Search results for: train routing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 878

Search results for: train routing

488 Application of MALDI-MS to Differentiate SARS-CoV-2 and Non-SARS-CoV-2 Symptomatic Infections in the Early and Late Phases of the Pandemic

Authors: Dmitriy Babenko, Sergey Yegorov, Ilya Korshukov, Aidana Sultanbekova, Valentina Barkhanskaya, Tatiana Bashirova, Yerzhan Zhunusov, Yevgeniya Li, Viktoriya Parakhina, Svetlana Kolesnichenko, Yeldar Baiken, Aruzhan Pralieva, Zhibek Zhumadilova, Matthew S. Miller, Gonzalo H. Hortelano, Anar Turmuhambetova, Antonella E. Chesca, Irina Kadyrova

Abstract:

Introduction: The rapidly evolving COVID-19 pandemic, along with the re-emergence of pathogens causing acute respiratory infections (ARI), has necessitated the development of novel diagnostic tools to differentiate various causes of ARI. MALDI-MS, due to its wide usage and affordability, has been proposed as a potential instrument for diagnosing SARS-CoV-2 versus non-SARS-CoV-2 ARI. The aim of this study was to investigate the potential of MALDI-MS in conjunction with a machine learning model to accurately distinguish between symptomatic infections caused by SARS-CoV-2 and non-SARS-CoV-2 during both the early and later phases of the pandemic. Furthermore, this study aimed to analyze mass spectrometry (MS) data obtained from nasal swabs of healthy individuals. Methods: We gathered mass spectra from 252 samples, comprising 108 SARS-CoV-2-positive samples obtained in 2020 (Covid 2020), 7 SARS-CoV- 2-positive samples obtained in 2023 (Covid 2023), 71 samples from symptomatic individuals without SARS-CoV-2 (Control non-Covid ARVI), and 66 samples from healthy individuals (Control healthy). All the samples were subjected to RT-PCR testing. For data analysis, we employed the caret R package to train and test seven machine-learning algorithms: C5.0, KNN, NB, RF, SVM-L, SVM-R, and XGBoost. We conducted a training process using a five-fold (outer) nested repeated (five times) ten-fold (inner) cross-validation with a randomized stratified splitting approach. Results: In this study, we utilized the Covid 2020 dataset as a case group and the non-Covid ARVI dataset as a control group to train and test various machine learning (ML) models. Among these models, XGBoost and SVM-R demonstrated the highest performance, with accuracy values of 0.97 [0.93, 0.97] and 0.95 [0.95; 0.97], specificity values of 0.86 [0.71; 0.93] and 0.86 [0.79; 0.87], and sensitivity values of 0.984 [0.984; 1.000] and 1.000 [0.968; 1.000], respectively. When examining the Covid 2023 dataset, the Naive Bayes model achieved the highest classification accuracy of 43%, while XGBoost and SVM-R achieved accuracies of 14%. For the healthy control dataset, the accuracy of the models ranged from 0.27 [0.24; 0.32] for k-nearest neighbors to 0.44 [0.41; 0.45] for the Support Vector Machine with a radial basis function kernel. Conclusion: Therefore, ML models trained on MALDI MS of nasopharyngeal swabs obtained from patients with Covid during the initial phase of the pandemic, as well as symptomatic non-Covid individuals, showed excellent classification performance, which aligns with the results of previous studies. However, when applied to swabs from healthy individuals and a limited sample of patients with Covid in the late phase of the pandemic, ML models exhibited lower classification accuracy.

Keywords: SARS-CoV-2, MALDI-TOF MS, ML models, nasopharyngeal swabs, classification

Procedia PDF Downloads 108
487 Light Car Assisted by PV Panels

Authors: Soufiane Benoumhani, Nadia Saifi, Boubekeur Dokkar, Mohamed Cherif Benzid

Abstract:

This work presents the design and simulation of electric equipment for a hybrid solar vehicle. The new drive train of this vehicle is a parallel hybrid system which means a vehicle driven by a great percentage of an internal combustion engine with 49.35 kW as maximal power and electric motor only as assistance when is needed. This assistance is carried out on the rear axle by a single electric motor of 7.22 kW as nominal power. The motor is driven by 12 batteries connecting in series, which are charged by three PV panels (300 W) installed on the roof and hood of the vehicle. The individual components are modeled and simulated by using the Matlab Simulink environment. The whole system is examined under different load conditions. The reduction of CO₂ emission is obtained by reducing fuel consumption. With the use of this hybrid system, fuel consumption can be reduced from 6.74 kg/h to 5.56 kg/h when the electric motor works at 100 % of its power. The net benefit of the system reaches 1.18 kg/h as fuel reduction at high values of power and torque.

Keywords: light car, hybrid system, PV panel, electric motor

Procedia PDF Downloads 121
486 Geospatial Network Analysis Using Particle Swarm Optimization

Authors: Varun Singh, Mainak Bandyopadhyay, Maharana Pratap Singh

Abstract:

The shortest path (SP) problem concerns with finding the shortest path from a specific origin to a specified destination in a given network while minimizing the total cost associated with the path. This problem has widespread applications. Important applications of the SP problem include vehicle routing in transportation systems particularly in the field of in-vehicle Route Guidance System (RGS) and traffic assignment problem (in transportation planning). Well known applications of evolutionary methods like Genetic Algorithms (GA), Ant Colony Optimization, Particle Swarm Optimization (PSO) have come up to solve complex optimization problems to overcome the shortcomings of existing shortest path analysis methods. It has been reported by various researchers that PSO performs better than other evolutionary optimization algorithms in terms of success rate and solution quality. Further Geographic Information Systems (GIS) have emerged as key information systems for geospatial data analysis and visualization. This research paper is focused towards the application of PSO for solving the shortest path problem between multiple points of interest (POI) based on spatial data of Allahabad City and traffic speed data collected using GPS. Geovisualization of results of analysis is carried out in GIS.

Keywords: particle swarm optimization, GIS, traffic data, outliers

Procedia PDF Downloads 483
485 ICT in Education – A Quest for Quality Learning in the 21st Century

Authors: Adam Johnbull

Abstract:

The paper discusses ICT in Education as a quest for quality learning in the 21st century. Education is the key that unlock the door to development, without adequate education of the citizenry, the development of a nation becomes a sham. Information Communication Technologies (ICTs) has revolutionized the way people work today and are now transforming education systems. As a result, if schools train children in yesterday’s skills and technologies they may not be effective and fit in tomorrow’s world. This is a sufficient reason for ICT’s to win global recognition and attention and thus ensure desire quality in our school system. Thus, the purpose of the paper is to discuss amongst others, what is ICT. The roles of ICT’s in education, limitation and key challenges of integrating ICT to education in the enhancement of student learning and experiences in other to encourage policy makers, school administrators and teachers pay the required attention to integrate this technology in the education system. The paper concludes that regardless of all the limitation characterizing it. ICT benefit education system to provide quality education in the 21st century.

Keywords: ICTs, quest, information, global, sham, century

Procedia PDF Downloads 426
484 Unsupervised Domain Adaptive Text Retrieval with Query Generation

Authors: Rui Yin, Haojie Wang, Xun Li

Abstract:

Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.

Keywords: dense retrieval, query generation, unsupervised training, text retrieval

Procedia PDF Downloads 73
483 Improvement of Transient Voltage Response Using PSS-SVC Coordination Based on ANFIS-Algorithm in a Three-Bus Power System

Authors: I Made Ginarsa, Agung Budi Muljono, I Made Ari Nrartha

Abstract:

Transient voltage response appears in power system operation when an additional loading is forced to load bus of power systems. In this research, improvement of transient voltage response is done by using power system stabilizer-static var compensator (PSS-SVC) based on adaptive neuro-fuzzy inference system (ANFIS)-algorithm. The main function of the PSS is to add damping component to damp rotor oscillation through automatic voltage regulator (AVR) and excitation system. Learning process of the ANFIS is done by using off-line method where data learning that is used to train the ANFIS model are obtained by simulating the PSS-SVC conventional. The ANFIS model uses 7 Gaussian membership functions at two inputs and 49 rules at an output. Then, the ANFIS-PSS and ANFIS-SVC models are applied to power systems. Simulation result shows that the response of transient voltage is improved with settling time at the time of 4.25 s.

Keywords: improvement, transient voltage, PSS-SVC, ANFIS, settling time

Procedia PDF Downloads 577
482 Analysis of the Benefits of Motion Simulators in 5th Generation Fighter Pilots' Training

Authors: Ali Mithad Emre

Abstract:

In military aviation, the use of flight simulators has proliferated recently in order to train fifth generation fighter pilots. With these simulators, pilots can carry out real-time flights resulting in seeing their faults and can perform emergency drills prior to real flights. Since we cannot risk losing the aircraft and the pilot himself/herself in the flight training process, flight simulators are of great importance to adapt the fighter pilots competently to real flights aboard the fifth generation aircraft. The real flights are impossible to simulate thoroughly on the ground. To some extent, the fixed-based simulators may assist the pilot to steer aircraft technically and visually but flight simulators can’t trick the pilot’s vestibular, sensory, and perceptual systems without motion platforms. This paper discusses the benefits of motion simulators for fifth generation fighter pilots’ training in preference to the fixed-based counterparts by analyzing their pros and cons.

Keywords: military, pilot, sickness, simulator

Procedia PDF Downloads 468
481 Investigation of Chord Protocol in Peer to Peer Wireless Mesh Network with Mobility

Authors: P. Prasanna Murali Krishna, M. V. Subramanyam, K. Satya Prasad

Abstract:

File sharing in networks are generally achieved using Peer-to-Peer (P2P) applications. Structured P2P approaches are widely used in adhoc networks due to its distributed and scalability features. Efficient mechanisms are required to handle the huge amount of data distributed to all peers. The intrinsic characteristics of P2P system makes for easier content distribution when compared to client-server architecture. All the nodes in a P2P network act as both client and server, thus, distributing data takes lesser time when compared to the client-server method. CHORD protocol is a resource routing based where nodes and data items are structured into a 1- dimensional ring. The structured lookup algorithm of Chord is advantageous for distributed P2P networking applications. Though, structured approach improves lookup performance in a high bandwidth wired network it could contribute to unnecessary overhead in overlay networks leading to degradation of network performance. In this paper, the performance of existing CHORD protocol on Wireless Mesh Network (WMN) when nodes are static and dynamic is investigated.

Keywords: wireless mesh network (WMN), structured P2P networks, peer to peer resource sharing, CHORD Protocol, DHT

Procedia PDF Downloads 480
480 Competitor Analysis to Quantify the Benefits and for Different Use of Transport Infrastructure

Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki

Abstract:

Different transportation modes have key operational advantages and disadvantages, providing a variety of different transport options to users and passengers. This paper reviews key variables for the competition between air transport and other transport modes. The aim of this paper is to review the competition between air transport and other transport modes, providing results in terms of perceived cost for the users, for destinations high competitiveness for all transport modes. The competitor analysis variables include the cost and time outputs for each transport option, highlighting the level of competitiveness on high demanded Origin-Destination corridors. The case study presents the output of a such analysis for the OD corridor in Greece that connects the Capital city (Athens) with the second largest city (Thessaloniki) and the different transport modes have been considered (air, train, road). Conventional wisdom is to present an easy to handle tool for planners, managers and decision makers towards pricing policy effectiveness and demand attractiveness, appropriate to use for other similar cases.

Keywords: competitor analysis, transport economics, transport generalized cost, quantitative modelling

Procedia PDF Downloads 247
479 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN

Authors: M. P. Nanda Kumar, K. Dheeraj

Abstract:

The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.

Keywords: inverse optimal control, radial basis function, neural network, controller design

Procedia PDF Downloads 553
478 Electrical Power Distribution Reliability Improvement by Retrofitting 4.16 kV Vacuum Contactor in Badak LNG Plant

Authors: David Hasurungan

Abstract:

This paper objective is to assess the power distribution reliability improvement by retrofitting obsolete vacuum contactor. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. To support plant operational, Badak LNG is equipped with 4.16 kV switchgear for supplying the storage and loading facilities, utilities facilities, and train facilities. However, there is a problem in two switch gears of sixteen switch gears. The problem is the obsolescence issue in its vacuum contactor. Not only that, but the same switchgear also has suffered from electrical fault due to contact fingering misalignment. In order to improve the reliability in switchgear, the vacuum contactor retrofit project is done. The retrofit will introduce new vacuum contactor design. The comparison between existing design and the new design is presented in this paper. Meanwhile, The reliability assessment and calculation are performed using software Reliasoft 7.

Keywords: reliability, obsolescence, retrofit, vacuum contactor

Procedia PDF Downloads 291
477 Promoting Compassionate Communication in a Multidisciplinary Fellowship: Results from a Pilot Evaluation

Authors: Evonne Kaplan-Liss, Val Lantz-Gefroh

Abstract:

Arts and humanities are often incorporated into medical education to help deepen understanding of the human condition and the ability to communicate from a place of compassion. However, a gap remains in our knowledge of compassionate communication training for postgraduate medical professionals (as opposed to students and residents); how training opportunities include and impact the artists themselves, and how train-the-trainer models can support learners to become teachers. In this report, the authors present results from a pilot evaluation of the UC San Diego Health: Sanford Compassionate Communication Fellowship, a 60-hour experiential program that uses theater, narrative reflection, poetry, literature, and journalism techniques to train a multidisciplinary cohort of medical professionals and artists in compassionate communication. In the culminating project, fellows design and implement their own projects as teachers of compassionate communication in their respective workplaces. Qualitative methods, including field notes and 30-minute Zoom interviews with each fellow, were used to evaluate the impact of the fellowship. The cohort included both artists (n=2) and physicians representing a range of specialties (n=7), such as occupational medicine, palliative care, and pediatrics. The authors coded the data using thematic analysis for evidence of how the multidisciplinary nature of the fellowship impacted the fellows’ experiences. The findings show that the multidisciplinary cohort contributed to a greater appreciation of compassionate communication in general. Fellows expressed that the ability to witness how those in different fields approached compassionate communication enhanced their learning and helped them see how compassion can be expressed in various contexts, which was both “exhilarating” and “humbling.” One physician expressed that the fellowship has been “really helpful to broaden my perspective on the value of good communication.” Fellows shared how what they learned in the fellowship translated to increased compassionate communication, not only in their professional roles but in their personal lives as well. A second finding was the development of a supportive community. Because each fellow brought their own experiences and expertise, there was a sense of genuine ability to contribute as well as a desire to learn from others. A “brave space” was created by the fellowship facilitators and the inclusion of arts-based activities: a space that invited vulnerability and welcomed fellows to make their own meaning without prescribing any one answer or right way to approach compassionate communication. This brave space contributed to a strong connection among the fellows and reports of increased well-being, as well as multiple collaborations post-fellowship to carry forward compassionate communication training at their places of work. Results show initial evidence of the value of a multidisciplinary fellowship for promoting compassionate communication for both artists and physicians. The next steps include maintaining the supportive fellowship community and collaborations with a post-fellowship affiliate faculty program; scaling up the fellowship with non-physicians (e.g., nurses and physician assistants); and collecting data from family members, colleagues, and patients to understand how the fellowship may be creating a ripple effect outside of the fellowship through fellows’ compassionate communication.

Keywords: compassionate communication, communication in healthcare, multidisciplinary learning, arts in medicine

Procedia PDF Downloads 69
476 Spectrum Allocation Using Cognitive Radio in Wireless Mesh Networks

Authors: Ayoub Alsarhan, Ahmed Otoom, Yousef Kilani, Abdel-Rahman al-GHuwairi

Abstract:

Wireless mesh networks (WMNs) have emerged recently to improve internet access and other networking services. WMNs provide network access to the clients and other networking functions such as routing, and packet forwarding. Spectrum scarcity is the main challenge that limits the performance of WMNs. Cognitive radio is proposed to solve spectrum scarcity problem. In this paper, we consider a cognitive wireless mesh network where unlicensed users (secondary users, SUs) can access free spectrum that is allocated to spectrum owners (primary users, PUs). Although considerable research has been conducted on spectrum allocation, spectrum assignment is still considered an important challenging problem. This problem can be solved using cognitive radio technology that allows SUs to intelligently locate free bands and access them without interfering with PUs. Our scheme considers several heuristics for spectrum allocation. These heuristics include: channel error rate, PUs activities, channel capacity and channel switching time. Performance evaluation of the proposed scheme shows that the scheme is able to allocate the unused spectrum for SUs efficiently.

Keywords: cognitive radio, dynamic spectrum access, spectrum management, spectrum sharing, wireless mesh networks

Procedia PDF Downloads 529
475 Hybridization and Dynamic Performance Analysis of Three-Wheeler Electric Auto Rickshaw

Authors: Muhammad Asghar, A. I. Bhatti, T. Izhar

Abstract:

The three-wheeled auto-rickshaw with a two or four-stroke Gasoline, Liquid Petrolium Gas (LPG) or Compressed Natural Gas (CNG) engine is a petite, highly maneuverable vehicle and best suited for the small and heavily-congested roads and is an affordable means of transportation in Pakistan cities. However due to in-efficient engine design, it is a main cause of air-pollution in the shape of white smoke (CO2) (greenhouse gases) at the tail pipe. Due to the environmental pollution, a huge number of battery powered vehicles have been imported from all over the world to fulfill the need of country. Effect of degree of hybridization on fuel economy and acceleration performance has been discussed in this paper. From mild to full hybridization stages have been examined. Optimal level of hybridization ranges depending on the total driving power of vehicle are suggested. The degree of hybridization is varied and fuel economy is seen accordingly by using Advisor (NREL) software. The novel vehicle drive-train is modeled and simulated in the Advisor software.

Keywords: advisor, hybridization, fuel economy, Three-Wheeled Rickshaw

Procedia PDF Downloads 567
474 Classification of IoT Traffic Security Attacks Using Deep Learning

Authors: Anum Ali, Kashaf ad Dooja, Asif Saleem

Abstract:

The future smart cities trend will be towards Internet of Things (IoT); IoT creates dynamic connections in a ubiquitous manner. Smart cities offer ease and flexibility for daily life matters. By using small devices that are connected to cloud servers based on IoT, network traffic between these devices is growing exponentially, whose security is a concerned issue, since ratio of cyber attack may make the network traffic vulnerable. This paper discusses the latest machine learning approaches in related work further to tackle the increasing rate of cyber attacks, machine learning algorithm is applied to IoT-based network traffic data. The proposed algorithm train itself on data and identify different sections of devices interaction by using supervised learning which is considered as a classifier related to a specific IoT device class. The simulation results clearly identify the attacks and produce fewer false detections.

Keywords: IoT, traffic security, deep learning, classification

Procedia PDF Downloads 154
473 Control of an Asymmetrical Design of a Pneumatically Actuated Ambidextrous Robot Hand

Authors: Emre Akyürek, Anthony Huynh, Tatiana Kalganova

Abstract:

The Ambidextrous Robot Hand is a robotic device with the purpose to mimic either the gestures of a right or a left hand. The symmetrical behavior of its fingers allows them to bend in one way or another keeping a compliant and anthropomorphic shape. However, in addition to gestures they can reproduce on both sides, an asymmetrical mechanical design with a three tendons routing has been engineered to reduce the number of actuators. As a consequence, control algorithms must be adapted to drive efficiently the ambidextrous fingers from one position to another and to include grasping features. These movements are controlled by pneumatic muscles, which are nonlinear actuators. As their elasticity constantly varies when they are under actuation, the length of pneumatic muscles and the force they provide may differ for a same value of pressurized air. The control algorithms introduced in this paper take both the fingers asymmetrical design and the pneumatic muscles nonlinearity into account to permit an accurate control of the Ambidextrous Robot Hand. The finger motion is achieved by combining a classic PID controller with a phase plane switching control that turns the gain constants into dynamic values. The grasping ability is made possible because of a sliding mode control that makes the fingers adapt to the shape of an object before strengthening their positions.

Keywords: ambidextrous hand, intelligent algorithms, nonlinear actuators, pneumatic muscles, robotics, sliding control

Procedia PDF Downloads 296
472 Predictive Models of Ruin Probability in Retirement Withdrawal Strategies

Authors: Yuanjin Liu

Abstract:

Retirement withdrawal strategies are very important to minimize the probability of ruin in retirement. The ruin probability is modeled as a function of initial withdrawal age, gender, asset allocation, inflation rate, and initial withdrawal rate. The ruin probability is obtained based on the 2019 period life table for the Social Security, IRS Required Minimum Distribution (RMD) Worksheets, US historical bond and equity returns, and inflation rates using simulation. Several popular machine learning algorithms of the generalized additive model, random forest, support vector machine, extreme gradient boosting, and artificial neural network are built. The model validation and selection are based on the test errors using hyperparameter tuning and train-test split. The optimal model is recommended for retirees to monitor the ruin probability. The optimal withdrawal strategy can be obtained based on the optimal predictive model.

Keywords: ruin probability, retirement withdrawal strategies, predictive models, optimal model

Procedia PDF Downloads 74
471 Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm

Authors: Safayat Ali Shaikh

Abstract:

Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India.

Keywords: artificial neural network, large irrigation project, modified simplex algorithm, optimal cropping pattern

Procedia PDF Downloads 203
470 Towards Visual Personality Questionnaires Based on Deep Learning and Social Media

Authors: Pau Rodriguez, Jordi Gonzalez, Josep M. Gonfaus, Xavier Roca

Abstract:

Image sharing in social networks has increased exponentially in the past years. Officially, there are 600 million Instagrammers uploading around 100 million photos and videos per day. Consequently, there is a need for developing new tools to understand the content expressed in shared images, which will greatly benefit social media communication and will enable broad and promising applications in education, advertisement, entertainment, and also psychology. Following these trends, our work aims to take advantage of the existing relationship between text and personality, already demonstrated by multiple researchers, so that we can prove that there exists a relationship between images and personality as well. To achieve this goal, we consider that images posted on social networks are typically conditioned on specific words, or hashtags, therefore any relationship between text and personality can also be observed with those posted images. Our proposal makes use of the most recent image understanding models based on neural networks to process the vast amount of data generated by social users to determine those images most correlated with personality traits. The final aim is to train a weakly-supervised image-based model for personality assessment that can be used even when textual data is not available, which is an increasing trend. The procedure is described next: we explore the images directly publicly shared by users based on those accompanying texts or hashtags most strongly related to personality traits as described by the OCEAN model. These images will be used for personality prediction since they have the potential to convey more complex ideas, concepts, and emotions. As a result, the use of images in personality questionnaires will provide a deeper understanding of respondents than through words alone. In other words, from the images posted with specific tags, we train a deep learning model based on neural networks, that learns to extract a personality representation from a picture and use it to automatically find the personality that best explains such a picture. Subsequently, a deep neural network model is learned from thousands of images associated with hashtags correlated to OCEAN traits. We then analyze the network activations to identify those pictures that maximally activate the neurons: the most characteristic visual features per personality trait will thus emerge since the filters of the convolutional layers of the neural model are learned to be optimally activated depending on each personality trait. For example, among the pictures that maximally activate the high Openness trait, we can see pictures of books, the moon, and the sky. For high Conscientiousness, most of the images are photographs of food, especially healthy food. The high Extraversion output is mostly activated by pictures of a lot of people. In high Agreeableness images, we mostly see flower pictures. Lastly, in the Neuroticism trait, we observe that the high score is maximally activated by animal pets like cats or dogs. In summary, despite the huge intra-class and inter-class variabilities of the images associated to each OCEAN traits, we found that there are consistencies between visual patterns of those images whose hashtags are most correlated to each trait.

Keywords: emotions and effects of mood, social impact theory in social psychology, social influence, social structure and social networks

Procedia PDF Downloads 196
469 Optimization of Lubricant Distribution with Alternative Coordinates and Number of Warehouses Considering Truck Capacity and Time Windows

Authors: Taufik Rizkiandi, Teuku Yuri M. Zagloel, Andri Dwi Setiawan

Abstract:

Distribution and growth in the transportation and warehousing business sector decreased by 15,04%. There was a decrease in Gross Domestic Product (GDP) contribution level from rank 7 of 4,41% in 2019 to 3,81% in rank 8 in 2020. A decline in the transportation and warehousing business sector contributes to GDP, resulting in oil and gas companies implementing an efficient supply chain strategy to ensure the availability of goods, especially lubricants. Fluctuating demand for lubricants and warehouse service time limits are essential things that are taken into account in determining an efficient route. Add depots points as a solution so that demand for lubricants is fulfilled (not stock out). However, adding a depot will increase operating costs and storage costs. Therefore, it is necessary to optimize the addition of depots using the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW). This research case study was conducted at an oil and gas company that produces lubricants from 2019 to 2021. The study results obtained the optimal route and the addition of a depot with a minimum additional cost. The total cost remains efficient with the addition of a depot when compared to one depot from Jakarta.

Keywords: CVRPTW, optimal route, depot, tabu search algorithm

Procedia PDF Downloads 136
468 Evaluation of Alternative Approaches for Additional Damping in Dynamic Calculations of Railway Bridges under High-Speed Traffic

Authors: Lara Bettinelli, Bernhard Glatz, Josef Fink

Abstract:

Planning engineers and researchers use various calculation models with different levels of complexity, calculation efficiency and accuracy in dynamic calculations of railway bridges under high-speed traffic. When choosing a vehicle model to depict the dynamic loading on the bridge structure caused by passing high-speed trains, different goals are pursued: On the one hand, the selected vehicle models should allow the calculation of a bridge’s vibrations as realistic as possible. On the other hand, the computational efficiency and manageability of the models should be preferably high to enable a wide range of applications. The commonly adopted and straightforward vehicle model is the moving load model (MLM), which simplifies the train to a sequence of static axle loads moving at a constant speed over the structure. However, the MLM can significantly overestimate the structure vibrations, especially when resonance events occur. More complex vehicle models, which depict the train as a system of oscillating and coupled masses, can reproduce the interaction dynamics between the vehicle and the bridge superstructure to some extent and enable the calculation of more realistic bridge accelerations. At the same time, such multi-body models require significantly greater processing capacities and precise knowledge of various vehicle properties. The European standards allow for applying the so-called additional damping method when simple load models, such as the MLM, are used in dynamic calculations. An additional damping factor depending on the bridge span, which should take into account the vibration-reducing benefits of the vehicle-bridge interaction, is assigned to the supporting structure in the calculations. However, numerous studies show that when the current standard specifications are applied, the calculation results for the bridge accelerations are in many cases still too high compared to the measured bridge accelerations, while in other cases, they are not on the safe side. A proposal to calculate the additional damping based on extensive dynamic calculations for a parametric field of simply supported bridges with a ballasted track was developed to address this issue. In this contribution, several different approaches to determine the additional damping of the supporting structure considering the vehicle-bridge interaction when using the MLM are compared with one another. Besides the standard specifications, this includes the approach mentioned above and two additional recently published alternative formulations derived from analytical approaches. For a bridge catalogue of 65 existing bridges in Austria in steel, concrete or composite construction, calculations are carried out with the MLM for two different high-speed trains and the different approaches for additional damping. The results are compared with the calculation results obtained by applying a more sophisticated multi-body model of the trains used. The evaluation and comparison of the results allow assessing the benefits of different calculation concepts for the additional damping regarding their accuracy and possible applications. The evaluation shows that by applying one of the recently published redesigned additional damping methods, the calculation results can reflect the influence of the vehicle-bridge interaction on the design-relevant structural accelerations considerably more reliable than by using normative specifications.

Keywords: Additional Damping Method, Bridge Dynamics, High-Speed Railway Traffic, Vehicle-Bridge-Interaction

Procedia PDF Downloads 161
467 Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks

Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi

Abstract:

Ionic liquids are finding a wide range of applications from reaction media to separations and materials processing. In these applications, Vapor–Liquid equilibrium (VLE) is the most important one. VLE for six systems at 353 K and activity coefficients at infinite dilution 〖(γ〗_i^∞) for various solutes (alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) in the ionic liquids (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to train neural networks in the temperature range from (303 to 333) K. Densities of the ionic liquids, Hildebrant constant of substances, and temperature were selected as input of neural networks. The networks with different hidden layers were examined. Networks with seven neurons in one hidden layer have minimum error and good agreement with experimental data.

Keywords: ionic liquid, neural networks, VLE, dilute solution

Procedia PDF Downloads 300
466 Prediction of Unsteady Heat Transfer over Square Cylinder in the Presence of Nanofluid by Using ANN

Authors: Ajoy Kumar Das, Prasenjit Dey

Abstract:

Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nano particles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.

Keywords: forced convection, square cylinder, nanofluid, neural network

Procedia PDF Downloads 320
465 Subspace Rotation Algorithm for Implementing Restricted Hopfield Network as an Auto-Associative Memory

Authors: Ci Lin, Tet Yeap, Iluju Kiringa

Abstract:

This paper introduces the subspace rotation algorithm (SRA) to train the Restricted Hopfield Network (RHN) as an auto-associative memory. Subspace rotation algorithm is a gradient-free subspace tracking approach based on the singular value decomposition (SVD). In comparison with Backpropagation Through Time (BPTT) on training RHN, it is observed that SRA could always converge to the optimal solution and BPTT could not achieve the same performance when the model becomes complex, and the number of patterns is large. The AUTS case study showed that the RHN model trained by SRA could achieve a better structure of attraction basin with larger radius(in general) than the Hopfield Network(HNN) model trained by Hebbian learning rule. Through learning 10000 patterns from MNIST dataset with RHN models with different number of hidden nodes, it is observed that an several components could be adjusted to achieve a balance between recovery accuracy and noise resistance.

Keywords: hopfield neural network, restricted hopfield network, subspace rotation algorithm, hebbian learning rule

Procedia PDF Downloads 117
464 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window

Procedia PDF Downloads 89
463 Assessment and Evaluation of Football Performance

Authors: Bulus Kpame, Mukhtar Mohammed Alhaji, Garba Jibril

Abstract:

In any team sport, the most important variables that should be used to measure performance are physical condition, and technical and tactical performance. In a complex game like football, it is extremely difficult to measure the relative importance of each of these variables. However, physical fitness itself has been shown to consist of several components, like endurance, strength, flexibility, agility, coordination and speed. Each of these components has been shown to consist of several subcomponents. This paper attempts to describe a test battery to assess and evaluate physical performance in football players. This battery comprises a functional, structured training session of about 2.5hrs. it consists of quality rating of the warm-up procedure, tests of flexibility, football skills, power, speed, and endurance. Acceptable values for performance in each of the tests are also presented under each test. It is hoped that this battery of tests will be helpful to the coach in determining the effect of a specific training program. It would also be helpful to train physician and trainer, to monitor progress during rehabilitation after sustaining any injury.

Keywords: assessment, evaluation, performance, programs

Procedia PDF Downloads 408
462 Customizable Sonic EEG Neurofeedback Environment to Train Self-Regulation of Momentary Mental and Emotional State

Authors: Cyril Kaplan, Nikola Jajcay

Abstract:

We developed purely sonic, musical based, highly customizable EEG neurofeedback environment designed to administer a new neurofeedback training protocol. The training protocol concentrates on improving the ability to switch between several mental states characterized by different levels of arousal, each of them correlated to specific brain wave activity patterns in several specific regions of neocortex. This paper describes the neurofeedback training environment we developed and its specificities, thus can be helpful as a manual to guide other neurofeedback users (both researchers and practitioners) interested in our editable open source program (available to download and usage under CC license). Responses and reaction of first trainees that used our environment are presented in this article. Combination of qualitative methods (thematic analysis of neurophenomenological insights of trainees and post-session semi-structured interviews) and quantitative methods (power spectra analysis of EEG recorded during the training) were employed to obtain a multifaceted view on our new training protocol.

Keywords: EEG neurofeedback, mixed methods, self-regulation, switch-between-states training

Procedia PDF Downloads 227
461 Large Neural Networks Learning From Scratch With Very Few Data and Without Explicit Regularization

Authors: Christoph Linse, Thomas Martinetz

Abstract:

Recent findings have shown that Neural Networks generalize also in over-parametrized regimes with zero training error. This is surprising, since it is completely against traditional machine learning wisdom. In our empirical study we fortify these findings in the domain of fine-grained image classification. We show that very large Convolutional Neural Networks with millions of weights do learn with only a handful of training samples and without image augmentation, explicit regularization or pretraining. We train the architectures ResNet018, ResNet101 and VGG19 on subsets of the difficult benchmark datasets Caltech101, CUB_200_2011, FGVCAircraft, Flowers102 and StanfordCars with 100 classes and more, perform a comprehensive comparative study and draw implications for the practical application of CNNs. Finally, we show that VGG19 with 140 million weights learns to distinguish airplanes and motorbikes with up to 95% accuracy using only 20 training samples per class.

Keywords: convolutional neural networks, fine-grained image classification, generalization, image recognition, over-parameterized, small data sets

Procedia PDF Downloads 88
460 Multi-Level Clustering Based Congestion Control Protocol for Cyber Physical Systems

Authors: Manpreet Kaur, Amita Rani, Sanjay Kumar

Abstract:

The Internet of Things (IoT), a cyber-physical paradigm, allows a large number of devices to connect and send the sensory data in the network simultaneously. This tremendous amount of data generated leads to very high network load consequently resulting in network congestion. It further amounts to frequent loss of useful information and depletion of significant amount of nodes’ energy. Therefore, there is a need to control congestion in IoT so as to prolong network lifetime and improve the quality of service (QoS). Hence, we propose a two-level clustering based routing algorithm considering congestion score and packet priority metrics that focus on minimizing the network congestion. In the proposed Priority based Congestion Control (PBCC) protocol the sensor nodes in IoT network form clusters that reduces the amount of traffic and the nodes are prioritized to emphasize important data. Simultaneously, a congestion score determines the occurrence of congestion at a particular node. The proposed protocol outperforms the existing Packet Discard Network Clustering (PDNC) protocol in terms of buffer size, packet transmission range, network region and number of nodes, under various simulation scenarios.

Keywords: internet of things, cyber-physical systems, congestion control, priority, transmission rate

Procedia PDF Downloads 308
459 NFResNet: Multi-Scale and U-Shaped Networks for Deblurring

Authors: Tanish Mittal, Preyansh Agrawal, Esha Pahwa, Aarya Makwana

Abstract:

Multi-Scale and U-shaped Networks are widely used in various image restoration problems, including deblurring. Keeping in mind the wide range of applications, we present a comparison of these architectures and their effects on image deblurring. We also introduce a new block called as NFResblock. It consists of a Fast Fourier Transformation layer and a series of modified Non-Linear Activation Free Blocks. Based on these architectures and additions, we introduce NFResnet and NFResnet+, which are modified multi-scale and U-Net architectures, respectively. We also use three differ-ent loss functions to train these architectures: Charbonnier Loss, Edge Loss, and Frequency Reconstruction Loss. Extensive experiments on the Deep Video Deblurring dataset, along with ablation studies for each component, have been presented in this paper. The proposed architectures achieve a considerable increase in Peak Signal to Noise (PSNR) ratio and Structural Similarity Index (SSIM) value.

Keywords: multi-scale, Unet, deblurring, FFT, resblock, NAF-block, nfresnet, charbonnier, edge, frequency reconstruction

Procedia PDF Downloads 136