesmosis injuries. This comparative analysis will provide valuable insights into the accuracy and dependability of CT-based measurements in diagnosing ankle syndesmosis injuries and their potential impact on predicting patient outcomes. The results of this study could greatly influence clinical practices by refining diagnostic criteria and optimizing treatment planning for patients with ankle syndesmosis injuries.

Keywords: ankle syndesmosis injury, diagnostic accuracy, computed tomography, radiographic measurements, Tibiofibular syndesmosis distance

Procedia PDF Downloads 73
27 Clinical Course and Prognosis of Cutaneous Manifestations of COVID-19: A Systematic Review of Reported Cases

Authors: Hilary Modir, Kyle Dutton, Michelle Swab, Shabnam Asghari

Abstract:

Since its emergence, the cutaneous manifestations of COVID-19 have been documented in the literature. However, the majority are case reports with significant limitations in appraisal quality, thus leaving the role of dermatological manifestations of COVID-19 erroneously underexplored. The primary aim of this review was to systematically examine clinical patterns of dermatological manifestations as reported in the literature. This study was designed as a systematic review of case reports. The inclusion criteria consisted of all published reports and articles regarding COVID-19 in English, from September 1st, 2019, until June 22nd, 2020. The population consisted of confirmed cases of COVID-19 with associated cutaneous signs and symptoms. Exclusion criteria included research in planning stages, protocols, book reviews, news articles, review studies, and policy analyses. With the collaboration of a librarian, a search strategy was created consisting of a mixture of keyword terms and controlled vocabulary. Electronic databases searched were MEDLINE via PubMed, EMBASE, CINAHL, Web of Science, LILACS, PsycINFO, WHO Global Literature on Coronavirus Disease, Cochrane Library, Campbell Collaboration, Prospero, WHO International Clinical Trials Registry Platform, Australian and New Zealand Clinical Trials Registry, U.S. Institutes of Health Ongoing Trials Register, AAD Registry, OSF preprints, SSRN, MedRxiV and BioRxiV. The study selection featured an initial pre-screening of titles and abstracts by one independent reviewer. Results were verified by re-examining a random sample of 1% of excluded articles. Eligible studies progressed for full-text review by two calibrated independent reviewers. Covidence was used to store and extract data, such as citation information and findings pertaining to COVID-19 and cutaneous signs and symptoms. Data analysis and summarization methodology reflect the framework proposed by PRISMA and recommendations set out by Cochrane and Joanna Brigg’s Institute for conducting systematic reviews. The Oxford Centre for Evidence-Based Medicine’s level of evidence was used to appraise the quality of individual studies. The literature search revealed a total of 1221 articles. After the abstract and full-text screening, only 95 studies met the eligibility criteria, proceeding to data extraction. Studies were divided into 58% case reports and 42% series. A total of 833 manifestations were reported in 723 confirmed COVID-19 cases. The most frequent lesions were 23% maculopapular, 15% urticarial and 13% pseudo-chilblains, with 46% of lesions reporting pruritus, 16% erythema, 14% pain, 12% burning sensation, and 4% edema. The most common lesion locations were 20% trunk, 19.5% lower limbs, and 17.7% upper limbs. The time to resolution of lesions was between one and twenty-one days. In conclusion, over half of the reported cutaneous presentations in COVID-19 positive patients were maculopapular, urticarial and pseudo-chilblains, with the majority of lesions distributed to the extremities and trunk. As this review’s sample size only contained COVID-19 confirmed cases with skin presentations, it becomes difficult to deduce the direct relationship between skin findings and COVID-19. However, it can be correlated that acute onset of skin lesions, such as chilblains-like, may be associated with or may warrant consideration of COVID-19 as part of the differential diagnosis.

Keywords: COVID-19, cutaneous manifestations, cutaneous signs, general dermatology, medical dermatology, Sars-Cov-2, skin and infectious disease, skin findings, skin manifestations

Procedia PDF Downloads 181
26 Metal-Organic Frameworks-Based Materials for Volatile Organic Compounds Sensing Applications: Strategies to Improve Sensing Performances

Authors: Claudio Clemente, Valentina Gargiulo, Alessio Occhicone, Giovanni Piero Pepe, Giovanni Ausanio, Michela Alfè

Abstract:

Volatile organic compound (VOC) emissions represent a serious risk to human health and the integrity of the ecosystems, especially at high concentrations. For this reason, it is very important to continuously monitor environmental quality and develop fast and reliable portable sensors to allow analysis on site. Chemiresistors have become promising candidates for VOC sensing as their ease of fabrication, variety of suitable sensitive materials, and simple sensing data. A chemoresistive gas sensor is a transducer that allows to measure the concentration of an analyte in the gas phase because the changes in resistance are proportional to the amount of the analyte present. The selection of the sensitive material, which interacts with the target analyte, is very important for the sensor performance. The most used VOC detection materials are metal oxides (MOx) for their rapid recovery, high sensitivity to various gas molecules, easy fabrication. Their sensing performance can be improved in terms of operating temperature, selectivity, and detection limit. Metal-organic frameworks (MOFs) have attracted a lot of attention also in the field of gas sensing due to their high porosity, high surface area, tunable morphologies, structural variety. MOFs are generated by the self-assembly of multidentate organic ligands connecting with adjacent multivalent metal nodes via strong coordination interactions, producing stable and highly ordered crystalline porous materials with well-designed structures. However, most MOFs intrinsically exhibit low electrical conductivity. To improve this property, MOFs can be combined with organic and inorganic materials in a hybrid fashion to produce composite materials or can be transformed into more stable structures. MOFs, indeed, can be employed as the precursors of metal oxides with well-designed architectures via the calcination method. The MOF-derived MOx partially preserved the original structure with high surface area and intrinsic open pores, which act as trapping centers for gas molecules, and showed a higher electrical conductivity. Core-shell heterostructures, in which the surface of a metal oxide core is completely coated by a MOF shell, forming a junction at the core-shell heterointerface, can also be synthesized. Also, nanocomposite in which MOF structures are intercalated with graphene related materials can also be produced, and the conductivity increases thanks to the high mobility of electrons of carbon materials. As MOF structures, zinc-based MOFs belonging to the ZIF family were selected in this work. Several Zn-based materials based and/or derived from MOFs were produced, structurally characterized, and arranged in a chemo resistive architecture, also exploring the potentiality of different approaches of sensing layer deposition based on PLD (pulsed laser deposition) and, in case of thermally labile materials, MAPLE (Matrix Assisted Pulsed Laser Evaporation) to enhance the adhesion to the support. The sensors were tested in a controlled humidity chamber, allowing for the possibility of varying the concentration of ethanol, a typical analyte chosen among the VOCs for a first survey. The effect of heating the chemiresistor to improve sensing performances was also explored. Future research will focus on exploring new manufacturing processes for MOF-based gas sensors with the aim to improve sensitivity, selectivity and reduce operating temperatures.

Keywords: chemiresistors, gas sensors, graphene related materials, laser deposition, MAPLE, metal-organic frameworks, metal oxides, nanocomposites, sensing performance, transduction mechanism, volatile organic compounds

Procedia PDF Downloads 62
25 Exploratory Characterization of Antibacterial Efficacy of Synthesized Nanoparticles on Staphylococcus Isolates from Hospital Specimens in Saudi Arabia

Authors: Reham K. Sebaih, Afaf I. Shehata , Awatif A. Hindi, Tarek Gheith, Amal A. Hazzani Anas Al-Orjan

Abstract:

Staphylococci spp are ubiquitous gram-positive bacteria is often associated with infections, especially nosocomial infections, and antibiotic resistanceStudy pathogenic bacteria and its use as a tool in the technology of Nano biology and molecular genetics research of the latest research trends of modern characterization and definition of different multiresistant of bacteria including Staphylococci. The Staphylococci are widespread all over the world and particularly in Saudi Arabia The present work study was conducted to evaluate the effect of five different types of nanoparticles (biosynthesized zinc oxide, Spherical and rod of each silver and gold nanoparticles) and their antibacterial impact on the Staphylococcus species. Ninety-six isolates of Staphylococcus species. Staphylococcus aureus, Staphylococcus epidermidis, MRSA were collected from different sources during the period between March 2011G to June 2011G. All isolates were isolated from inpatients and outpatients departments at Royal Commission Hospital in Yanbu Industrial, Saudi Arabia. High percentage isolation from males(55%) than females (45%). Staphylococcus epidermidis from males was (47%), (28%), and(25%). For Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA. Isolates from females were Staphylococcus aureus with higher percent of (47%), (30%), and (23%) for MRSA, Staphylococcus epidermidis. Staphylococcus aureus from wound swab were the highest percent (51.42%) followed by vaginal swab (25.71%). Staphylococcus epidermidis were founded with higher percentage in blood (37.14%) and wound swab (34.21%) respectively related to other. The highest percentage of methicillin-resistant Staphylococcus aureus (MRSA)(80.77%) were isolated from wound swab, while those from nostrils were (19.23%). Staphylococcus species were isolates in highest percentage from hospital Emergency department with Staphylococcus aureus (59.37%), Methicillin-resistant Staphylococcus aureus (MRSA) (28.13%)and Staphylococcus epidermidis (12.5%) respectively. Evaluate the antibacterial property of Zinc oxide, Silver, and Gold nanoparticles as an alternative to conventional antibacterial agents Staphylococci isolates from hospital sources we screened them. Gold and Silver rods Nanoparticles to be sensitive to all isolates of Staphylococcus species. Zinc oxide Nanoparticles gave sensitivity impact range(52%) and (48%). The Gold and Silver spherical nanoparticles did not showed any effect on Staphylococci species. Zinc Oxide Nanoparticles gave bactericidal impact (25%) and bacteriostatic impact (75%) for of Staphylococci species. Detecting the association of nanoparticles with Staphylococci isolates imaging by scanning electron microscope (SEM) of some bacteriostatic isolates for Zinc Oxide nanoparticles on Staphylococcus aureus, Staphylococcus epidermidis and Methicillin resistant Staphylococcus aureus(MRSA), showed some Overlapping Bacterial cells with lower their number and appearing some appendages with deformities in external shape. Molecular analysis was applied by Multiplex polymerase chain reaction (PCR) used for the identification of genes within Staphylococcal pathogens. A multiplex polymerase chain reaction (PCR) method has been developed using six primer pairs to detect different genes using 50bp and 100bp DNA ladder marker. The range of Molecular gene typing ranging between 93 bp to 326 bp for Staphylococcus aureus and Methicillin resistant Staphylococcus aureus by TSST-1,mecA,femA and eta, while the bands border were from 546 bp to 682 bp for Staphylococcus epidermidis using icaAB and atlE. Sixteen isolation of Staphylococcus aureus and Methicillin resistant Staphylococcus aureus were positive for the femA gene at 132bp,this allowed the using of this gene as an internal positive control, fifteen isolates of Staphylococcus aureus and Methicillin resistant Staphylococcus aureus were positive for mecA gene at163bp.This gene was responsible for antibiotic resistant Methicillin, Two isolates of Staphylococcus aureus and Methicillin resistant Staphylococcus aureus were positive for the TSST-1 gene at326bp which is responsible for toxic shock syndrome in some Staphylococcus species, None were positive for eta gene at 102bpto that was responsible for Exfoliative toxins. Six isolates of Staphylococcus epidermidis were positive for atlE gene at 682 bp which is responsible for the initial adherence, three isolates of Staphylococcus epidermidis were positive for icaAB gene at 546bp that are responsible for mediates the formation of the biofilm. In conclusion, this study demonstrates the ability of the detection of the genes to discriminate between infecting Staphylococcus strains and considered biological tests, they may potentiate the clinical criteria used for the diagnosis of septicemia or catheter-related infections.

Keywords: multiplex polymerase chain reaction, toxic shock syndrome, Staphylococcus aureus, nosocomial infections

Procedia PDF Downloads 339
24 Synthesis of Chitosan/Silver Nanocomposites: Antibacterial Properties and Tissue Regeneration for Thermal Burn Injury

Authors: B.L. España-Sánchez, E. Luna-Hernández, R.A. Mauricio-Sánchez, M.E. Cruz-Soto, F. Padilla-Vaca, R. Muñoz, L. Granados-López, L.R. Ovalle-Flores, J.L. Menchaca-Arredondo, G. Luna-Bárcenas

Abstract:

Treatment of burn injured has been considered an important clinical problem due to the fluid control and the presence of microorganisms during the healing process. Conventional treatment includes antiseptic techniques, topical medication and surgical removal of damaged skin, to avoid bacterial growth. In order to accelerate this process, different alternatives for tissue regeneration have been explored, including artificial skin, polymers, hydrogels and hybrid materials. Some requirements consider a nonreactive organic polymer with high biocompatibility and skin adherence, avoiding bacterial infections. Chitin-derivative biopolymer such as chitosan (CS) has been used in skin regeneration following third-degree burns. The biological interest of CS is associated with the improvement of tissue cell stimulation, biocompatibility and antibacterial properties. In particular, antimicrobial properties of CS can be significantly increased when is blended with nanostructured materials. Silver-based nanocomposites have gained attention in medicine due to their high antibacterial properties against pathogens, related to their high surface area/volume ratio at nanomolar concentrations. Silver nanocomposites can be blended or synthesized with chitin-derivative biopolymers in order to obtain a biodegradable/antimicrobial hybrid with improved physic-mechanical properties. In this study, nanocomposites based on chitosan/silver nanoparticles (CS/nAg) were synthesized by the in situ chemical reduction method, improving their antibacterial properties against pathogenic bacteria and enhancing the healing process in thermal burn injuries produced in an animal model. CS/nAg was prepared in solution by the chemical reduction method, using AgNO₃ as precursor. CS was dissolved in acetic acid and mixed with different molar concentrations of AgNO₃: 0.01, 0.025, 0.05 and 0.1 M. Solutions were stirred at 95°C during 20 hours, in order to promote the nAg formation. CS/nAg solutions were placed in Petri dishes and dried, to obtain films. Structural analyses confirm the synthesis of silver nanoparticles (nAg) by means of UV-Vis and TEM, with an average size of 7.5 nm and spherical morphology. FTIR analyses showed the complex formation by the interaction of hydroxyl and amine groups with metallic nanoparticles, and surface chemical analysis (XPS) shows low concentration of Ag⁰/Ag⁺ species. Topography surface analyses by means of AFM shown that hydrated CS form a mesh with an average diameter of 10 µm. Antibacterial activity against S. aureus and P. aeruginosa was improved in all evaluated conditions, such as nAg loading and interaction time. CS/nAg nanocomposites films did not show Ag⁰/Ag⁺ release in saline buffer and rat serum after exposition during 7 days. Healing process was significantly enhanced by the presence of CS/nAg nanocomposites, inducing the production of myofibloblasts, collagen remodelation, blood vessels neoformation and epidermis regeneration after 7 days of injury treatment, by means of histological and immunohistochemistry assays. The present work suggests that hydrated CS/nAg nanocomposites can be formed a mesh, improving the bacterial penetration and the contact with embedded nAg, producing complete growth inhibition after 1.5 hours. Furthermore, CS/nAg nanocomposites improve the cell tissue regeneration in thermal burn injuries induced in rats. Synthesis of antibacterial, non-toxic, and biocompatible nanocomposites can be an important issue in tissue engineering and health care applications.

Keywords: antibacterial, chitosan, healing process, nanocomposites, silver

Procedia PDF Downloads 287
23 Bridging the Communication Gap in Emergency Care: How Informational Pamphlet Enhance Satisfaction for Patients with Distal Radius Fractures

Authors: Amr Mansour, Boaz Granot, Amani Tatar, Assil Mahamid, Mohammad Haj Yahia, Fairoz Jayyusi, Eyal Behrbalk

Abstract:

INTRODUCTION: Distal radius fractures are common orthopedic injuries often treated in the fast-paced, high-stress environment of emergency departments (EDs). In such settings, patient satisfaction can be significantly influenced by the clarity of communication and the accessibility of information This study explores the impact of providing an informational pamphlet that outlines ED processes, treatment expectations, and follow-up instructions on patient satisfaction across key domains, including trust, communication, organization, responsiveness, and overall experience. We hypothesize that a structured informational pamphlet will enhance patient satisfaction by fostering better understanding and aligning patient expectations with the realities of the ED visit. METHODS: A total of 100 adult patients treated for distal radius fractures between January and August 2024 participated in this survey-based study. Patients were randomized into two equal groups: one group received an informational pamphlet detailing their condition and treatment, while the other did not. Satisfaction levels were assessed using a structured questionnaire addressing five domains. Fisher's exact test was used to compare satisfaction measures between the two groups, and multivariate logistic regression analysis was conducted to evaluate the association between receiving an information sheet and high satisfaction. The study was approved by the Institutional Review Board. RESULTS SECTION: Patients who received an informational pamphlet reported significantly higher satisfaction across all five domains (p < .001). In Trust and Understanding, 82% of info-sheet recipients felt “in good hands,” compared to 10% of non-recipients. For Communication, 86% rated doctor explanations as “very clear,” versus 16% among non-recipients. Logistic regression showed that receiving an informational pamphlet was a significant predictor of high satisfaction with Discharge Explanation—clarity on condition, treatment, and follow-up (OR = 17.65, 95% CI: 4.74 - 65.77, p < .001) and Reasonable Solution—feeling their primary concern was resolved (OR = 37.82, 95% CI: 8.75 - 163.42, p < .001). Other predictors, including fracture reduction, gender, and age, were not significant. DISCUSSION: This study highlights the substantial role that simple, cost-effective interventions like informational pamphlets can play in enhancing patient satisfaction in emergency care. By improving communication, fostering trust, and promoting a patient-centered approach, informational pamphlets offer a valuable tool for healthcare providers seeking to enhance the quality of care and patient experience in high-pressure emergency environments. However, the study's limitations, including its single-center design and reliance on self-reported satisfaction scores, may affect the generalizability of the results. Future research should consider a multi-center approach and explore long-term outcomes to further validate the efficacy of informational pamphlets in diverse ED settings. Ultimately, sustained improvement in patient satisfaction is a complex and dynamic issue necessitating a multifactorial approach, and other methods should also be explored to complement this strategy. SIGNIFICANCE/CLINICAL RELEVANCE: This study demonstrates that providing an informational pamphlet in the ED setting can significantly improve patient satisfaction across multiple domains, emphasizing its potential as a simple, cost-effective tool to enhance communication, trust, and overall patient experience during emergency care for distal radius fractures. Integrating such interventions into standard ED protocols may foster a more patient-centered approach, improving both patient outcomes and healthcare efficiency.

Keywords: distal radius fracture, quality care, patient satisfaction, emergency medicine, patient-centered care, communication

Procedia PDF Downloads 17
22 Evaluation of Coal Quality and Geomechanical Moduli Using Core and Geophysical Logs: Study from Middle Permian Barakar Formation of Gondwana Coalfield

Authors: Joyjit Dey, Souvik Sen

Abstract:

Middle Permian Barakar formation is the major economic coal bearing unit of vast east-west trending Damodar Valley basin of Gondwana coalfield. Primary sedimentary structures were studied from the core holes, which represent majorly four facies groups: sandstone dominated facies, sandstone-shale heterolith facies, shale facies and coal facies. Total eight major coal seams have been identified with the bottom most seam being the thickest. Laterally, continuous coal seams were deposited in the calm and quiet environment of extensive floodplain swamps. Channel sinuosity and lateral channel migration/avulsion results in lateral facies heterogeneity and coal splitting. Geophysical well logs (Gamma-Resistivity-Density logs) have been used to establish the vertical and lateral correlation of various litho units field-wide, which reveals the predominance of repetitive fining upwards cycles. Well log data being a permanent record, offers a strong foundation for generating log based property evaluation and helps in characterization of depositional units in terms of lateral and vertical heterogeneity. Low gamma, high resistivity, low density is the typical coal seam signatures in geophysical logs. Here, we have used a density cutoff of 1.6 g/cc as a primary discriminator of coal and the same has been employed to compute various coal assay parameters, which are ash, fixed carbon, moisture, volatile content, cleat porosity, vitrinite reflectance (VRo%), which were calibrated with the laboratory based measurements. The study shows ash content and VRo% increase from west to east (towards basin margin), while fixed carbon, moisture and volatile content increase towards west, depicting increased coal quality westwards. Seam wise cleat porosity decreases from east to west, this would be an effect of overburden, as overburden pressure increases westward with the deepening of basin causing more sediment packet deposited on the western side of the study area. Coal is a porous, viscoelastic material in which velocity and strain both change nonlinearly with stress, especially for stress applied perpendicular to the bedding plane. Usually, the coal seam has a high velocity contrast relative to its neighboring layers. Despite extensive discussion of the maceral and chemical properties of coal, its elastic characteristics have received comparatively little attention. The measurement of the elastic constants of coal presents many difficulties: sample-to-sample inhomogeneity and fragility and velocity dependence on stress, orientation, humidity, and chemical content. In this study, a conclusive empirical equation VS= 0.80VP-0.86 has been used to model shear velocity from compression velocity. Also the same has been used to compute various geomechanical moduli. Geomech analyses yield a Poisson ratio of 0.348 against coals. Average bulk modulus value is 3.97 GPA, while average shear modulus and Young’s modulus values are coming out as 1.34 and 3.59 GPA respectively. These middle Permian Barakar coals show an average 23.84 MPA uniaxial compressive strength (UCS) with 4.97 MPA cohesive strength and 0.46 as friction coefficient. The output values of log based proximate parameters and geomechanical moduli suggest a medium volatile Bituminous grade for the studied coal seams, which is found in the laboratory based core study as well.

Keywords: core analysis, coal characterization, geophysical log, geo-mechanical moduli

Procedia PDF Downloads 226
21 Resilience Compendium: Strategies to Reduce Communities' Risk to Disasters

Authors: Caroline Spencer, Suzanne Cross, Dudley McArdle, Frank Archer

Abstract:

Objectives: The evolution of the Victorian Compendium of Community-Based Resilience Building Case Studies and its capacity to help communities implement activities that encourage adaptation to disaster risk reduction and promote community resilience in rural and urban locations provide this paper's objectives. Background: Between 2012 and 2019, community groups presented at the Monash University Disaster Resilience Initiative (MUDRI) 'Advancing Community Resilience Annual Forums', provided opportunities for communities to impart local resilience activities, how to solve challenges and share unforeseen learning and be considered for inclusion in the Compendium. A key tenet of the Compendium encourages compiling and sharing of grass-roots resilience building activities to help communities before, during, and after unexpected emergencies. The online Compendium provides free access for anyone wanting to help communities build expertise, reduce program duplication, and save valuable community resources. Identifying case study features across the emergency phases and analyzing critical success factors helps communities understand what worked and what did not work to achieve success and avoid known barriers. International exemplars inform the Compendium, which represents an Australian first and enhances Victorian community resilience initiatives. Emergency Management Victoria provided seed funding for the Compendium. MUDRI matched this support and continues to fund the project. A joint Steering Committee with broad-based user input and Human ethics approval guides its continued growth. Methods: A thematic analysis of the Compendium identified case study features, including critical success factors. Results: The Compendium comprises 38 case studies, representing all eight Victorian regions. Case studies addressed emergency phases, before (29), during (7), and after (17) events. Case studies addressed all hazards (23), bushfires (11), heat (2), fire safety (1), and house fires (1). Twenty case studies used a framework. Thirty received funding, of which nine received less than $20,000 and five received more than $100,000. Twenty-nine addressed a whole of community perspective. Case studies revealed unique and valuable learning in diverse settings. Critical success factors included strong governance; board support, leadership, and trust; partnerships; commitment, adaptability, and stamina; community-led initiatives. Other success factors included a paid facilitator and local government support; external funding, and celebrating success. Anecdotally, we are aware that community groups reference Compendium and that its value adds to community resilience planning. Discussion: The Compendium offers an innovative contribution to resilience research and practice. It augments the seven resilience characteristics to strengthen and encourage communities as outlined in the Statewide Community Resilience Framework for Emergency Management; brings together people from across sectors to deliver distinct, yet connected actions to strengthen resilience as a part of the Rockefeller funded Resilient Melbourne Strategy, and supports communities and economies to be resilient when a shock occurs as identified in the recently published Australian National Disaster Risk Reduction Framework. Each case study offers learning about connecting with community and how to increase their resilience to disaster risks and to keep their community safe from unexpected emergencies. Conclusion: The Compendium enables diverse communities to adopt or adapt proven resilience activities, thereby preserving valuable community resources and offers the opportunity to extend to a national or international Compendium.

Keywords: case study, community, compendium, disaster risk reduction, resilience

Procedia PDF Downloads 121
20 Identifying the Conservation Gaps in Poorly Studied Protected Area in the Philippines: A Study Case of Sibuyan Island

Authors: Roven Tumaneng, Angelica Kristina Monzon, Ralph Sedricke Lapuz, Jose Don De Alban, Jennica Paula Masigan, Joanne Rae Pales, Laila Monera Pornel, Dennis Tablazon, Rizza Karen Veridiano, Jackie Lou Wenceslao, Edmund Leo Rico, Neil Aldrin Mallari

Abstract:

Most protected area management plans in the Philippines, particularly the smaller and more remote islands suffer from insufficient baseline data, which should provide the bases for formulating measureable conservation targets and appropriate management interventions for these protected areas. Attempts to synthesize available data particularly on cultural and socio-economic characteristic of local peoples within and outside protected areas also suffer from the lack of comprehensive and detailed inventories, which should be considered in designing adaptive management interventions to be used for those protected areas. Mt Guiting-guiting Natural Park (MGGNP) located in Sibuyan Island is one of the poorly studied protected areas in the Philippines. In this study, we determined the highly biologically important areas of the protected area using Maximum Entropy approach (MaxEnt) from environmental predictors (i.e., topographic, bioclimatic,land cover, and soil image layers) derived from global remotely sensed data and point occurrence data of species of birds and trees recorded during field surveys on the island. A total of 23 trigger species of birds and trees was modeled and stacked to generate species richness maps for biological high conservation value areas (HCVAs). Forest habitat change was delineated using dual-polarised L-band ALOS-PALSAR mosaic data at 25 meter spatial resolution, taken at two acquisition years 2007 and 2009 to provide information on forest cover ad habitat change in the island between year 2007 and 2009. Determining the livelihood guilds were also conducted using the data gathered from171 household interviews, from which demographic and livelihood variables were extracted (i.e., age, gender, number of household members, educational attainment, years of residency, distance from forest edge, main occupation, alternative sources of food and resources during scarcity months, and sources of these alternative resources).Using Principal Component Analysis (PCA) and Kruskal-Wallis test, the diversity and patterns of forest resource use by people in the island were determined with particular focus on the economic activities that directly and indirectly affect the population of key species as well as to identify levels of forest resource use by people in different areas of the park.Results showed that there are gaps in the area occupied by the natural park, as evidenced by the mismatch of the proposed HCVAs and the existing perimeters of the park. We found out that subsistence forest gathering was the possible main driver for forest degradation out of the eight livelihood guilds that were identified in the park. Determining the high conservation areas and identifyingthe anthropogenic factors that influence the species richness and abundance of key species in the different management zone of MGGNP would provide guidance for the design of a protected area management plan and future monitoring programs. However, through intensive communication and consultation with government stakeholders and local communities our results led to setting conservation targets in local development plans and serve as a basis for the reposition of the boundaries and reconfiguration of the management zones of MGGNP.

Keywords: conservation gaps, livelihood guilds, MaxEnt, protected area

Procedia PDF Downloads 407
19 Clinically-Based Improvement Project Focused on Reducing Risks Associated with Diabetes Insipidus, Syndrome of Inappropriate ADH, and Cerebral Salt Wasting in Paediatric Post-Neurosurgical and Traumatic Brain Injury Patients

Authors: Shreya Saxena, Felix Miller-Molloy, Phillipa Bowen, Greg Fellows, Elizabeth Bowen

Abstract:

Background: Complex fluid balance abnormalities are well-established post-neurosurgery and traumatic brain injury (TBI). The triple-phase response requires fluid management strategies reactive to urine output and sodium homeostasis as patients shift between Diabetes Insipidus (DI) and Syndrome of Inappropriate ADH (SIADH). It was observed, at a tertiary paediatric center, a relatively high prevalence of the above complications within a cohort of paediatric post-neurosurgical and TBI patients. An audit of the clinical practice against set institutional guidelines was undertaken and analyzed to understand why this was occurring. Based on those results, new guidelines were developed with structured educational packages for the specialist teams involved. This was then reaudited, and the findings were compared. Methods: Two independent audits were conducted across two time periods, pre and post guideline change. Primary data was collected retrospectively, including both qualitative and quantitative data sets from the CQUIN neurosurgical database and electronic medical records. All paediatric patients post posterior fossa (PFT) or supratentorial surgery or with a TBI were included. A literature review of evidence-based practice, initial audit data, and stakeholder feedback was used to develop new clinical guidelines and nursing standard operation procedures. Compliance against these newly developed guidelines was re-assessed and a thematic, trend-based analysis of the two sets of results was conducted. Results: Audit-1 January2017-June2018, n=80; Audit-2 January2020-June2021, n=30 (reduced operative capacity due to COVID-19 pandemic). Overall, improvements in the monitoring of both fluid balance and electrolyte trends were demonstrated; 51% vs. 77% and 78% vs. 94%, respectively. The number of clear fluid management plans documented postoperatively also increased (odds ratio of 4), leading to earlier recognition and management of evolving fluid-balance abnormalities. The local paediatric endocrine team was involved in the care of all complex cases and notified sooner for those considered to be developing DI or SIADH (14% to 35%). However, significant Na fluctuations (>12mmol in 24 hours) remained similar – 5 vs six patients – found to be due to complex pituitary hypothalamic pathology – and the recommended adaptive fluid management strategy was still not always used. Qualitative data regarding useability and understanding of fluid-balance abnormalities and the revised guidelines were obtained from health professionals via surveys and discussion in the specialist teams providing care. The feedback highlighted the new guidelines provided a more consistent approach to the post-operative care of these patients and was a better platform for communication amongst the different specialist teams involved. The potential limitation to our study would be the small sample size on which to conduct formal analyses; however, this reflects the population that we were investigating, which we cannot control. Conclusion: The revised clinical guidelines, based on audited data, evidence-based literature review and stakeholder consultations, have demonstrated an improvement in understanding of the neuro-endocrine complications that are possible, as well as increased compliance to post-operative monitoring of fluid balance and electrolytes in this cohort of patients. Emphasis has been placed on preventative rather than treatment of DI and SIADH. Consequently, this has positively impacted patient safety for the center and highlighted the importance of educational awareness and multi-disciplinary team working.

Keywords: post-operative, fluid-balance management, neuro-endocrine complications, paediatric

Procedia PDF Downloads 92
18 A Study of the Trap of Multi-Homing in Customers: A Comparative Case Study of Digital Payments

Authors: Shari S. C. Shang, Lynn S. L. Chiu

Abstract:

In the digital payment market, some consumers use only one payment wallet while many others play multi-homing with a variety of payment services. With the diffusion of new payment systems, we examined the determinants of the adoption of multi-homing behavior. This study aims to understand how a digital payment provider dynamically expands business touch points with cross-business strategies to enrich the digital ecosystem and avoid the trap of multi-homing in customers. By synthesizing platform ecosystem literature, we constructed a two-dimensional research framework with one determinant of user digital behavior from offline to online intentions and the other determinant of digital payment touch points from convenient accessibility to cross-business platforms. To explore on a broader scale, we selected 12 digital payments from 5 countries of UK, US, Japan, Korea, and Taiwan. With the interplays of user digital behaviors and payment touch points, we group the study cases into four types: (1) Channel Initiated: users originated from retailers with high access to in-store shopping with face-to-face guidance for payment adoption. Providers offer rewards for customer loyalty and secure the retailer’s efficient cash flow management. (2) Social Media Dependent: users usually are digital natives with high access to social media or the internet who shop and pay digitally. Providers might not own physical or online shops but are licensed to aggregate money flows through virtual ecosystems. (3) Early Life Engagement: digital banks race to capture the next generation from popularity to profitability. This type of payment aimed to give children a taste of financial freedom while letting parents track their spending. Providers are to capitalize on the digital payment and e-commerce boom and hold on to new customers into adulthood. (4) Traditional Banking: plastic credit cards are purposely designed as a control group to track the evolvement of business strategies in digital payments. Traditional credit card users may follow the bank’s digital strategy to land on different types of digital wallets or mostly keep using plastic credit cards. This research analyzed business growth models and inter-firms’ coopetition strategies of the selected cases. Results of the multiple case analysis reveal that channel initiated payments bundled rewards with retailer’s business discount for recurring purchases. They also extended other financial services, such as insurance, to fulfill customers’ new demands. Contrastively, social media dependent payments developed new usages and new value creation, such as P2P money transfer through network effects among the virtual social ties, while early life engagements offer virtual banking products to children who are digital natives but overlooked by incumbents. It has disrupted the banking business domains in preparation for the metaverse economy. Lastly, the control group of traditional plastic credit cards has gradually converted to a BaaS (banking as a service) model depending on customers’ preferences. The multi-homing behavior is not avoidable in digital payment competitions. Payment providers may encounter multiple waves of a multi-homing threat after a short period of success. A dynamic cross-business collaboration strategy should be explored to continuously evolve the digital ecosystems and allow users for a broader shopping experience and continual usage.

Keywords: digital payment, digital ecosystems, multihoming users, cross business strategy, user digital behavior intentions

Procedia PDF Downloads 158
17 Tailoring Piezoelectricity of PVDF Fibers with Voltage Polarity and Humidity in Electrospinning

Authors: Piotr K. Szewczyk, Arkadiusz Gradys, Sungkyun Kim, Luana Persano, Mateusz M. Marzec, Oleksander Kryshtal, Andrzej Bernasik, Sohini Kar-Narayan, Pawel Sajkiewicz, Urszula Stachewicz

Abstract:

Piezoelectric polymers have received great attention in smart textiles, wearables, and flexible electronics. Their potential applications range from devices that could operate without traditional power sources, through self-powering sensors, up to implantable biosensors. Semi-crystalline PVDF is often proposed as the main candidate for industrial-scale applications as it exhibits exceptional energy harvesting efficiency compared to other polymers combined with high mechanical strength and thermal stability. Plenty of approaches have been proposed for obtaining PVDF rich in the desired β-phase with electric polling, thermal annealing, and mechanical stretching being the most prevalent. Electrospinning is a highly tunable technique that provides a one-step process of obtaining highly piezoelectric PVDF fibers without the need for post-treatment. In this study, voltage polarity and relative humidity influence on electrospun PVDF, fibers were investigated with the main focus on piezoelectric β-phase contents and piezoelectric performance. Morphology and internal structure of fibers were investigated using scanning (SEM) and transmission electron microscopy techniques (TEM). Fourier Transform Infrared Spectroscopy (FITR), wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) were used to characterize the phase composition of electrospun PVDF. Additionally, surface chemistry was verified with X-ray photoelectron spectroscopy (XPS). Piezoelectric performance of individual electrospun PVDF fibers was measured using piezoresponse force microscopy (PFM), and the power output from meshes was analyzed via custom-built equipment. To prepare the solution for electrospinning, PVDF pellets were dissolved in dimethylacetamide and acetone solution in a 1:1 ratio to achieve a 24% solution. Fibers were electrospun with a constant voltage of +/-15kV applied to the stainless steel nozzle with the inner diameter of 0.8mm. The flow rate was kept constant at 6mlh⁻¹. The electrospinning of PVDF was performed at T = 25°C and relative humidity of 30 and 60% for PVDF30+/- and PVDF60+/- samples respectively in the environmental chamber. The SEM and TEM analysis of fibers produced at a lower relative humidity of 30% (PVDF30+/-) showed a smooth surface in opposition to fibers obtained at 60% relative humidity (PVDF60+/-), which had wrinkled surface and additionally internal voids. XPS results confirmed lower fluorine content at the surface of PVDF- fibers obtained by electrospinning with negative voltage polarity comparing to the PVDF+ obtained with positive voltage polarity. Changes in surface composition measured with XPS were found to influence the piezoelectric performance of obtained fibers what was further confirmed by PFM as well as by custom-built fiber-based piezoelectric generator. For PVDF60+/- samples humidity led to an increase of β-phase contents in PVDF fibers as confirmed by FTIR, WAXS, and DSC measurements, which showed almost two times higher concentrations of β-phase. A combination of negative voltage polarity with high relative humidity led to fibers with the highest β-phase contents and the best piezoelectric performance of all investigated samples. This study outlines the possibility to produce electrospun PVDF fibers with tunable piezoelectric performance in a one-step electrospinning process by controlling relative humidity and voltage polarity conditions. Acknowledgment: This research was conducted within the funding from m the Sonata Bis 5 project granted by National Science Centre, No 2015/18/E/ST5/00230, and supported by the infrastructure at International Centre of Electron Microscopy for Materials Science (IC-EM) at AGH University of Science and Technology. The PFM measurements were supported by an STSM Grant from COST Action CA17107.

Keywords: crystallinity, electrospinning, PVDF, voltage polarity

Procedia PDF Downloads 134
16 Optimizing AI Voice for Adolescent Health Education: Preferences and Trustworthiness Across Teens and Parent

Authors: Yu-Lin Chen, Kimberly Koester, Marissa Raymond-Flesh, Anika Thapar, Jay Thapar

Abstract:

Purpose: Effectively communicating adolescent health topics to teens and their parents is crucial. This study emphasizes critically evaluating the optimal use of artificial intelligence tools (AI), which are increasingly prevalent in disseminating health information. By fostering a deeper understanding of AI voice preference in the context of health, the research aspires to have a ripple effect, enhancing the collective health literacy and decision-making capabilities of both teenagers and their parents. This study explores AI voices' potential within health learning modules for annual well-child visits. We aim to identify preferred voice characteristics and understand factors influencing perceived trustworthiness, ultimately aiming to improve health literacy and decision-making in both demographics. Methods: A cross-sectional study assessed preferences and trust perceptions of AI voices in learning modules among teens (11-18) and their parents/guardians in Northern California. The study involved the development of four distinct learning modules covering various adolescent health-related topics, including general communication, sexual and reproductive health communication, parental monitoring, and well-child check-ups. Participants were asked to evaluate eight AI voices across the modules, considering a set of six factors such as intelligibility, naturalness, prosody, social impression, trustworthiness, and overall appeal, using Likert scales ranging from 1 to 10 (the higher, the better). They were also asked to select their preferred choice of voice for each module. Descriptive statistics summarized participant demographics. Chi-square/t-tests explored differences in voice preferences between groups. Regression models identified factors impacting the perceived trustworthiness of the top-selected voice per module. Results: Data from 104 participants (teen=63; adult guardian = 41) were included in the analysis. The mean age is 14.9 for teens (54% male) and 41.9 for the parent/guardian (12% male). At the same time, similar voice quality ratings were observed across groups, and preferences varied by topic. For instance, in general communication, teens leaned towards young female voices, while parents preferred mature female tones. Interestingly, this trend reversed for parental monitoring, with teens favoring mature male voices and parents opting for mature female ones. Both groups, however, converged on mature female voices for sexual and reproductive health topics. Beyond preferences, the study delved into factors influencing perceived trustworthiness. Interestingly, social impression and sound appeal emerged as the most significant contributors across all modules, jointly explaining 71-75% of the variance in trustworthiness ratings. Conclusion: The study emphasizes the importance of catering AI voices to specific audiences and topics. Social impression and sound appeal emerged as critical factors influencing perceived trustworthiness across all modules. These findings highlight the need to tailor AI voices by age and the specific health information being delivered. Ensuring AI voices resonate with both teens and their parents can foster their engagement and trust, ultimately leading to improved health literacy and decision-making for both groups. Limitations and future research: This study lays the groundwork for understanding AI voice preferences for teenagers and their parents in healthcare settings. However, limitations exist. The sample represents a specific geographic location, and cultural variations might influence preferences. Additionally, the modules focused on topics related to well-child visits, and preferences might differ for more sensitive health topics. Future research should explore these limitations and investigate the long-term impact of AI voice on user engagement, health outcomes, and health behaviors.

Keywords: artificial intelligence, trustworthiness, voice, adolescent

Procedia PDF Downloads 55
15 A Low-Cost Disposable PDMS Microfluidic Cartridge with Reagent Storage Silicone Blisters for Isothermal DNA Amplification

Authors: L. Ereku, R. E. Mackay, A. Naveenathayalan, K. Ajayi, W. Balachandran

Abstract:

Over the past decade the increase of sexually transmitted infections (STIs) especially in the developing world due to high cost and lack of sufficient medical testing have given rise to the need for a rapid, low cost point of care medical diagnostic that is disposable and most significantly reproduces equivocal results achieved within centralised laboratories. This paper present the development of a disposable PDMS microfluidic cartridge incorporating blisters filled with reagents required for isothermal DNA amplification in clinical diagnostics and point-of-care testing. In view of circumventing the necessity for external complex microfluidic pumps, designing on-chip pressurised fluid reservoirs is embraced using finger actuation and blister storage. The fabrication of the blisters takes into consideration three proponents that include: material characteristics, fluid volume and structural design. Silicone rubber is the chosen material due to its good chemical stability, considerable tear resistance and moderate tension/compression strength. The case of fluid capacity and structural form go hand in hand as the reagent need for the experimental analysis determines the volume size of the blisters, whereas the structural form has to be designed to provide low compression stress when deformed for fluid expulsion. Furthermore, the top and bottom section of the blisters are embedded with miniature polar opposite magnets at a defined parallel distance. These magnets are needed to lock or restrain the blisters when fully compressed so as to prevent unneeded backflow as a result of elasticity. The integrated chip is bonded onto a large microscope glass slide (50mm x 75mm). Each part is manufactured using a 3D printed mould designed using Solidworks software. Die-casting is employed, using 3D printed moulds, to form the deformable blisters by forcing a proprietary liquid silicone rubber through the positive mould cavity. The set silicone rubber is removed from the cast and prefilled with liquid reagent and then sealed with a thin (0.3mm) burstable layer of recast silicone rubber. The main microfluidic cartridge is fabricated using classical soft lithographic techniques. The cartridge incorporates microchannel circuitry, mixing chamber, inlet port, outlet port, reaction chamber and waste chamber. Polydimethylsiloxane (PDMS, QSil 216) is mixed and degassed using a centrifuge (ratio 10:1) is then poured after the prefilled blisters are correctly positioned on the negative mould. Heat treatment of about 50C to 60C in the oven for about 3hours is needed to achieve curing. The latter chip production stage involves bonding the cured PDMS to the glass slide. A plasma coroner treater device BD20-AC (Electro-Technic Products Inc., US) is used to activate the PDMS and glass slide before they are both joined and adequately compressed together, then left in the oven over the night to ensure bonding. There are two blisters in total needed for experimentation; the first will be used as a wash buffer to remove any remaining cell debris and unbound DNA while the second will contain 100uL amplification reagents. This paper will present results of chemical cell lysis, extraction using a biopolymer paper membrane and isothermal amplification on a low-cost platform using the finger actuated blisters for reagent storage. The platform has been shown to detect 1x105 copies of Chlamydia trachomatis using Recombinase Polymerase Amplification (RPA).

Keywords: finger actuation, point of care, reagent storage, silicone blisters

Procedia PDF Downloads 368
14 Beyond Bindis, Bhajis, Bangles, and Bhangra: Exploring Multiculturalism in Southwest England Primary Schools, Early Research Findings

Authors: Suparna Bagchi

Abstract:

Education as a discipline will probably be shaped by the importance it places on a conceptual, curricular, and pedagogical need to shift the emphasis toward transformative classrooms working for positive change through cultural diversity. Awareness of cultural diversity and race equality has heightened following George Floyd’s killing in the USA in 2020. This increasing awareness is particularly relevant in areas of historically low ethnic diversity which have lately experienced a rise in ethnic minority populations and where inclusive growth is a challenge. This research study aims to explore the perspectives of practitioners, students, and parents towards multiculturalism in four South West England primary schools. A qualitative case study methodology has been adopted framed by sociocultural theory. Data were collected through virtually conducted semi-structured interviews with school practitioners and parents, observation of students’ classroom activities, and documentary analysis of classroom displays. Although one-third of the school population includes ethnically diverse children, BAME (Black, Asian, and Minority Ethnic) characters featured in children's books published in Britain in 2019 were almost invisible, let alone a BAME main character. The Office for Standards in Education, Children's Services and Skills (Ofsted) are vocal about extending the Curriculum beyond the academic and technical arenas for pupils’ broader development and creation of an understanding and appreciation of cultural diversity. However, race equality and community cohesion which could help in the students’ broader development are not Ofsted’s school inspection criteria. The absence of culturally diverse content in the school curriculum highlighted by the 1985 Swann Report and 2007 Ajegbo Report makes England’s National Curriculum look like a Brexit policy three decades before Brexit. A revised National Curriculum may be the starting point with the teachers as curriculum framers playing a significant part. The task design is crucial where teachers can place equal importance on the interwoven elements of “how”, “what” and “why” the task is taught. Teachers need to build confidence in encouraging difficult conversations around racism, fear, indifference, and ignorance breaking the stereotypical barriers, thus helping to create students’ conception of a multicultural Britain. Research showed that trainee teachers in predominantly White areas often exhibit confined perspectives while educating children. Irrespective of the geographical location, school teachers can be equipped with culturally responsive initial and continuous professional development necessary to impart multicultural education. This may aid in the reduction of employees’ unconscious bias. This becomes distinctly pertinent to avoid horrific cases in the future like the recent one in Hackney where a Black teenager was strip-searched during period wrongly suspected of cannabis possession. Early research findings show participants’ eagerness for more ethnic diversity content incorporated in teaching and learning. However, schools are considerably dependent on the knowledge-focused Primary National Curriculum in England. Moreover, they handle issues around the intersectionality of disability, poverty, and gender. Teachers were trained in times when foregrounding ethnicity matters was not happening. Therefore, preoccupied with Curriculum requirements, intersectionality issues, and teacher preparations, schools exhibit an incapacity due to which keeping momentum on ethnic diversity is somewhat endangered.

Keywords: case study, curriculum decolonisation, inclusive education, multiculturalism, qualitative research in Covid19 times

Procedia PDF Downloads 118
13 Fabrication of Highly Stable Low-Density Self-Assembled Monolayers by Thiolyne Click Reaction

Authors: Leila Safazadeh, Brad Berron

Abstract:

Self-assembled monolayers have tremendous impact in interfacial science, due to the unique opportunity they offer to tailor surface properties. Low-density self-assembled monolayers are an emerging class of monolayers where the environment-interfacing portion of the adsorbate has a greater level of conformational freedom when compared to traditional monolayer chemistries. This greater range of motion and increased spacing between surface-bound molecules offers new opportunities in tailoring adsorption phenomena in sensing systems. In particular, we expect low-density surfaces to offer a unique opportunity to intercalate surface bound ligands into the secondary structure of protiens and other macromolecules. Additionally, as many conventional sensing surfaces are built upon gold surfaces (SPR or QCM), these surfaces must be compatible with gold substrates. Here, we present the first stable method of generating low-density self assembled monolayer surfaces on gold for the analysis of their interactions with protein targets. Our approach is based on the 2:1 addition of thiol-yne chemistry to develop new classes of y-shaped adsorbates on gold, where the environment-interfacing group is spaced laterally from neighboring chemical groups. This technique involves an initial deposition of a crystalline monolayer of 1,10 decanedithiol on the gold substrate, followed by grafting of a low-packed monolayer on through a photoinitiated thiol-yne reaction in presence of light. Orthogonality of the thiol-yne chemistry (commonly referred to as a click chemistry) allows for preparation of low-density monolayers with variety of functional groups. To date, carboxyl, amine, alcohol, and alkyl terminated monolayers have been prepared using this core technology. Results from surface characterization techniques such as FTIR, contact angle goniometry and electrochemical impedance spectroscopy confirm the proposed low chain-chain interactions of the environment interfacing groups. Reductive desorption measurements suggest a higher stability for the click-LDMs compared to traditional SAMs, along with the equivalent packing density at the substrate interface, which confirms the proposed stability of the monolayer-gold interface. In addition, contact angle measurements change in the presence of an applied potential, supporting our description of a surface structure which allows the alkyl chains to freely orient themselves in response to different environments. We are studying the differences in protein adsorption phenomena between well packed and our loosely packed surfaces, and we expect this data will be ready to present at the GRC meeting. This work aims to contribute biotechnology science in the following manner: Molecularly imprinted polymers are a promising recognition mode with several advantages over natural antibodies in the recognition of small molecules. However, because of their bulk polymer structure, they are poorly suited for the rapid diffusion desired for recognition of proteins and other macromolecules. Molecularly imprinted monolayers are an emerging class of materials where the surface is imprinted, and there is not a bulk material to impede mass transfer. Further, the short distance between the binding site and the signal transduction material improves many modes of detection. My dissertation project is to develop a new chemistry for protein-imprinted self-assembled monolayers on gold, for incorporation into SPR sensors. Our unique contribution is the spatial imprinting of not only physical cues (seen in current imprinted monolayer techniques), but to also incorporate complementary chemical cues. This is accomplished through a photo-click grafting of preassembled ligands around a protein template. This conference is important for my development as a graduate student to broaden my appreciation of the sensor development beyond surface chemistry.

Keywords: low-density self-assembled monolayers, thiol-yne click reaction, molecular imprinting

Procedia PDF Downloads 226
12 Climate Change Threats to UNESCO-Designated World Heritage Sites: Empirical Evidence from Konso Cultural Landscape, Ethiopia

Authors: Yimer Mohammed Assen, Abiyot Legesse Kura, Engida Esyas Dube, Asebe Regassa Debelo, Girma Kelboro Mensuro, Lete Bekele Gure

Abstract:

Climate change has posed severe threats to many cultural landscapes of UNESCO world heritage sites recently. The UNESCO State of Conservation (SOC) reports categorized flooding, temperature increment, and drought as threats to cultural landscapes. This study aimed to examine variations and trends of rainfall and temperature extreme events and their threats to the UNESCO-designated Konso Cultural Landscape in southern Ethiopia. The study used dense merged satellite-gauge station rainfall data (1981-2020) with spatial resolution of 4km by 4km and observed maximum and minimum temperature data (1987-2020). Qualitative data were also gathered from cultural leaders, local administrators, and religious leaders using structured interview checklists. The spatial patterns, coefficient of variation, standardized anomalies, trends, and magnitude of change of rainfall and temperature extreme events both at annual and seasonal levels were computed using the Mann-Kendall trend test and Sen’s slope estimator under the CDT package. The standard precipitation index (SPI) was also used to calculate drought severity, frequency, and trend maps. The data gathered from key informant interviews and focus group discussions were coded and analyzed thematically to complement statistical findings. Thematic areas that explain the impacts of extreme events on the cultural landscape were chosen for coding. The thematic analysis was conducted using Nvivo software. The findings revealed that rainfall was highly variable and unpredictable, resulting in extreme drought and flood. There were significant (P<0.05) increasing trends of heavy rainfall (R10mm and R20mm) and the total amount of rain on wet days (PRCPTOT), which might have resulted in flooding. The study also confirmed that absolute temperature extreme indices (TXx, TXn, and TNx) and the percentile-based temperature extreme indices (TX90p, TN90p, TX10p, and TN10P) showed significant (P<0.05) increasing trends which are signals for warming of the study area. The results revealed that the frequency as well as the severity of drought at 3-months (katana/hageya seasons) was more pronounced than the 12-months (annual) time scale. The highest number of droughts in 100 years is projected at a 3-months timescale across the study area. The findings also showed that frequent drought has led to loss of grasses which are used for making traditional individual houses and multipurpose communal houses (pafta), food insecurity, migration, loss of biodiversity, and commodification of stones from terrace. On the other hand, the increasing trends of rainfall extreme indices resulted in destruction of terraces, soil erosion, loss of life and damage of properties. The study shows that a persistent decline in farmland productivity, due to erratic and extreme rainfall and frequent drought occurrences, forced the local people to participate in non-farm activities and retreat from daily preservation and management of their landscape. Overall, the increasing rainfall and temperature extremes coupled with prevalence of drought are thought to have an impact on the sustainability of cultural landscape through disrupting the ecosystem services and livelihood of the community. Therefore, more localized adaptation and mitigation strategies to the changing climate are needed to maintain the sustainability of Konso cultural landscapes as a global cultural treasure and to strengthen the resilience of smallholder farmers.

Keywords: adaptation, cultural landscape, drought, extremes indices

Procedia PDF Downloads 26
11 The Effect of Using Emg-based Luna Neurorobotics for Strengthening of Affected Side in Chronic Stroke Patients - Retrospective Study

Authors: Surbhi Kaura, Sachin Kandhari, Shahiduz Zafar

Abstract:

Chronic stroke, characterized by persistent motor deficits, often necessitates comprehensive rehabilitation interventions to improve functional outcomes and mitigate long-term dependency. Luna neurorobotic devices, integrated with EMG feedback systems, provide an innovative platform for facilitating neuroplasticity and functional improvement in stroke survivors. This retrospective study aims to investigate the impact of EMG-based Luna neurorobotic interventions on the strengthening of the affected side in chronic stroke patients. In rehabilitation, active patient participation significantly activates the sensorimotor network during motor control, unlike passive movement. Stroke is a debilitating condition that, when not effectively treated, can result in significant deficits and lifelong dependency. Common issues like neglecting the use of limbs can lead to weakness in chronic stroke cases. In rehabilitation, active patient participation significantly activates the sensorimotor network during motor control, unlike passive movement. This study aims to assess how electromyographic triggering (EMG-triggered) robotic treatments affect walking, ankle muscle force after an ischemic stroke, and the coactivation of agonist and antagonist muscles, which contributes to neuroplasticity with the assistance of biofeedback using robotics. Methods: The study utilized robotic techniques based on electromyography (EMG) for daily rehabilitation in long-term stroke patients, offering feedback and monitoring progress. Each patient received one session per day for two weeks, with the intervention group undergoing 45 minutes of robot-assisted training and exercise at the hospital, while the control group performed exercises at home. Eight participants with impaired motor function and gait after stroke were involved in the study. EMG-based biofeedback exercises were administered through the LUNA neuro-robotic machine, progressing from trigger and release mode to trigger and hold, and later transitioning to dynamic mode. Assessments were conducted at baseline and after two weeks, including the Timed Up and Go (TUG) test, a 10-meter walk test (10m), Berg Balance Scale (BBG), and gait parameters like cadence, step length, upper limb strength measured by EMG threshold in microvolts, and force in Newton meters. Results: The study utilized a scale to assess motor strength and balance, illustrating the benefits of EMG-biofeedback following LUNA robotic therapy. In the analysis of the left hemiparetic group, an increase in strength post-rehabilitation was observed. The pre-TUG mean value was 72.4, which decreased to 42.4 ± 0.03880133 seconds post-rehabilitation, with a significant difference indicated by a p-value below 0.05, reflecting a reduced task completion time. Similarly, in the force-based task, the pre-knee dynamic force in Newton meters was 18.2NM, which increased to 31.26NM during knee extension post-rehabilitation. The post-student t-test showed a p-value of 0.026, signifying a significant difference. This indicated an increase in the strength of knee extensor muscles after LUNA robotic rehabilitation. Lastly, at baseline, the EMG value for ankle dorsiflexion was 5.11 (µV), which increased to 43.4 ± 0.06 µV post-rehabilitation, signifying an increase in the threshold and the patient's ability to generate more motor units during left ankle dorsiflexion. Conclusion: This study aimed to evaluate the impact of EMG and dynamic force-based rehabilitation devices on walking and strength of the affected side in chronic stroke patients without nominal data comparisons among stroke patients. Additionally, it provides insights into the inclusion of EMG-triggered neurorehabilitation robots in the daily rehabilitation of patients.

Keywords: neurorehabilitation, robotic therapy, stroke, strength, paralysis

Procedia PDF Downloads 62
10 Sustainable Development Goal (SDG)-Driven Intercultural Citizenship Education through Dance-Fitness Development: A Classroom Research Project Based on History Research into Japanese Traditional Performing Art (Menburyu)

Authors: Stephanie Ann Houghton

Abstract:

SDG-driven intercultural citizenship education through performing arts and history research, combined with dance-fitness development inspired by performing arts, can provide a third space in which performing arts, local history, and contemporary society drive educational and social development, supporting the performing arts in student-generated ways, reflecting their sense, priorities, and goals. Within a string of rugged volcanic peninsulas along the north-western coastline of the Ariake Sea, Kyushu, southern Japan, are found a range of traditional performing arts endangered in Japan’s ageing society, including Menburyu mask dance. From 2017, Menburyu culture and history were explored with Menburyu veterans and students within Houghton’s FURYU Educational Program (FEP) at Saga University. Through collaboration with professional fitness instructor Kazuki Miyata, basic Menburyu movements and concepts were blended into aerobics routines to generate Menburyu-Inspired Dance-Fitness (MIDF). Drawing on history, legends, and myths, three important storylines for understanding Menburyu, captured in students’ bilingual (English/Japanese) exhibition panels, emerged: harvest, demons and gods, and the Battle of Tadenawate 1530. Houghton and Miyata performed the first MIDF routine at the 22nd Traditional Performing Arts Festival at Yutoku Inari Shrine, Kashima, in September 2019. FEP exhibitions, dance-fitness events, and MIDF performance have been reported in the media locally and nationally. In an action research case study, a classroom research project was conducted with four female Japanese students over fifteen three-hour online lessons (April-July 2020). Part 1 of each lesson focused on Menburyu history. This included a guest lecture by Kensuke Ryuzoji. The three Menburyu storylines served as keys for exploring Menburyu history from international standpoints.Part 2 focused on the development of MIDF basic steps and an online MIDF event with outside guests. Through post-lesson reflective diaries and reports/videos documenting their experience, students engaged in heritage management, intercultural dialogue, health/fitness, technology and art generation activities within the FEP, centring on UN Sustainable Development Goals (SDGs) including health and wellness (SDG3), and quality education (SDG4), taking a glocal approach. In this presentation, qualitative analysis of student-generated reflective diary and reports will be presented to reveal educational processes, learning outcomes,and apparent areas of (potential) social impact of this classroom research project. Data will be presented in two main parts: (1) The mutually beneficial relationship between local traditional performing arts research and local history researchwill be addressed. One has the power both inform and illuminate the other given their deep connections. This can drive the development of students’ intercultural history competence related to and through the performing arts. (2) The development of dance-fitness inspired by traditional performing arts provides a third space in which performing arts, local history and contemporary society can be connected through SDG-driven education inside the classroom in ways that can also drive social innovation outside the classroom, potentially supporting the performing arts itself in student-generated ways, reflecting their own sense, priorities and social goals. Links will be drawn with intercultural citizenship, strengths and weaknesses of this teaching approach will be highlighted, and avenues for future research in this exciting new area will be suggested.

Keywords: cultural traditions, dance-fitness performance and participation, intercultural communication approach, mask dance origins

Procedia PDF Downloads 139
9 Flood Risk Management in the Semi-Arid Regions of Lebanon - Case Study “Semi Arid Catchments, Ras Baalbeck and Fekha”

Authors: Essam Gooda, Chadi Abdallah, Hamdi Seif, Safaa Baydoun, Rouya Hdeib, Hilal Obeid

Abstract:

Floods are common natural disaster occurring in semi-arid regions in Lebanon. This results in damage to human life and deterioration of environment. Despite their destructive nature and their immense impact on the socio-economy of the region, flash floods have not received adequate attention from policy and decision makers. This is mainly because of poor understanding of the processes involved and measures needed to manage the problem. The current understanding of flash floods remains at the level of general concepts; most policy makers have yet to recognize that flash floods are distinctly different from normal riverine floods in term of causes, propagation, intensity, impacts, predictability, and management. Flash floods are generally not investigated as a separate class of event but are rather reported as part of the overall seasonal flood situation. As a result, Lebanon generally lacks policies, strategies, and plans relating specifically to flash floods. Main objective of this research is to improve flash flood prediction by providing new knowledge and better understanding of the hydrological processes governing flash floods in the East Catchments of El Assi River. This includes developing rainstorm time distribution curves that are unique for this type of study region; analyzing, investigating, and developing a relationship between arid watershed characteristics (including urbanization) and nearby villages flow flood frequency in Ras Baalbeck and Fekha. This paper discusses different levels of integration approach¬es between GIS and hydrological models (HEC-HMS & HEC-RAS) and presents a case study, in which all the tasks of creating model input, editing data, running the model, and displaying output results. The study area corresponds to the East Basin (Ras Baalbeck & Fakeha), comprising nearly 350 km2 and situated in the Bekaa Valley of Lebanon. The case study presented in this paper has a database which is derived from Lebanese Army topographic maps for this region. Using ArcMap to digitizing the contour lines, streams & other features from the topographic maps. The digital elevation model grid (DEM) is derived for the study area. The next steps in this research are to incorporate rainfall time series data from Arseal, Fekha and Deir El Ahmar stations to build a hydrologic data model within a GIS environment and to combine ArcGIS/ArcMap, HEC-HMS & HEC-RAS models, in order to produce a spatial-temporal model for floodplain analysis at a regional scale. In this study, HEC-HMS and SCS methods were chosen to build the hydrologic model of the watershed. The model then calibrated using flood event that occurred between 7th & 9th of May 2014 which considered exceptionally extreme because of the length of time the flows lasted (15 hours) and the fact that it covered both the watershed of Aarsal and Ras Baalbeck. The strongest reported flood in recent times lasted for only 7 hours covering only one watershed. The calibrated hydrologic model is then used to build the hydraulic model & assessing of flood hazards maps for the region. HEC-RAS Model is used in this issue & field trips were done for the catchments in order to calibrated both Hydrologic and Hydraulic models. The presented models are a kind of flexible procedures for an ungaged watershed. For some storm events it delivers good results, while for others, no parameter vectors can be found. In order to have a general methodology based on these ideas, further calibration and compromising of results on the dependence of many flood events parameters and catchment properties is required.

Keywords: flood risk management, flash flood, semi arid region, El Assi River, hazard maps

Procedia PDF Downloads 478
8 An Integrated Multisensor/Modeling Approach Addressing Climate Related Extreme Events

Authors: H. M. El-Askary, S. A. Abd El-Mawla, M. Allali, M. M. El-Hattab, M. El-Raey, A. M. Farahat, M. Kafatos, S. Nickovic, S. K. Park, A. K. Prasad, C. Rakovski, W. Sprigg, D. Struppa, A. Vukovic

Abstract:

A clear distinction between weather and climate is a necessity because while they are closely related, there are still important differences. Climate change is identified when we compute the statistics of the observed changes in weather over space and time. In this work we will show how the changing climate contribute to the frequency, magnitude and extent of different extreme events using a multi sensor approach with some synergistic modeling activities. We are exploring satellite observations of dust over North Africa, Gulf Region and the Indo Gangetic basin as well as dust versus anthropogenic pollution events over the Delta region in Egypt and Seoul through remote sensing and utilize the behavior of the dust and haze on the aerosol optical properties. Dust impact on the retreat of the glaciers in the Himalayas is also presented. In this study we also focus on the identification and monitoring of a massive dust plume that blew off the western coast of Africa towards the Atlantic on October 8th, 2012 right before the development of Hurricane Sandy. There is evidence that dust aerosols played a non-trivial role in the cyclogenesis process of Sandy. Moreover, a special dust event "An American Haboob" in Arizona is discussed as it was predicted hours in advance because of the great improvement we have in numerical, land–atmosphere modeling, computing power and remote sensing of dust events. Therefore we performed a full numerical simulation to that event using the coupled atmospheric-dust model NMME–DREAM after generating a mask of the potentially dust productive regions using land cover and vegetation data obtained from satellites. Climate change also contributes to the deterioration of different marine habitats. In that regard we are also presenting some work dealing with change detection analysis of Marine Habitats over the city of Hurghada, Red Sea, Egypt. The motivation for this work came from the fact that coral reefs at Hurghada have undergone significant decline. They are damaged, displaced, polluted, stepped on, and blasted off, in addition to the effects of climate change on the reefs. One of the most pressing issues affecting reef health is mass coral bleaching that result from an interaction between human activities and climatic changes. Over another location, namely California, we have observed that it exhibits highly-variable amounts of precipitation across many timescales, from the hourly to the climate timescale. Frequently, heavy precipitation occurs, causing damage to property and life (floods, landslides, etc.). These extreme events, variability, and the lack of good, medium to long-range predictability of precipitation are already a challenge to those who manage wetlands, coastal infrastructure, agriculture and fresh water supply. Adding on to the current challenges for long-range planning is climate change issue. It is known that La Niña and El Niño affect precipitation patterns, which in turn are entwined with global climate patterns. We have studied ENSO impact on precipitation variability over different climate divisions in California. On the other hand the Nile Delta has experienced lately an increase in the underground water table as well as water logging, bogging and soil salinization. Those impacts would pose a major threat to the Delta region inheritance and existing communities. There has been an undergoing effort to address those vulnerabilities by looking into many adaptation strategies.

Keywords: remote sensing, modeling, long range transport, dust storms, North Africa, Gulf Region, India, California, climate extremes, sea level rise, coral reefs

Procedia PDF Downloads 488
7 Development Programmes Requirements for Managing and Supporting the Ever-Dynamic Job Roles of Middle Managers in Higher Education Institutions: The Espousal Demanded from Human Resources Department; Case Studies of a New University in United Kingdom

Authors: Mohamed Sameer Mughal, Andrew D. Ross, Damian J. Fearon

Abstract:

Background: The fast-paced changing landscape of UK Higher Education Institution (HEIs) is poised by changes and challenges affecting Middle Managers (MM) in their job roles. MM contribute to the success of HEIs by balancing the equilibrium and pass organization strategies from senior staff towards operationalization directives to junior staff. However, this study showcased from the data analyzed during the semi structured interviews; MM job role is becoming more complex due to changes and challenges creating colossal pressures and workloads in day-to-day working. Current development programmes provisions by Human Resources (HR) departments in such HEIs are not feasible, applicable, and matching the true essence and requirements of MM who suggest that programmes offered by HR are too generic to suit their precise needs and require tailor made espousal to work effectively in their pertinent job roles. Methodologies: This study aims to capture demands of MM Development Needs (DN) by means of a conceptual model as conclusive part of the research that is divided into 2 phases. Phase 1 initiated by carrying out 2 pilot interviews with a retired Emeritus status professor and HR programmes development coordinator. Key themes from the pilot and literature review subsidized into formulation of 22 set of questions (Kvale and Brinkmann) in form of interviewing questionnaire during qualitative data collection. Data strategy and collection consisted of purposeful sampling of 12 semi structured interviews (n=12) lasting approximately an hour for all participants. The MM interviewed were at faculty and departmental levels which included; deans (n=2), head of departments (n=4), subject leaders (n=2), and lastly programme leaders (n=4). Participants recruitment was carried out via emails and snowballing technique. The interviews data was transcribed (verbatim) and managed using Computer Assisted Qualitative Data Analysis using Nvivo ver.11 software. Data was meticulously analyzed using Miles and Huberman inductive approach of positivistic style grounded theory, whereby key themes and categories emerged from the rich data collected. The data was precisely coded and classified into case studies (Robert Yin); with a main case study, sub cases (4 classes of MM) and embedded cases (12 individual MMs). Major Findings: An interim conceptual model emerged from analyzing the data with main concepts that included; key performance indicators (KPI’s), HEI effectiveness and outlook, practices, processes and procedures, support mechanisms, student events, rules, regulations and policies, career progression, reporting/accountability, changes and challenges, and lastly skills and attributes. Conclusion: Dynamic elements affecting MM includes; increase in government pressures, student numbers, irrelevant development programmes, bureaucratic structures, transparency and accountability, organization policies, skills sets… can only be confronted by employing structured development programmes originated by HR that are not provided generically. Future Work: Stage 2 (Quantitative method) of the study plans to validate the interim conceptual model externally through fully completed online survey questionnaire (Bram Oppenheim) from external HEIs (n=150). The total sample targeted is 1500 MM. Author contribution focuses on enhancing management theory and narrow the gap between by HR and MM development programme provision.

Keywords: development needs (DN), higher education institutions (HEIs), human resources (HR), middle managers (MM)

Procedia PDF Downloads 232
6 Translation of Self-Inject Contraception Training Objectives Into Service Performance Outcomes

Authors: Oluwaseun Adeleke, Samuel O. Ikani, Simeon Christian Chukwu, Fidelis Edet, Anthony Nwala, Mopelola Raji, Simeon Christian Chukwu

Abstract:

Background: Health service providers are offered in-service training periodically to strengthen their ability to deliver services that are ethical, quality, timely and safe. Not all capacity-building courses have successfully resulted in intended service delivery outcomes because of poor training content, design, approach, and ambiance. The Delivering Innovations in Selfcare (DISC) project developed a Moment of Truth innovation, which is a proven training model focused on improving consumer/provider interaction that leads to an increase in the voluntary uptake of subcutaneous depot medroxyprogesterone acetate (DMPA-SC) self-injection among women who opt for injectable contraception. Methodology: Six months after training on a moment of truth (MoT) training manual, the project conducted two intensive rounds of qualitative data collection and triangulation that included provider, client, and community mobilizer interviews, facility observations, and routine program data collection. Respondents were sampled according to a convenience sampling approach, and data collected was analyzed using a codebook and Atlas-TI. Providers and clients were interviewed to understand their experience, perspective, attitude, and awareness about the DMPA-SC self-inject. Data were collected from 12 health facilities in three states – eight directly trained and four cascades trained. The research team members came together for a participatory analysis workshop to explore and interpret emergent themes. Findings: Quality-of-service delivery and performance outcomes were observed to be significantly better in facilities whose providers were trained directly trained by the DISC project than in sites that received indirect training through master trainers. Facilities that were directly trained recorded SI proportions that were twice more than in cascade-trained sites. Direct training comprised of full-day and standalone didactic and interactive sessions constructed to evoke commitment, passion and conviction as well as eliminate provider bias and misconceptions in providers by utilizing human interest stories and values clarification exercises. Sessions also created compelling arguments using evidence and national guidelines. The training also prioritized demonstration sessions, utilized job aids, particularly videos, strengthened empathetic counseling – allaying client fears and concerns about SI, trained on positioning self-inject first and side effects management. Role plays and practicum was particularly useful to enable providers to retain and internalize new knowledge. These sessions provided experiential learning and the opportunity to apply one's expertise in a supervised environment where supportive feedback is provided in real-time. Cascade Training was often a shorter and abridged form of MoT training that leveraged existing training already planned by master trainers. This training was held over a four-hour period and was less emotive, focusing more on foundational DMPA-SC knowledge such as a reorientation to DMPA-SC, comparison of DMPA-SC variants, counseling framework and skills, data reporting and commodity tracking/requisition – no facility practicums. Training on self-injection was not as robust, presumably because they were not directed at methods in the contraceptive mix that align with state/organizational sponsored objectives – in this instance, fostering LARC services. Conclusion: To achieve better performance outcomes, consideration should be given to providing training that prioritizes practice-based and emotive content. Furthermore, a firm understanding and conviction about the value training offers improve motivation and commitment to accomplish and surpass service-related performance outcomes.

Keywords: training, performance outcomes, innovation, family planning, contraception, DMPA-SC, self-care, self-injection.

Procedia PDF Downloads 85
5 Navigating the Nexus of HIV/AIDS Care: Leveraging Statistical Insight to Transform Clinical Practice and Patient Outcomes

Authors: Nahashon Mwirigi

Abstract:

The management of HIV/AIDS is a global challenge, demanding precise tools to predict disease progression and guide tailored treatment. CD4 cell count dynamics, a crucial immune function indicator, play an essential role in understanding HIV/AIDS progression and enhancing patient care through effective modeling. While several models assess disease progression, existing methods often fall short in capturing the complex, non-linear nature of HIV/AIDS, especially across diverse demographics. A need exists for models that balance predictive accuracy with clinical applicability, enabling individualized care strategies based on patient-specific progression rates. This study utilizes patient data from Kenyatta National Hospital (2003–2014) to model HIV/AIDS progression across six CD4-defined states. The Exponential, 2-Parameter Weibull, and 3-Parameter Weibull models are employed to analyze failure rates and explore progression patterns by age and gender. Model selection is based on Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to identify models best representing disease progression variability across demographic groups. The 3-Parameter Weibull model emerges as the most effective, accurately capturing HIV/AIDS progression dynamics, particularly by incorporating delayed progression effects. This model reflects age and gender-specific variations, offering refined insights into patient trajectories and facilitating targeted interventions. One key finding is that older patients progress more slowly through CD4-defined stages, with a delayed onset of advanced stages. This suggests that older patients may benefit from extended monitoring intervals, allowing providers to optimize resources while maintaining consistent care. Recognizing slower progression in this demographic helps clinicians reduce unnecessary interventions, prioritizing care for faster-progressing groups. Gender-based analysis reveals that female patients exhibit more consistent progression, while male patients show greater variability. This highlights the need for gender-specific treatment approaches, as men may require more frequent assessments and adaptive treatment plans to address their variable progression. Tailoring treatment by gender can improve outcomes by addressing distinct risk patterns in each group. The model’s ability to account for both accelerated and delayed progression equips clinicians with a robust tool for estimating the duration of each disease stage. This supports individualized treatment planning, allowing clinicians to optimize antiretroviral therapy (ART) regimens based on demographic factors and expected disease trajectories. Aligning ART timing with specific progression patterns can enhance treatment efficacy and adherence. The model also has significant implications for healthcare systems, as its predictive accuracy enables proactive patient management, reducing the frequency of advanced-stage complications. For resource limited providers, this capability facilitates strategic intervention timing, ensuring that high-risk patients receive timely care while resources are allocated efficiently. Anticipating progression stages enhances both patient care and resource management, reinforcing the model’s value in supporting sustainable HIV/AIDS healthcare strategies. This study underscores the importance of models that capture the complexities of HIV/AIDS progression, offering insights to guide personalized, data-informed care. The 3-Parameter Weibull model’s ability to accurately reflect delayed progression and demographic risk variations presents a valuable tool for clinicians, supporting the development of targeted interventions and resource optimization in HIV/AIDS management.

Keywords: HIV/AIDS progression, 3-parameter Weibull model, CD4 cell count stages, antiretroviral therapy, demographic-specific modeling

Procedia PDF Downloads 4
4 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 42
3 Understanding Patterns of Hard Coral Demographics in Kenyan Reefs to Inform Restoration

Authors: Swaleh Aboud, Mishal Gudka, David Obura

Abstract:

Background: Coral reefs are becoming increasingly vulnerable due to several threats ranging from climate change to overfishing. This has resulted in increased management and conservation efforts to protect reefs from degradation and facilitate recovery. Recruitmentof new individuals are isimportant in the recovery process and critical for the persistence of coral reef ecosystems. Local coral community structure can be influenced by successful recruit settlement, survival, and growth Understanding coral recruitment patterns can help quantify reef resilience and connectivity, establish baselines and track changes and evaluate the effectiveness of reef restoration and conservation efforts. This study will examine the abundance and spatial pattern of coral recruits and how this relates to adult community structure, including the distribution of thermal resistance and sensitive genera and their distribution in different management regimes. Methods: Coral recruit and demography surveys were conducted from 2020 to 2022, covering 35 sites in 19coral reef locations along the Kenyan coast. These included marine parks, reserves, community conservation areas (CMAs), and open access areas from the north (Marereni) to the south (Kisite) coast of Kenya and across different reef habitats. The data was collected through the underwater visual census (UVC) technique. We counted adult corals (>10 cm diameter)of23 selected genera using belt transects (25 by 1 m) and sampling of 1 m2 quadrat (at an interval of 5m) for all coloniesless than 10 cm diameter. The benthic cover was collected using photo quadrats. The surveys were only done during the northeast monsoon season. The data wereanalyzed using the R program to see the distribution patterns and the Kruskal Wallis test to see whether there was a significant difference. Spearman correlation was also applied to assess the relationship between the distribution of coral genera in recruits and adults. Results: A total of 44 different coral genera were recorded for recruits, ranging from 3at Marereni to 30at Watamu Marine Reserve. Recruit densities ranged from 1.2±1.5recruit m-2 (mean±SD) at Likoni to 10.3± 8.4 recruit m-2 at Kisite Marine Park. The overall densityof recruitssignificantly differed between reef locations, with Kisite Marine Park and Reserve and Likonihaving significantly large differences from all the other locations, while Vuma, Watamu, Malindi, and Kilifi had significantly lower differences from all the other locations. The recruit generadensity along the Kenya coastwas divided into two clusters, one of which only included sites inKisite Marine Park. Adult colonies were dominated by Porites massive, Acropora, Platygyra, and Favites, whereas recruits were dominated by Porites branching, Porites massive, Galaxea, and Acropora. However, correlation analysis revealed a statistically significant positive correlation (r=0.81, p<0.05) between recruit and adult coral densities across the 23 coral genera. Marereni, which had the lowest densityof recruits, has only thermallyresistant coral genera, while Kisite Marine Park, with the highest recruit densities, has over 90% thermal sensitive coral genera. A weak positive correlation was found between recruit density and coralline algae, dead standing corals, and turf algae, whereas a weak negative correlation was found between recruit density and bare substrate and macroalgae. Between management regimes, marine reserves were found to have more recruits than no-take zones (marine parks and CMAs) and open access areas, although the difference was not significant. Conclusion: There was a statistically significant difference in the density of recruits between different reef locations along the Kenyan coast. Although the dominating genera of adults and recruits were different, there was a strong positive correlation between their coral communities, which could indicate self-recruitment processes or consistent distance seedings (of the same recruit genera). Sites such as Kisite Marine Park, with high recruit densities but dominated by thermally sensitive genera, will, on the other hand, be adversely affected by future thermal stress. This could imply that reducing the threats to coral reefs such as overfishingcould allow for their natural regeneration and recovery.

Keywords: coral recruits, coral adult size-class, cora demography, resilience

Procedia PDF Downloads 124
2 Municipal Solid Waste Management in Ethiopia: Systematic Review of Physical and Chemical Compositions and Generation Rate

Authors: Tsegay Kahsay Gebrekidan, Gebremariam Gebrezgabher Gebremedhin, Abraha Kahsay Weldemariam, Meaza Kidane Teferi

Abstract:

Municipal solid waste management (MSWM) in Ethiopia is a complex issue with institutional, social, political, environmental, and economic dimensions, impacting sustainable development. Effective MSWM planning necessitates understanding the generation rate and composition of waste. This systematic review synthesizes qualitative and quantitative data from various sources to aggregate current knowledge, identify gaps, and provide a comprehensive understanding of municipal solid waste management in Ethiopia. The findings reveal that the generation rate of municipal solid waste in Ethiopia is 0.38 kg/ca/day, with the waste composition being predominantly food waste, followed by ash, dust, and sand, and yard waste. Over 85% of this MSW is either reusable or recyclable, with a significant portion being organic matter (73.13% biodegradable) and 11.78% recyclable materials. Physicochemical analyses reveal that Ethiopian MSW is suitable for composting and biogas production, offering opportunities to reduce environmental pollution, and GHGs, support urban agriculture, and create job opportunities. However; challenges persist, including a lack of political will, weak municipal planning, limited community awareness, and inadequate waste management infrastructure, and only 31.8% of MSW is collected legally, leading to inefficient and harmful disposal practices. To improve MSWM, Ethiopia should focus on public awareness; increased funding, infrastructure investment, private sector partnerships, and implementing the 4 R principles (reduce, reuse, and recycle). An integrated approach involving government, industry, and civil society is essential. Further research on the physicochemical properties and strategic uses of MSW is needed to enhance management practices. Implications: The comprehensive study of municipal solid waste management (MSWM) in Ethiopia reveals the intricate interplay of institutional, social, political, environmental, and economic factors that influence the nation’s sustainable development. The findings underscore the urgent need for tailored, integrated waste management strategies that are informed by a thorough understanding of MSW generation rates, composition, and current management practices. Ethiopia’s lower per capita MSW generation compared to developed countries and the predominantly organic composition of its waste present significant opportunities for sustainable waste management practices such as composting and recycling. These practices can not only minimize the environmental impact but also support urban greening, agriculture, and renewable energy production. The high organic content, suitable physicochemical properties of MSW for composting, and potential for biogas and briquette production highlight pathways for creating employment, reducing waste, and enhancing soil fertility. Despite these opportunities, Ethiopia faces substantial challenges due to inadequate political will, weak municipal planning, limited community awareness, insufficient waste management infrastructure, and poor policy implementation. The high rate of illegal waste disposal further exacerbates environmental and health issues, emphasizing the need for a more effective and integrated MSWM approach. To address these challenges and harness the potential of MSW, Ethiopia must prioritize increasing public awareness; investing in infrastructure, fostering private sector partnerships, and implementing the principles of reduce, reuse, and recycle (3 R). Developing strategies that involve all stakeholders and turning waste into valuable resources is crucial. Government, industry, and civil society must collaborate to implement integrated MSWM systems that focus on waste reduction at the source, alternative material use, and advanced recycling technologies. Further research at both federal and regional levels is essential to optimize the physicochemical analysis and strategic use of MSW. Prompt action is required to transform waste management into a pillar of sustainable urban development, ultimately improving environmental quality and human health in Ethiopia.

Keywords: biodegradable, healthy environment, integrated solid waste management, municipal

Procedia PDF Downloads 13
1 Effect of Inoculation with Consortia of Plant-Growth Promoting Bacteria on Biomass Production of the Halophyte Salicornia ramosissima

Authors: Maria João Ferreira, Natalia Sierra-Garcia, Javier Cremades, Carla António, Ana M. Rodrigues, Helena Silva, Ângela Cunha

Abstract:

Salicornia ramosissima, a halophyte that grows naturally in coastal areas of the northern hemisphere, is often considered the most promising halophyte candidate for extensive crop cultivation and saline agriculture practices. The expanding interest in this plant surpasses its use as gourmet food and includes their potential application as a source of bioactive compounds for the pharmaceutical industry. Despite growing well in saline soils, sustainable and ecologically friendly techniques to enhance crop production and the nutritional value of this plant are still needed. The root microbiome of S. ramosissima proved to be a source of taxonomically diverse plant growth-promoting bacteria (PGPB). Halotolerant strains of Bacillus, Salinicola, Pseudomonas, and Brevibacterium, among other genera, exhibit a broad spectrum of plant-growth promotion traits [e.g., 3-indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophores, phosphate solubilization, Nitrogen fixation] and express a wide range of extracellular enzyme activities. In this work, three plant growth-promoting bacteria strains (Brevibacterium casei EB3, Pseudomonas oryzihabitans RL18, and Bacillus aryabhattai SP20) isolated from the rhizosphere and the endosphere of S. ramosissima roots from different saltmarshes along the Portuguese coast were inoculated in S. ramosissima seeds. Plants germinated from inoculated seeds were grown for three months in pots filled with a mixture of perlite and estuarine sediment (1:1) in greenhouse conditions and later transferred to a growth chamber, where they were maintained two months with controlled photoperiod, temperature, and humidity. Pots were placed on trays containing the irrigation solution (Hoagland’s solution 20% added with 10‰ marine salt). Before reaching the flowering stage, plants were collected, and the fresh and dry weight of aerial parts was determined. Non-inoculated seeds were used as a negative control. Selected dried stems from the most promising treatments were later analyzed by GC-TOF-MS for primary metabolite composition. The efficiency of inoculation and persistence of the inoculum was assessed by Next Generation Sequencing. Inoculations with single strain EB3 and co-inoculations with EB3+RL18 and EB3+RL18+SP20 (All treatment) resulted in significantly higher biomass production (fresh and dry weight) compared to non-inoculated plants. Considering fresh weight alone, inoculation with isolates SP20 and RL18 also caused a significant positive effect. Combined inoculation with the consortia SP20+EB3 or SP20+RL18 did not significantly improve biomass production. The analysis of the profile of primary metabolites will provide clues on the mechanisms by which the growth-enhancement effect of the inoculants operates in the plants. These results sustain promising prospects for the use of rhizospheric and endophytic PGPB as biofertilizers, reducing environmental impacts and operational costs of agrochemicals and contributing to the sustainability and cost-effectiveness of saline agriculture. Acknowledgments: This work was supported by project Rhizomis PTDC/BIA-MIC/29736/2017 financed by Fundação para a Ciência e Tecnologia (FCT) through the Regional Operational Program of the Center (02/SAICT/2017) with FEDER funds (European Regional Development Fund, FNR, and OE) and by FCT through CESAM (UIDP/50017/2020 + UIDB/50017/2020), LAQV-REQUIMTE (UIDB/50006/2020). We also acknowledge FCT/FSE for the financial support to Maria João Ferreira through a PhD grant (PD/BD/150363/2019). We are grateful to Horta dos Peixinhos for their help and support during sampling and seed collection. We also thank Glória Pinto for her collaboration providing us the use of the growth chambers during the final months of the experiment and Enrique Mateos-Naranjo and Jennifer Mesa-Marín of the Departamento de Biología Vegetal y Ecología, the University of Sevilla for their advice regarding the growth of salicornia plants in greenhouse conditions.

Keywords: halophytes, PGPB, rhizosphere engineering, biofertilizers, primary metabolite profiling, plant inoculation, Salicornia ramosissima

Procedia PDF Downloads 159