Search results for: sustainable materials and renewable energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16713

Search results for: sustainable materials and renewable energy

16323 Designing Elevations by Photocatalysis of Precast Concrete Materials, in Reducing Energy Consumption of Buildings: Case Study of Tabriz

Authors: Mahsa Faramarzi Asli, Mina Sarabi

Abstract:

The important issues that are addressed in most advanced industrial countries in recent decades, discussion of minimizing heat losses through the buildings. And the most influential parameters in the calculation of building energy consumption, is heat exchange, which takes place between the interior and outer space. One of the solutions to reduce heat loss is using materials with low thermal conductivity. The purpose of this article, is the effect of using some frontages with nano-concrete photo catalytic precast materials for reducing energy consumption in buildings. For this purpose, estimating the energy dissipation through the facade built with nano-concrete photo catalytic precast materials on a sample building in Tabriz city by BCS 19 software ( topic 19 simulation) is done and the results demonstrate reduce heat loss through the facade nano- concrete.

Keywords: nano materials, optimize energy consumption, themal, stability

Procedia PDF Downloads 543
16322 Harmonizing Spatial Plans: A Methodology to Integrate Sustainable Mobility and Energy Plans to Promote Resilient City Planning

Authors: B. Sanchez, D. Zambrana-Vasquez, J. Fresner, C. Krenn, F. Morea, L. Mercatelli

Abstract:

Local administrations are facing established targets on sustainable development from different disciplines at the heart of different city departments. Nevertheless, some of these targets, such as CO2 reduction, relate to two or more disciplines, as it is the case of sustainable mobility and energy plans (SUMP & SECAP/SEAP). This opens up the possibility to efficiently cooperate among different city departments and to create and develop harmonized spatial plans by using available resources and together achieving more ambitious goals in cities. The steps of the harmonization processes developed result in the identification of areas to achieve common strategic objectives. Harmonization, in other words, helps different departments in local authorities to work together and optimize the use or resources by sharing the same vision, involving key stakeholders, and promoting common data assessment to better optimize the resources. A methodology to promote resilient city planning via the harmonization of sustainable mobility and energy plans is presented in this paper. In order to validate the proposed methodology, a representative city engaged in an innovation process in efficient spatial planning is used as a case study. The harmonization process of sustainable mobility and energy plans covers identifying matching targets between different fields, developing different spatial plans with dual benefit and common indicators guaranteeing the continuous improvement of the harmonized plans. The proposed methodology supports local administrations in consistent spatial planning, considering both energy efficiency and sustainable mobility. Thus, municipalities can use their human and economic resources efficiently. This guarantees an efficient upgrade of land use plans integrating energy and mobility aspects in order to achieve sustainability targets, as well as to improve the wellbeing of its citizens.

Keywords: integrated multi-sector planning, spatial plans harmonization, sustainable energy and climate action plan, sustainable urban mobility plan

Procedia PDF Downloads 154
16321 The Potential of Hybrid Microgrids for Mitigating Power Outage in Lebanon

Authors: R. Chedid, R. Ghajar

Abstract:

Lebanon electricity crisis continues to escalate. Rationing hours still apply across the country but with different rates. The capital Beirut is subjected to 3 hours cut while other cities, town and villages may endure 9 to 14 hours of power shortage. To mitigate this situation, private diesel generators distributed illegally all over the country are being used to bridge the gap in power supply. Almost each building in large cities has its own generator and individual villages may have more than one generator supplying their loads. These generators together with their private networks form incomplete and ill-designed and managed microgrids (MG) but can be further developed to become renewable energy-based MG operating in island- or grid-connected modes. This paper will analyze the potential of introducing MG to help resolve the energy crisis in Lebanon. It will investigate the usefulness of developing MG under the prevailing situation of existing private power supply service providers and in light of the developed national energy policy that supports renewable energy development. A case study on a distribution feeder in a rural area will be analyzed using HOMER software to demonstrate the usefulness of introducing photovoltaic (PV) arrays along the existing diesel generators for all the stakeholders; namely, the developers, the customers, the utility and the community at large. Policy recommendations regarding MG development in Lebanon will be presented on the basis of the accumulated experience in private generation and the privatization and public-private partnership laws.

Keywords: decentralized systems, distributed generation, microgrids, renewable energy

Procedia PDF Downloads 115
16320 Sustainable Development, China’s Emerging Role via One Belt, One Road

Authors: Saeid Rabiei Majd, Motahareh Alvandi, Mehrad Rabiei

Abstract:

The rapid economic and technological development of any country depends on access to cheap sources of energy. Competition for access to petroleum resources is always accompanied by numerous environmental risks. These factors have caused more attention to environmental issues and sustainable development in petroleum contracts and activities. Nowadays, a sign of developed countries is adhering to the principles and rules of international environmental law and sustainable development of commercial contracts. China has entered into play through the massive project plan, One Belt, One Road. China is becoming a new emerging power in the world. China's bilateral investment treaties have an impact on environmental rights and sustainable development through regional and international foreign direct investment. The aim of this research is to examine China's key position to promote and improve environmental principles and international law and sustainable development in the energy sector in the world through the initiative, One Belt, One Road. Based on this hypothesis, it seems that in the near future, China's investment bilateral investment treaties will become popular investment model used in global trade, especially in the field of energy and sustainable development. They will replace the European and American models. The research method is including literature review, analytical and descriptive methods.

Keywords: principles of sustainable development, oil and gas law, Chinas BITs, One Belt One Road, environmental rights

Procedia PDF Downloads 292
16319 Modeling Comfort by Thermal Inertia in Eco-Construction for Low-Income People in an Aqueous Environment in the Face of Sustainable Development in Sub-Saharan Africa; Case of the City of Kinshasa, DR Congo

Authors: Mbambu K. Shaloom, Biba Kalengo, Pierre Echard, Olivier Gilson, Tshiswaka Ngalula, Léonard Kabeya Mukeba Yakasham

Abstract:

In this 21st century, while design and eco-construction continue to be governed by considerations of functionality, safety, comfort and initial investment cost. Today, the principles of sustainable development lead us to think over longer time frames, to take into account new issues and the operating costs of green energy. DR Congo (sub-Saharan Africa) still suffers from the unusability of certain bio-sourced materials (such as bamboo, branches, etc.) and the lack of energy, i.e. 9% of the population has access to electricity and 21% of access to water. Ecoconstruction involves the energy performance of buildings which carry out a dynamic thermal simulation, which targets the different assumptions and conventional parameters (weather, occupancy, materials, thermal comfort, green energies, etc.). The objective of this article is to remedy the thermal, economic and technical artisanal problems in an aqueous environment in the city of Kinshasa. In order to establish a behavioral model to mitigate environmental impacts on architectural modifications and low-cost eco-construction through the approach of innovation and design thinking.

Keywords: thermal comfort, bio-sourced material, eco-architecture, eco-construction, squatting, design thinking

Procedia PDF Downloads 61
16318 Green Energy, Fiscal Incentives and Conflicting Signals: Analysing the Challenges Faced in Promoting on Farm Waste to Energy Projects

Authors: Hafez Abdo, Rob Ackrill

Abstract:

Renewable energy (RE) promotion in the UK relies on multiple policy instruments, which are required to overcome the path dependency pressures favouring fossil fuels. These instruments include targeted funding schemes and economy-wide instruments embedded in the tax code. The resulting complexity of incentives raises important questions around the coherence and effectiveness of these instruments for RE generation. This complexity is exacerbated by UK RE policy being nested within EU policy in a multi-level governance (MLG) setting. To gain analytical traction on such complexity, this study will analyse policies promoting the on-farm generation of energy for heat and power, from farm and food waste, via anaerobic digestion. Utilising both primary and secondary data, it seeks to address a particular lacuna in the academic literature. Via a localised, in-depth investigation into the complexity of policy instruments promoting RE, this study will help our theoretical understanding of the challenges that MLG and path dependency pressures present to policymakers of multi-dimensional policies.

Keywords: anaerobic digestion, energy, green, policy, renewable, tax, UK

Procedia PDF Downloads 350
16317 Developing Soil Accumulation Effect Correction Factor for Solar Photovoltaic Module

Authors: Kelebaone Tsamaase, Rapelang Kemoabe, Japhet Sakala, Edward Rakgati, Ishmael Zibani

Abstract:

Increasing demand for energy, depletion of non-renewable energy, effects of climate change, the abundance of renewable energy such as solar energy have increased the interest in investing in renewable energies, in particular solar photovoltaic (PV) energy. Solar photovoltaic energy systems as part of clean technology are considered to be environmentally friendly, freely available, offer clean production systems, long term costs benefits as opposed to conventional sources, and are the attractive power source for a wide range of applications in remote areas where there is no easy access to the national grid. To get maximum electrical power, maximum solar power should penetrate the module and be converted accordingly. However, some environmental and other geographical related factors reduce the electrical power. One of them is dust which accumulates on the surface of the module and forming a dust layer and in the process obstructing the solar power from penetrating PV module. This study intends to improve the performance of solar photovoltaic (PV) energy modules by establishing soil accumulation effects correction factor from dust characteristics and properties, and also from dust accumulation and retention pattern on PV module surface. The non-urban dry deposition flux model was adapted to determine monthly and yearly dust accumulation pattern. Consideration was done on prevailing environmental and other geographical conditions. Preliminary results showed that cumulative dust settlement increased during the months of July to October leading to a higher drop in module electrical output power.

Keywords: dust, electrical power output, PV module, soil correction factor

Procedia PDF Downloads 117
16316 Comparison Analysis of Fuzzy Logic Controler Based PV-Pumped Hydro and PV-Battery Storage Systems

Authors: Seada Hussen, Frie Ayalew

Abstract:

Integrating different energy resources, like solar PV and hydro, is used to ensure reliable power to rural communities like Hara village in Ethiopia. Hybrid power system offers power supply for rural villages by providing an alternative supply for the intermittent nature of renewable energy resources. The intermittent nature of renewable energy resources is a challenge to electrifying rural communities in a sustainable manner with solar resources. Major rural villages in Ethiopia are suffering from a lack of electrification, that cause our people to suffer deforestation, travel for long distance to fetch water, and lack good services like clinic and school sufficiently. The main objective of this project is to provide a balanced, stable, reliable supply for Hara village, Ethiopia using solar power with a pumped hydro energy storage system. The design of this project starts by collecting data from villages and taking solar irradiance data from NASA. In addition to this, geographical arrangement and location are also taken into consideration. After collecting this, all data analysis and cost estimation or optimal sizing of the system and comparison of solar with pumped hydro and solar with battery storage system is done using Homer Software. And since solar power only works in the daytime and pumped hydro works at night time and also at night and morning, both load will share to cover the load demand; this need controller designed to control multiple switch and scheduling in this project fuzzy logic controller is used to control this scenario. The result of the simulation shows that solar with pumped hydro energy storage system achieves good results than with a battery storage system since the comparison is done considering storage reliability, cost, storage capacity, life span, and efficiency.

Keywords: pumped hydro storage, solar energy, solar PV, battery energy storage, fuzzy logic controller

Procedia PDF Downloads 53
16315 The Mechanical Characteristics of Rammed Earth with Plastic Fibers

Authors: Majdi Al Shdifat, Juan Chiachio, Esther Puertas, María L. Jalón, Álvaro Blanca-Hoyos

Abstract:

In recent years, the world has begun to adopt more sustainable practices in response to today's environmental and climate challenges. The construction sector is one of the most resource-intensive among others, so researchers are testing different types of materials with different processes and methodologies to achieve more environmentally and sustainably friendly buildings. Plastic is one of the most harmful materials for the environment. The global production of plastics has increased dramatically in recent decades, and it is one of the most widely used materials. However, plastic waste is not biodegradable and has a chemical composition that is stable for many years in the environment, both on land and in water bodies. Recycled plastics have been tested to be used in construction in many ways to reduce the amount of plastic in the environment and the use of raw materials in construction. In this context, the main objective of this research is to test the use of plastic fibers with one of the most promising materials to replace cement, which is rammed earth. In fact, rammed earth is considered one of the most environmentally friendly materials due to its use of local raw materials, recyclability, and low embodied energy. In this research, three different types of plastic fibers were used. Then, the blends were evaluated by considering their mechanical properties, including compressive strength and tensile strength. In addition, the non-destructive ultrasonic wave velocity was measured. The result shows excellent potential for the use of plastic fibers in rammed earth, especially in terms of compressive strength.

Keywords: mechanical characterization, plastic fibers reinforcement, rammed earth, sustainable material

Procedia PDF Downloads 52
16314 Impact of Global Climate Change on Economy of Pakistan: How to Ensure Sustainable Food and Energy Production

Authors: Sabahat Zahra

Abstract:

The purpose of this research is to present the changing global environment and its potential impacts on sustainable food and energy production at global level, particularly in Pakistan. The food and energy related-economic sector has been subjected to negative consequences due to recent extreme changes in weather conditions, particularly in developing countries. Besides continuous modifications in weather, population is also increasing by time, therefore it is necessary to take special steps and start effective initiatives to cope with the challenges of food and energy security to fight hunger and for economic stability of country. Severe increase in temperature and heat waves has also negative impacts on food production as well as energy sustainability. Energy (in terms of electricity) consumption has grown up than the production potential of the country as a consequence of increasing warm weather. Ultimately prices gone up when there is more consumption than production. Therefore, all these aspects of climate change are interrelated with socio-economic issues. There is a need to develop long-term policies on regional and national levels for maintainable economic growth. This research presents a framework-plan and recommendations for implementation needed to mitigate the potential threats due to global climate change sustainable food and energy production under climate change in the country.

Keywords: climate changes, energy security, food security, global climate change

Procedia PDF Downloads 327
16313 Exergy: An Effective Tool to Quantify Sustainable Development of Biodiesel Production

Authors: Mahmoud Karimi, Golmohammad Khoobbakht

Abstract:

This study focuses on the exergy flow analysis in the transesterification of waste cooking oil with methanol to decrease the consumption of materials and energy and promote the use of renewable resources. The exergy analysis performed is based on the thermodynamic performance parameters namely exergy destruction and exergy efficiency to investigate the effects of variable parameters on renewability of transesterification. The experiment variables were methanol to WCO ratio, catalyst concentration and reaction temperature in the transesterification reaction. The optimum condition with yield of 90.2% and exergy efficiency of 95.2% was obtained at methanol to oil molar ratio of 8:1, 1 wt.% of KOH, at 55 °C. In this condition, the total waste exergy was found to be 45.4 MJ for 1 kg biodiesel production. However high yield in the optimal condition resulted high exergy efficiency in the transesterification of WCO with methanol.

Keywords: biodiesel, exergy, thermodynamic analysis, transesterification, waste cooking oil

Procedia PDF Downloads 173
16312 Contextual Paper on Green Finance: Analysis of the Green Bonds Market

Authors: Dina H. Gabr, Mona A. El Bannan

Abstract:

With growing worldwide concern for global warming, green finance has become the fuel that pushes the world to act in combating and mitigating climate change. Coupled with adopting the Paris Agreement and the United Nations Sustainable Development Goals, Green finance became a vital tool in creating a pathway to sustainable development, as it connects the financial world with environmental and societal benefits. This paper provides a comprehensive review of the concepts and definitions of green finance and the importance of 'green' impact investments today. The core challenge in combating climate change is reducing and controlling Greenhouse gas emissions; therefore, this study explores the solutions green finance provides putting emphasis on the use of renewable energy, which is necessary for enhancing the transition to the green economy. With increasing attention to the concept of green finance, multiple forms of green investments and financial tools have come to fruition; the most prominent are green bonds. The rise of green bonds, a debt market to finance climate solutions, provide a promising mechanism for sustainable finance. Following the review, this paper compiles a comprehensive green bond dataset, presenting a statistical study of the evolution of the green bonds market from its first appearance in 2006 until 2021.

Keywords: climate change, GHG emissions, green bonds, green finance, sustainable finance

Procedia PDF Downloads 98
16311 The Mechanical Properties of Rammed Earth with Plastic Fibers

Authors: Majdi Al Shdifat, Juan Chiachio, Esther Puertas, María L. Jalón, Álvaro Blanca-Hoyos

Abstract:

In recent years, the world has begun to adopt more sustainable practices in response to today's environmental and climate challenges. The construction sector is one of the most resource-intensive among others, so researchers are testing different types of materials with different processes and methodologies to achieve more environmentally and sustainably friendly buildings.Plastic is one of the most harmful materials for the environment. The global production of plastics has increased dramatically in recent decades, and it is one of the most widely used materials. However, plastic waste is not biodegradable and has a chemical composition that is stable for many years in the environment, both on land and in water bodies. Recycled plastics have been tested to be used in construction in many ways to reduce the amount of plastic in the environment and the use of raw materials in construction. In this context, the main objective of this research is to test the use of plastic fibers with one of the most promising materials to replace cement, which is rammed earth. In fact, rammed earth is considered one of the most environmentally friendly materials due to its use of local raw materials, recyclability, and low embodied energy. In this research, three different types of plastic fibers were used. Then, the blends were evaluated by considering their mechanical properties, including compressive strength and tensile strength. In addition, the non-destructive ultrasonic wave velocity was measured. The result shows excellent potential for the use of plastic fibers in rammed earth, especially in terms of compressive strength.

Keywords: mechanical characterization, plastic fibers reinforcement, rammed earth, sustainable material

Procedia PDF Downloads 46
16310 Integrated Planning, Designing, Development and Management of Eco-Friendly Human Settlements for Sustainable Development of Environment, Economic, Peace and Society of All Economies

Authors: Indra Bahadur Chand

Abstract:

This paper will focus on the need for development and application of global protocols and policy in planning, designing, development, and management of systems of eco-towns and eco-villages so that sustainable development will be assured from the perspective of environmental, economical, peace, and harmonized social dynamics. This perspective is essential for the development of civilized and eco-friendly human settlements in the town and rural areas of the nation that will be a milestone for developing a happy and sustainable lifestyle of rural and urban communities of the nation. The urban population of most of the town of developing economies has been tremendously increasing, whereas rural people have been tremendously migrating for the past three decades. Consequently, the urban lifestyle in most towns has stressed in terms of environmental pollution, water crisis, congested traffic, energy crisis, food crisis, and unemployment. Eco-towns and villages should be developed where lifestyle of all residents is sustainable and happy. Built up environment of settlement should reduce and minimize the problems of non ecological CO2 emissions, unbalanced utilization of natural resources, environmental degradation, natural calamities, ecological imbalance, energy crisis, water scarcity, waste management, food crisis, unemployment, deterioration of cultural heritage, social, the ratio among the public and private land ownership, ratio of land covered with vegetation and area of settlement, the ratio of people in the vehicles and foot, the ratio of people employed outside of town and village, ratio of resources recycling of waste materials, water consumption level, the ratio of people and vehicles, ratio of the length of the road network and area of town/villages, a ratio of renewable energy consumption with total energy, a ratio of religious/recreational area out of the total built-up area, the ratio of annual suicide case out of total people, a ratio of annual injured and death out of total people from a traffic accident, a ratio of production of agro foods within town out of total food consumption will be used to assist in designing and monitoring of each eco-towns and villages. An eco-town and villages should be planned and developed to offer sustainable infrastructure and utilities that maintain CO2 level in individual homes and settlements, home energy use, transport, food and consumer goods, water supply, waste management, conservation of historical heritages, healthy neighborhood, conservation of natural landscape, conserving bio-diversity and developing green infrastructures. Eco-towns and villages should be developed on the basis of master planning and architecture that affect and define the settlement and its form. Master planning and engineering should focus in delivering the sustainability criteria of eco towns and eco village. This will involve working with specific landscape and natural resources of locality.

Keywords: eco-town, ecological habitation, master plan, sustainable development

Procedia PDF Downloads 158
16309 Teaching 'Sustainable Architecture' to Pre-School Children by School Building for a Clean Future

Authors: Cimen Ozburak

Abstract:

Pollution and the consumption of natural resources are significant global concerns. These problems have to be resolved in order to create a cleaner environment for the world. It is believed that sustainable building designs may reduce environmental problems throughout the world. It is known that if children receive environmental education in early childhood, they will be more likely to construct sustainable living systems and environment when they are older. School buildings can be used as educational material for teaching the natural and artificial environment in environmental education. In this study, the effect of school buildings on environmental education is examined by using the literature review method along with various examples. The selected examples in the study were analyzed according to 4 main criteria of LEED green building certification systems. These are the use of sustainable utilization of land, efficient utilization of water, efficient utilization of energy and efficient utilization of materials. According to the literature review, children who are educated in buildings designed according to these criteria, they will be environmentally sensitive individuals when they are older.

Keywords: clean future, educational sustainable pre-schools, environmental education, sustainable systems

Procedia PDF Downloads 230
16308 Zero Net Energy Communities and the Impacts to the Grid

Authors: Heidi von Korff

Abstract:

The electricity grid is changing in terms of flexibility. Distributed generation (DG) policy is being discussed worldwide and implemented. Developers and utilities are seeking a pathway towards Zero Net Energy (ZNE) communities and the interconnection to the distribution grid. Using the VISDOM platform for establishing a method for managing and monitoring energy consumption loads of ZNE communities as a capacity resource for the grid. Reductions in greenhouse gas emissions and energy security are primary policy drivers for incorporating high-performance energy standards and sustainability practices in residential households, such as a market transformation of ZNE and nearly ZNE (nZNE) communities. This research investigates how load data impacts ZNE, to see if there is a correlation to the daily load variations in a single ZNE home. Case studies will include a ZNE community in California and a nearly ZNE community (All – Electric) in the Netherlands, which both are in measurement and verification (M&V) phases and connected to the grid for simulations of methods.

Keywords: zero net energy, distributed generation, renewable energy, zero net energy community

Procedia PDF Downloads 288
16307 Optimized Renewable Energy Mix for Energy Saving in Waste Water Treatment Plants

Authors: J. D. García Espinel, Paula Pérez Sánchez, Carlos Egea Ruiz, Carlos Lardín Mifsut, Andrés López-Aranguren Oliver

Abstract:

This paper shortly describes three main actuations over a Waste Water Treatment Plant (WWTP) for reducing its energy consumption: Optimization of the biological reactor in the aeration stage by including new control algorithms and introducing new efficient equipment, the installation of an innovative hybrid system with zero Grid injection (formed by 100kW of PV energy and 5 kW of mini-wind energy generation) and an intelligent management system for load consumption and energy generation control in the most optimum way. This project called RENEWAT, involved in the European Commission call LIFE 2013, has the main objective of reducing the energy consumptions through different actions on the processes which take place in a WWTP and introducing renewable energies on these treatment plants, with the purpose of promoting the usage of treated waste water for irrigation and decreasing the C02 gas emissions. WWTP is always required before waste water can be reused for irrigation or discharged in water bodies. However, the energetic demand of the treatment process is high enough for making the price of treated water to exceed the one for drinkable water. This makes any policy very difficult to encourage the re-use of treated water, with a great impact on the water cycle, particularly in those areas suffering hydric stress or deficiency. The cost of treating waste water involves another climate-change related burden: the energy necessary for the process is obtained mainly from the electric network, which is, in most of the cases in Europe, energy obtained from the burning of fossil fuels. The innovative part of this project is based on the implementation, adaptation and integration of solutions for this problem, together with a new concept of the integration of energy input and operative energy demand. Moreover, there is an important qualitative jump between the technologies used and the alleged technologies to use in the project which give it an innovative character, due to the fact that there are no similar previous experiences of a WWTP including an intelligent discrimination of energy sources, integrating renewable ones (PV and Wind) and the grid.

Keywords: aeration system, biological reactor, CO2 emissions, energy efficiency, hybrid systems, LIFE 2013 call, process optimization, renewable energy sources, wasted water treatment plants

Procedia PDF Downloads 334
16306 A Systematic Review of Business Strategies Which Can Make District Heating a Platform for Sustainable Development of Other Sectors

Authors: Louise Ödlund, Danica Djuric Ilic

Abstract:

Sustainable development includes many challenges related to energy use, such as (1) developing flexibility on the demand side of the electricity systems due to an increased share of intermittent electricity sources (e.g., wind and solar power), (2) overcoming economic challenges related to an increased share of renewable energy in the transport sector, (3) increasing efficiency of the biomass use, (4) increasing utilization of industrial excess heat (e.g., approximately two thirds of the energy currently used in EU is lost in the form of excess and waste heat). The European Commission has been recognized DH technology as of essential importance to reach sustainability. Flexibility in the fuel mix, and possibilities of industrial waste heat utilization, combined heat, and power (CHP) production and energy recovery through waste incineration, are only some of the benefits which characterize DH technology. The aim of this study is to provide an overview of the possible business strategies which would enable DH to have an important role in future sustainable energy systems. The methodology used in this study is a systematic literature review. The study includes a systematic approach where DH is seen as a part of an integrated system that consists of transport , industrial-, and electricity sectors as well. The DH technology can play a decisive role in overcoming the sustainability challenges related to our energy use. The introduction of biofuels in the transport sector can be facilitated by integrating biofuel and DH production in local DH systems. This would enable the development of local biofuel supply chains and reduce biofuel production costs. In this way, DH can also promote the development of biofuel production technologies that are not yet developed. Converting energy for running the industrial processes from fossil fuels and electricity to DH (above all biomass and waste-based DH) and delivering excess heat from industrial processes to the local DH systems would make the industry less dependent on fossil fuels and fossil fuel-based electricity, as well as the increasing energy efficiency of the industrial sector and reduce production costs. The electricity sector would also benefit from these measures. Reducing the electricity use in the industry sector while at the same time increasing the CHP production in the local DH systems would (1) replace fossil-based electricity production with electricity in biomass- or waste-fueled CHP plants and reduce the capacity requirements from the national electricity grid (i.e., it would reduce the pressure on the bottlenecks in the grid). Furthermore, by operating their central controlled heat pumps and CHP plants depending on the intermittent electricity production variation, the DH companies may enable an increased share of intermittent electricity production in the national electricity grid.

Keywords: energy system, district heating, sustainable business strategies, sustainable development

Procedia PDF Downloads 152
16305 Simulation of Performance and Layout Optimization of Solar Collectors with AVR Microcontroller to Achieve Desired Conditions

Authors: Mohsen Azarmjoo, Navid Sharifi, Zahra Alikhani Koopaei

Abstract:

This article aims to conserve energy and optimize the performance of solar water heaters using modern modeling systems. In this study, a large-scale solar water heater is modeled using an AVR microcontroller, which is a digital processor from the AVR microcontroller family. This mechatronic system will be used to analyze the performance and design of solar collectors, with the ultimate goal of improving the efficiency of the system being used. The findings of this research provide insights into optimizing the performance of solar water heaters. By manipulating the arrangement of solar panels and controlling the water flow through them using the AVR microcontroller, researchers can identify the optimal configurations and operational protocols to achieve the desired temperature and flow conditions. These findings can contribute to the development of more efficient and sustainable heating and cooling systems. This article investigates the optimization of solar water heater performance. It examines the impact of solar panel layout on system efficiency and explores methods of controlling water flow to achieve the desired temperature and flow conditions. The results of this research contribute to the development of more sustainable heating and cooling systems that rely on renewable energy sources.

Keywords: energy conservation, solar water heaters, solar cooling, simulation, mechatronics

Procedia PDF Downloads 53
16304 Technical Sustainable Management: An Instrument to Increase Energy Efficiency in Wastewater Treatment Plants, a Case Study in Jordan

Authors: Dirk Winkler, Leon Koevener, Lamees AlHayary

Abstract:

This paper contributes to the improvement of the municipal wastewater systems in Jordan. An important goal is increased energy efficiency in wastewater treatment plants and therefore lower expenses due to reduced electricity consumption. The chosen way to achieve this goal is through the implementation of Technical Sustainable Management adapted to the Jordanian context. Three wastewater treatment plants in Jordan have been chosen as a case study for the investigation. These choices were supported by the fact that the three treatment plants are suitable for average performance and size. Beyond that, an energy assessment has been recently conducted in those facilities. The project succeeded in proving the following hypothesis: Energy efficiency in wastewater treatment plants can be improved by implementing principles of Technical Sustainable Management adapted to the Jordanian context. With this case study, a significant increase in energy efficiency can be achieved by optimization of operational performance, identifying and eliminating shortcomings and appropriate plant management. Implementing Technical Sustainable Management as a low-cost tool with a comparable little workload, provides several additional benefits supplementing increased energy efficiency, including compliance with all legal and technical requirements, process optimization, but also increased work safety and convenient working conditions. The research in the chosen field continues because there are indications for possible integration of the adapted tool into other regions and sectors. The concept of Technical Sustainable Management adapted to the Jordanian context could be extended to other wastewater treatment plants in all regions of Jordan but also into other sectors including water treatment, water distribution, wastewater network, desalination, or chemical industry.

Keywords: energy efficiency, quality management system, technical sustainable management, wastewater treatment

Procedia PDF Downloads 142
16303 Recycling Strategies of Construction Waste in Egypt

Authors: Hanan Anwar

Abstract:

All systems recycle. The construction industry has not only become a major consumer of natural materials along with a source of pollution. Environmental integrated production, reusing and recycling is of great importance in Egypt nowadays. Governments should ensure that the technical, environmental and economic feasibility of alternative systems is considered and is taken into account before construction starts. Hereby this paper focuses on the recycle of building materials as a way for environment protection and sustainable development. Environmental management integrates the requirements of sustainable development. There are many methods used to reduce waste and increase profits through salvage, reuse, and the recycling of construction waste. Sustainable development as a tool to continual improvement cycle processes innovations to save money.

Keywords: environment, management, reuse, recycling, sustainable development

Procedia PDF Downloads 289
16302 A Green Analytical Curriculum for Renewable STEM Education

Authors: Mian Jiang, Zhenyi Wu

Abstract:

We have incorporated green components into existing analytical chemistry curriculum with the aims to present a more environment benign approach in both teaching laboratory and undergraduate research. These include the use of cheap, sustainable, and market-available material; minimized waste disposal, replacement of non-aqueous media; and scale-down in sample/reagent consumption. Model incorporations have covered topics in quantitative chemistry as well as instrumental analysis, lower division as well as upper level, and research in traditional titration, spectroscopy, electrochemical analysis, and chromatography. The green embedding has made chemistry more daily life relevance, and application focus. Our approach has the potential to expand into all STEM fields to make renewable, high-impact education experience for undergraduate students.

Keywords: green analytical chemistry, pencil lead, mercury, renewable

Procedia PDF Downloads 315
16301 Biotransformation of Glycerine Pitch as Renewable Carbon Resource into P(3HB-co-4HB) Biopolymer

Authors: Amirul Al-Ashraf Abdullah, Hema Ramachandran, Iszatty Ismail

Abstract:

Oleochemical industry in Malaysia has been diversifying significantly due to the abundant supply of both palm and kernel oils as raw materials as well as the high demand for downstream products such as fatty acids, fatty alcohols and glycerine. However, environmental awareness is growing rapidly in Malaysia because oleochemical industry is one of the palm-oil based industries that possess risk to the environment. Glycerine pitch is one of the scheduled wastes generated from the fatty acid plants in Malaysia and its discharge may cause a serious environmental problem. Therefore, it is imperative to find alternative applications for this waste glycerine. Consequently, the aim of this research is to explore the application of glycerine pitch as direct fermentation substrate in the biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer, aiming to contribute toward the sustainable production of biopolymer in the world. Utilization of glycerine pitch (10 g/l) together with 1,4-butanediol (5 g/l) had resulted in the achievement of 40 mol% 4HB monomer with the highest PHA concentration of 2.91 g/l. Synthesis of yellow pigment which exhibited antimicrobial properties occurred simultaneously with the production of P(3HB-co-4HB) through the use of glycerine pitch as renewable carbon resource. Utilization of glycerine pitch in the biosynthesis of P(3HB-co-4HB) will not only contribute to reducing society’s dependence on non-renewable resources but also will promote the development of cost efficiency microbial fermentation towards biosustainability and green technology.

Keywords: biopolymer, glycerine pitch, natural pigment, P(3HB-co-4HB)

Procedia PDF Downloads 439
16300 [Keynote Speech]: Competitive Evaluation of Power Plants in Energy Policy

Authors: Beril Tuğrul

Abstract:

Electrical energy is the most important form of energy and electrical power plants have highest impact factor in energy policy. This study is in relation with evaluation of various power plants including fossil fuels, nuclear and renewable energy based power plants. The power plants evaluated with regard to their overall impact that considered for establishing of the plants. Both positive and negative impacts of power plant operation are compared view of different arguments. Then calculate the impact factor by using variation linear extrapolation for each argument. With this study, power plants assessed with the different point of view and clarified objectively.

Keywords:

Procedia PDF Downloads 507
16299 Modeling of Reverse Osmosis Water Desalination Powered by Photovoltaic Solar Energy

Authors: Salma El Aimani

Abstract:

Freshwater is an essential material in our daily life; its availability is on the decline due to population growth and climate change. To meet the demand for fresh water in regions where reserves are insufficient, several countries have adopted seawater desalination. Several physical methods allow the production of fresh water from seawater; among these methods are distillation and reverse osmosis, and there is great potential to use renewable energy sources such as solar Photovoltaics. The work presented in this paper consists of three parts. First, the generalities of desalination technologies will be presented. The second part is devoted to the presentation of different water desalination systems combined with renewable energy and their benefits and drawbacks on different sides. In the third part, we will perform a modeling of a PV water desalination system under Matlab Simulink software. Then, according to the obtained simulation results, we conclude this paper with the prospects of the presented work.

Keywords: reverse-osmosis, desalination, modelling, ‎irradiation, Matlab

Procedia PDF Downloads 68
16298 Reviving Sustainable Architecture in Non-Wester Culture

Authors: Khaled Asfour

Abstract:

Going for LEED certification is the latest concern in Egyptian practice that only materialized during the last 4 years. Egyptian Consultant Group (ECG) together with Credit Agricole had the vision to design a headquarters (Cairo) that delivers a serious sustainable design. The bank is a strong advocator of “green banking” and supports renewable energy and energy saving projects. Their HQ in Cairo has passed all the hurdles to become the first platinum LEED certificate holder in Egypt. With this design Egyptian practice has finally re-engaged in a serious way with its long-standing traditions in sustainable architecture. Perhaps the closest to our memory is the medieval houses of Cairo. Few centuries later these qualities disappeared with the advent of Modern Movement that focused more on standard modernist image making than real localized quality of living environments. The first person to note this disappearance was Hassan Fathy half a century ago. Despite international applaud for his efforts he had no effect on prevailing local practice that continued senselessly adopting recycled modernist templates. The Egyptian society was not ready to accept any reference to historic architecture. Disciples of Hassan Fathy, few decades later sought, of tackling the lack of interest in green architecture in a different way. Mohamed Awad introduced in his design sustainable ideals inspired from traditional architecture rather than recycling directly historic forms and images. Despite success, this approach did not go far enough to influence the prevailing practice. Since year 2000 Egyptian economy was ebbing and flowing dramatically. This staggering fluctuation coupled by energy crisis has disillusioned architects and clients on the issue of modern image making. No more shining architecture under the sun with high running cost of fossil fuel. They sought of adopting contemporary green measures that offer pleasant living while saving on energy. A revival is on its way but is very slow and timid. The paper will present this problem of reviving sustainable architecture. How this process can be accelerated in order to give stronger impact on current practice will be addressed through the works of Mario Cucinella and Norman Foster.

Keywords: LEED certification, Hasan Fathy, Medieval architecture, Mario Cucinella, Norman Foster

Procedia PDF Downloads 468
16297 Sustainable Development of Eco-Friendly Bio-Nanocomposites: Utilizing Nanocellulose Extracted From Saccharum Officinarum for Advanced Applications

Authors: Ngwenya M., Gumede T. P., Perez Camargo R. A., Motloung B.

Abstract:

This study presents the development of eco-friendly bio-nanocomposites using poly(lactic acid) (PLA), poly(caprolactone) (PCL), and their blends with nanocellulose extracted from Saccharum Officinarum. The extracted nanocellulose was optimized through chemical treatment and hydrolysis processes, yielding a sustainable and renewable resource for enhancing polymer properties. Bio-nanocomposites of PLA/nanocellulose, PCL/nanocellulose, and PLA/PCL/nanocellulose with varying nanocellulose contents (1, 3, and 5 wt%) were prepared via melt-blending and characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), dynamic mechanical analysis (DMA) and tensile testing. The results show significant improvements in the thermal and mechanical properties of the polymeric matrices upon the addition of nanocellulose, demonstrating the potential of these bio-nanocomposites for advanced applications. These developments are promising for obtaining bio-nanocomposites from local bio-sources, leading to more sustainable and eco-friendly alternatives to traditional materials.

Keywords: bionanocomposites, polycaprolactone, poly(lactic acid), nanocellulose, saccharum officinarum

Procedia PDF Downloads 26
16296 Integrating Renewable Energy Forecasting Systems with HEMS and Developing It with a Bottom-Up Approach

Authors: Punit Gandhi, J. C. Brezet, Tim Gorter, Uchechi Obinna

Abstract:

This paper introduces how weather forecasting could help in more efficient energy management for smart homes with the use of Home Energy Management Systems (HEMS). The paper also focuses on educating consumers and helping them make more informed decisions while using the HEMS. A combined approach of technical and user perspective has been selected to develop a novel HEMS-product-service combination in a more comprehensive manner. The current HEMS switches on/off the energy intensive appliances based on the fluctuating electricity tariffs, but with weather forecasting, it is possible to shift the time of use of energy intensive appliances to maximum electricity production from the renewable energy system installed in the house. Also, it is possible to estimate the heating/cooling load of the house for the day ahead demand. Hence, relevant insight is gained in the expected energy production and consumption load for the next day, facilitating better (more efficient, peak shaved, cheaper, etc.) energy management practices for smart homes. In literature, on the user perspective, it has been observed that consumers lose interest in using HEMS after three to four months. Therefore, to further help in better energy management practices, the new system had to be designed in a way that consumers would sustain their interaction with the system on a structural basis. It is hypothesized that, if consumers feel more comfortable with using such system, it would lead to a prolonged usage, including more energy savings and hence financial savings. To test the hypothesis, a survey for the HEMS is conducted, to which 59 valid responses were recorded. Analysis of the survey helped in designing a system which imparts better information about the energy production and consumption to the consumers. It is also found from the survey that, consumers like a variety of options and they do not like a constant reminder of what they should do. Hence, the final system is designed to encourage consumers to make an informed decision about their energy usage with a wide variety of behavioral options available. It is envisaged that the new system will be tested in several pioneering smart energy grid projects in both the Netherlands and India, with a continued ‘design thinking’ approach, combining the technical and user perspective, as the basis for further improvements.

Keywords: weather forecasting, smart grid, renewable energy forecasting, user defined HEMS

Procedia PDF Downloads 214
16295 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm

Authors: Amir Hossein Hejazi, Nima Amjady

Abstract:

In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.

Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm

Procedia PDF Downloads 544
16294 Optimum Switch Temperature for Phase Change Materials in Buildings

Authors: El Hadi Bouguerra, Nouredine Retiel

Abstract:

To avoid or at least to attenuate the global warming, it is essential to reduce the energy consumption of the buildings where the biggest potential of savings exists. The impending danger can come from the increase in the needs of air conditioning not only because of the climate warming but also the fast equipping of emerging or developing countries. Passive solutions exist and others are in promising development and therefore, must be applied wherever it is possible. Even if they do not always avoid the resort to an active cooling (mechanical), they allow lowering the load at an acceptable level which can be possibly taken in relay by the renewable energies. These solutions have the advantage to be relatively less expensive and especially adaptable to the existing housing. However, it is the internal convection resistance that controls the heat exchange between the phase change materials (PCM) and the indoor temperature because of the very low heat coefficients of natural convection. Therefore, it is reasonable to link the switch temperature Tm to the temperature of the substrate (walls and ceiling) because conduction heat transfer is dominant. In this case, external conditions (heat sources such as solar irradiation and ambient temperatures) and conductivities of envelope constituents are the most important factors. The walls are not at the same temperature year round; therefore, it is difficult to set a unique switch temperature for the whole season, making the average values a key parameter. With this work, the authors’ aim is to see which parameters influence the optimum switch temperature of a PCM and additionally, if a better selection of PCMs relating to their optimum temperature can enhance their energetic performances.

Keywords: low energy building, energy conservation, phase change materials, PCM

Procedia PDF Downloads 235