Search results for: strength development
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18705

Search results for: strength development

18315 Physico-Mechanical Properties of Dir-Volcanics and Its Use as a Dimension Stone from Kohistan Island Arc, North Pakistan

Authors: Muhammad Nawaz, Waqas Ahmad

Abstract:

Dimension stone is used in construction since prehistoric time; however, its use in the construction has gained significant attention for the last few decades. The present study is designed to investigate the physical and strength properties of volcanic rocks from the Kohistan Island Arc to assess their use as dimension stone. On the basis of the composition, color and texture, five varieties of andesites (MMA, PMA-1, PMA-2, CMA and FMA) and two varieties of agglomerates (AG-1 and AG-2) were identified. These were characterized in terms of their petrography (compositional and textural), physical properties (specific gravity, water absorption, porosity) and strength properties (Unconfined compressive strength and Unconfined tensile strength). Two non-destructive tests (Ultrasonic pulse velocity test and Schmidt Hammer) were conducted and the degree of polishing was evaluated. In addition, correlation analyses were carried out to establish possible relationships among these parameters. The presence of chlorite, epidote, sericite and recrystallized quartz showed the signs of low-grade metamorphism in andesites. The results showed feldspar, amphibole and quartz imparted good physical and strength properties to the samples MMA, CMA, FMA, AG1 and AG2. Whereas, the abundance of alteration products such as chlorite, sericite and epidote in PMA-1 and PMA-2 reduced the physical and strength properties. The unconfined compressive strength showed a strong correlation with ultrasonic pulse velocity, dry density, porosity and water absorption. The values of ultrasonic pulse velocity and Schmidt hammer were considerably affected by the weathering grade. The samples PMA-1 and PMA-2, due to their high water absorption and low strength values, were not recommended for use in load-bearing masonry units and outdoor applications. Whereas, the excellent properties, i.e. high strength and good polishing, the samples, FMA and MMA suggested their use as a decorative and facing stone, in the external pavement, ashlar, rubbles and load-bearing masonry units etc.

Keywords: Physico-mechanical properties, Volcanic rocks, Kohistan Island Arc, Pakistan

Procedia PDF Downloads 59
18314 Optimization of Hemp Fiber Reinforced Concrete for Various Environmental Conditions

Authors: Zoe Chang, Max Williams, Gautham Das

Abstract:

The purpose of this study is to evaluate the incorporation of hemp fibers (HF) in concrete. Hemp fiber reinforced concrete (HFRC) is becoming more popular as an alternative for regular mix designs. This study was done to evaluate the compressive strength of HFRC regarding mix procedure. Hemp fibers were obtained from the manufacturer and hand-processed to ensure uniformity in width and length. The fibers were added to the concrete as both wet and dry mixes to investigate and optimize the mix design process. Results indicated that the dry mix had a compressive strength of 1157 psi compared to the wet mix of 985 psi. This dry mix compressive strength was within range of the standard mix compressive strength of 1533 psi. The statistical analysis revealed that the mix design process needs further optimization and uniformity concerning the addition of HF. Regression analysis revealed the standard mix design had a coefficient of 0.9 as compared to the dry mix of 0.375, indicating a variation in the mixing process. While completing the dry mix, the addition of plain hemp fibers caused them to intertwine, creating lumps and inconsistency. However, during the wet mixing process, combining water and hemp fibers before incorporation allows the fibers to uniformly disperse within the mix; hence the regression analysis indicated a better coefficient of 0.55. This study concludes that HRFC is a viable alternative to regular mixes; however, more research surrounding its characteristics needs to be conducted.

Keywords: hemp fibers, hemp reinforced concrete, wet & dry, freeze thaw testing, compressive strength

Procedia PDF Downloads 175
18313 Mechanical Properties of Waste Clay Brick Based Geopolymer Cured at Various Temperature

Authors: Shihab Ibrahim

Abstract:

Geopolymer binders as an alternative binder system to ordinary Portland cement are the focus of the past 2 decades of researches. In order to eliminate CO2 emission by cement manufacturing and utilizing construction waste as a source material, clean waste clay bricks which are the waste from Levent Brick factory was activated with a mixture of sodium hydroxide and sodium silicate solution. 12 molarity of sodium hydroxide solution was used and the ratio of sodium silicate to sodium hydroxide was 2.5. Alkaline solution to clay brick powder ratio of 0.35, 0.4, 0.45, and 0.5 was studied. Alkaline solution to powder ratio of 0.4 was found to be optimum ratio to have the same workability as ordinary Portland cement paste. Compressive strength of the clay brick based geopolymer paste samples was evaluated under different curing temperatures and curing durations. One day compressive strength of 57.3 MPa after curing at 85C for 24 hours was obtained which was higher than 7 days compressive strength of ordinary Portland cement paste. The highest compressive strength 71.4 MPa was achieved at seventh day age for the geopolymer paste samples cured at 85C for 24 hours. It was found that 8 hour curing at elevated temperature 85C, is sufficient to get 96% of total strength. 37.4 MPa strength at seventh day of clay brick based geopolymer sample cured at room temperature was achieved. Water absorption around 10% was found for clay brick based geopolymer samples cured at different temperatures with compare to 9.14% water absorption of ordinary Portland cement paste. The clay brick based geopolymer binder can have the potentiality to be used as an alternative binder to Portland cement in a case that the heat treatment provided. Further studies are needed in order to produce the binder in a way that can harden and gain strength without any elevated curing.

Keywords: construction and demolition waste, geopolymer, clay brick, compressive strength.

Procedia PDF Downloads 226
18312 Ceramic Ware Waste Potential as Co-Ballast in Dense Masonry Unit Production

Authors: A. A. Ajayi-Banji, M. A. Adegbile, T. D. Akpenpuun, J. Bello, O. Omobowale, D. A. Jenyo

Abstract:

Ceramic ware waste applicability as coarse aggregate was considered in this study for dense masonry unit production. The waste was crushed into 1.4 mm particle size and mixed with natural fine aggregate in the ratio 2:3. Portland ordinary cement, aggregate, and water mix ratio was 1:7:0.5. Masonry units produced were cured for 7, 21 and 28 days prior to compressive test. The result shows that curing age have a significant effect on all the compressive strength indices inspected except for Young’s modulus. Crushing force and the compressive strength of the ceramic-natural fine aggregate blocks increased by 11.7 – 54.7% and 11.6 – 59.2% respectively. The highest ceramic-natural fine block compressive strength at yield and peak, 4.97 MPa, was obtained after 21 days curing age. Ceramic aggregate introduced into the dense blocks improved the suitability of the blocks for construction purposes.

Keywords: ceramic ware waste, co-ballast, dense masonry unit, compressive strength, curing time

Procedia PDF Downloads 381
18311 Effect of Mineral Additives on Improving the Geotechnical Properties of Soils in Chief

Authors: Rabah Younes

Abstract:

The reduction of available land resources and the increased cout associated with the use of high quality materials have led to the need for local soils to be used in geotechnical construction, however; poor engineering properties of these soils pose difficulties for constructions project and need to be stabilized to improve their properties in other works unsuitable soils with low bearing capacity , high plasticity coupled with high instability are frequently encountered hence, there is a need to improve the physical and mechanical characteristics of these soils to make theme more suitable for construction this can be done by using different mechanical and chemical methods clayey soil stabilization has been practiced for sometime but mixing additives, such us cement, lime and fly ash to the soil to increase its strength.

Keywords: clay, soil stabilization, naturaln pozzolana, atterberg limits, compaction, compressive strength shear strength, curing

Procedia PDF Downloads 283
18310 Bio-Based Polyethylene/Rice Starch Composite Prepared by Twin Screw Extruder

Authors: Waris Piyaphon, Sathaphorn O-Suwankul, Kittima Bootdee, Manit Nithitanakul

Abstract:

Starch from rice was used as a filler in low density polyethylene in preparation of low density polyethylene/rice starch composite. This study aims to prepare LDPE/rice starch composites. Glycerol (GC) was used as a plasticizer in order to increase dispersion and reduce agglomeration of rice starch in low density polyethylene (LDPE) matrix. Low density polyethylene grafted maleic anhydride (LDPE-g-MA) was used as a compatibilizer to increase the compatibility between LDPE and rice starch. The content of rice starch was varied between 10, 20, and 30 %wt. Results indicated that increase of rice starch content reduced tensile strength at break, elongation, and impact strength of composites. LDPE-g-MA showed positive effect on mechanical properties which increased in tensile strength and impact properties as well as compatibility between rice starch and LDPE matrix. Moreover, the addition of LDPE-g-MA significantly improved the impact strength by 50% compared to neat composite. The incorporation of GC enhanced the processability of composite. Introduction of GC affected the viscosity after blending by reducing the viscosity at all shear rate. The presence of plasticizer increased the impact strength but decreased the stiffness of composite. Water absorption of the composite was increased when plasticizer was added.

Keywords: composite material, plastic starch composite, polyethylene composite, PE grafted maleic anhydride

Procedia PDF Downloads 176
18309 Design of Reinforced Concrete with Eurocode 2

Authors: Carla Maria Costa Ferreira, Maria Helena Freitas Melao Barros

Abstract:

The rules implemented in Europe regarding structural design are termed Structural Eurocodes and deal with the several materials available for construction. Particularly regarding the very used in Europe concrete with steel reinforcement, it is named the Eurocode 2 – Design of Concrete Structures, usually known as EC2. The need of tables and abacuses to help in the design of reinforced concrete was due to the fact that the evolution and the study of new procedures and higher strength concrete showed that the previous tables needed to be improved. Reinforced concrete structures have particular aspects in the design that come from the nonlinear behavior of the concrete and steel and, in the case of concrete, also by the very low tensile strength. The design of reinforced concrete structures is made in terms of evaluating the ultimate strength and how it behaves under service conditions. As a matter of fact, the use of higher-strength concrete and steel classes showed that these serviceability design that was important for prestressed structures may be relevant in reinforced concrete structures. For these aspects, there are tables and design charts used for the ultimate limit design of reinforced concrete sections under bending moments and axial forces, and also auxiliary design diagrams able to evaluate the stress of the steel and the concrete at a section and the ductility for service limit states verification. For practical use, here are presented tables and design charts for the ultimate limit design of reinforced concrete sections and also auxiliary interaction diagrams for verification of the serviceability conditions. These kinds of aid for design were only available to engineers before the development of computers and, nowadays, yet an important tool in the universities for the students' use. Usually, in the reinforced concrete design, it is needed to obtain the area of the steel longitudinal reinforcement to be placed in the structure. The quantity and the position of the steel area may have different solutions and these tables and abacuses permit to obtain many possibilities in order to optimize the solution in economic or ductility terms.

Keywords: design examples, Eurocode 2, reinforced concrete, section design

Procedia PDF Downloads 43
18308 The Mineralogy of Shales from the Pilbara and How Chemical Weathering Affects the Intact Strength

Authors: Arturo Maldonado

Abstract:

In the iron ore mining industry, the intact strength of rock units is defined using the uniaxial compressive strength (UCS). This parameter is very important for the classification of shale materials, allowing the split between rock and cohesive soils based on the magnitude of UCS. For this research, it is assumed that UCS less than or equal to 1 MPa is representative of soils. Several researchers have anticipated that the magnitude of UCS reduces with weathering progression, also since UCS is a directional property, its magnitude depends upon the rock fabric orientation. Thus, the paper presents how the UCS of shales is affected by both weathering grade and bedding orientation. The mineralogy of shales has been defined using Hyper-spectral and chemical assays to define the mineral constituents of shale and other non-shale materials. Geological classification tools have been used to define distinct lithological types, and in this manner, the author uses mineralogical datasets to recognize and isolate shales from other rock types and develop tertiary plots for fresh and weathered shales. The mineralogical classification of shales has reduced the contamination of lithology types and facilitated the study of the physical factors affecting the intact strength of shales, like anisotropic strength due to bedding orientation. The analysis of mineralogical characteristics of shales is perhaps the most important contribution of this paper to other researchers who may wish to explore similar methods.

Keywords: rock mechanics, mineralogy, shales, weathering, anisotropy

Procedia PDF Downloads 21
18307 Investigation of Compressive Strength of Fly Ash-Based Geopolymer Bricks with Hierarchical Bayesian Path Analysis

Authors: Ersin Sener, Ibrahim Demir, Hasan Aykut Karaboga, Kadir Kilinc

Abstract:

Bayesian methods, which have very wide range of applications, are implemented to the data obtained from the production of F class fly ash-based geopolymer bricks’ experimental design. In this study, dependent variable is compressive strength, independent variables are treatment type (oven and steam), treatment time, molding time, temperature, water absorbtion ratio and density. The effect of independent variables on compressive strength is investigated. There is no difference among treatment types, but there is a correlation between independent variables. Therefore, hierarchical Bayesian path analysis is applied. In consequence of analysis we specified that treatment time, temperature and density effects on compressive strength is higher, molding time, and water absorbtion ratio is relatively low.

Keywords: experimental design, F class fly ash, geopolymer bricks, hierarchical Bayesian path analysis

Procedia PDF Downloads 363
18306 Development and Characterization of Ethiopian Bamboo Fiber Polypropylene Composite

Authors: Tigist Girma Kedane

Abstract:

The purpose of this paper is to evaluate the properties of Ethiopian bamboo fiber polymer composites for headliner materials in the automobile industry. Accurate evaluation of its mechanical properties is thus critical for predicting its behavior during a vehicle's interior impact assessment. Conventional headliner materials are higher in weight, nonbiodegradable, expensive in cost, and unecofriendly during processing compared to the current researched materials. Three representatives of bamboo plants are harvested in three regions of bamboo species, three groups of ages, and two harvesting months. The statistical analysis was performed to validate the significant difference between the mean strength of bamboo ages, harvesting seasons, and bamboo species. Two-year-old bamboo fibers have the highest mechanical properties in all ages and November has higher mechanical properties compared to February. Injibara and Kombolcha have the highest and the lowest mechanical properties of bamboo fibers, respectively. Bamboo fiber epoxy composites have higher mechanical properties compared to bamboo fiber polypropylene composites. The flexural strength of bamboo fibre polymer composites has higher properties compared to tensile strength. Ethiopian bamboo fibers and their polymer composites have the best mechanical properties for the composite industry, which is used for headliner materials in the automobile industry compared to conventional headliner materials.

Keywords: bampoo species, culm age, harvesting seasons, mechanical properties, polymer composite

Procedia PDF Downloads 39
18305 Ultimate Stress of the Steel Tube in Circular Concrete-Filled Steel Tube Stub Columns Subjected to Axial Compression

Authors: Siqi Lin, Yangang Zhao

Abstract:

Concrete-filled steel tube column achieves the excellent performance of high strength, stiffness, and ductility due to the confinement from the steel tube. Well understanding the stress of the steel tube is important to make clear the confinement effect. In this paper, the ultimate stress of the steel tube in circular concrete-filled steel tube columns subjected to axial compression was studied. Experimental tests were conducted to investigate the effects of the parameters, including concrete strength, steel strength, and D/t ratio, on the ultimate stress of the steel tube. The stress of the steel tube was determined by employing the Prandtl-Reuss flow rule associated with isotropic strain hardening. Results indicate that the stress of steel tube was influenced by the parameters. Specimen with higher strength ratio fy/fc and smaller D/t ratio generally leads to a higher utilization efficiency of the steel tube.

Keywords: concrete-filled steel tube, axial compression, ultimate stress, utilization efficiency

Procedia PDF Downloads 388
18304 Designing, Processing and Isothermal Transformation of Al-Si High Carbon Ultrafine High Strength Bainitic Steel

Authors: Mohamed K. El-Fawkhry, Ahmed Shash, Ahmed Ismail Zaki Farahat, Sherif Ali Abd El Rahman, Taha Mattar

Abstract:

High-carbon, silicon-rich steels are commonly suggested to obtain very fine bainitic microstructure at low temperature ranged from 200 to 300°C. Thereby, the resulted microstructure consists of slender of bainitic-ferritic plates interwoven with retained austenite. The advanced strength and ductility package of this steel is much dependent on the fineness of bainitic ferrite, as well as the retained austenite phase. In this article, Aluminum to Silicon ratio, and the isothermal transformation temperature have been adopted to obtain ultra high strength high carbon steel. Optical and SEM investigation of the produced steels have been performed. XRD has been used to track the retained austenite development as a result of the change in the chemical composition of developed steels and heat treatment process. Mechanical properties in terms of hardness and microhardness of obtained phases and structure were investigated. It was observed that the increment of aluminum to silicon ratio has a great effect in promoting the bainitic transformation, in tandem with improving the stability and the fineness of retained austenite. Such advanced structure leads to enhancement in the whole mechanical properties of the high carbon steel.

Keywords: high-carbon steel, silicon-rich steels, fine bainitic microstructure, retained austenite, isothermal transformation

Procedia PDF Downloads 326
18303 Effect of TEOS Electrospun Nanofiber Modified Resin on Interlaminar Shear Strength of Glass Fiber/Epoxy Composite

Authors: Dattaji K. Shinde, Ajit D. Kelkar

Abstract:

Interlaminar shear strength (ILSS) of fiber reinforced polymer composite is an important property for most of the structural applications. Matrix modification is an effective method used to improve the interlaminar shear strength of composite. In this paper, EPON 862/w epoxy system was modified using Tetraethyl orthosilicate (TEOS) electrospun nanofibers (ENFs) which were produced using electrospinning method. Unmodified and nanofibers modified resins were used to fabricate glass fiber reinforced polymer composite (GFRP) using H-VARTM method. The ILSS of the Glass Fiber Reinforced Polymeric Composites (GFRP) was investigated. The study shows that introduction of TEOS ENFs in the epoxy resin enhanced the ILSS of GFRPby 15% with 0.6% wt. fraction of TEOS ENFs.

Keywords: electrospun nanofibers, H-VARTM, interlaminar shear strength, matrix modification

Procedia PDF Downloads 195
18302 Design Approach to Incorporate Unique Performance Characteristics of Special Concrete

Authors: Devendra Kumar Pandey, Debabrata Chakraborty

Abstract:

The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.

Keywords: high performance concrete, special concrete, structural design, structural lightweight concrete

Procedia PDF Downloads 284
18301 Potential Use of Local Materials as Synthesizing One Part Geopolymer Cement

Authors: Areej Almalkawi, Sameer Hamadna, Parviz Soroushian, Nalin Darsana

Abstract:

The work on indigenous binders in this paper focused on the following indigenous raw materials: red clay, red lava and pumice (as primary aluminosilicate precursors), wood ash and gypsum (as supplementary minerals), and sodium sulfate and lime (as alkali activators). The experimental methods used for evaluation of these indigenous raw materials included laser granulometry, x-ray fluorescence (XRF) spectroscopy, and chemical reactivity. Formulations were devised for transforming these raw materials into alkali aluminosilicate-based hydraulic cements. These formulations were processed into hydraulic cements via simple heating and milling actions to render thermal activation, mechanochemical and size reduction effects. The resulting hydraulic cements were subjected to laser granulometry, heat of hydration and reactivity tests. These cements were also used to prepare mortar mixtures, which were evaluated via performance of compressive strength tests. The measured values of strength were correlated with the reactivity, size distribution and microstructural features of raw materials. Some of the indigenous hydraulic cements produced in this reporting period yielded viable levels of compressive strength. The correlation trends established in this work are being evaluated for development of simple and thorough methods of qualifying indigenous raw materials for use in production of indigenous hydraulic cements.

Keywords: one-part geopolymer cement, aluminosilicate precursors, thermal activation, mechanochemical

Procedia PDF Downloads 294
18300 Development of AA2024 Matrix Composites Reinforced with Micro Yttrium through Cold Compaction with Superior Mechanical Properties

Authors: C. H. S. Vidyasagar, D. B. Karunakar

Abstract:

In this present work, five different composite samples with AA2024 as matrix and varying amounts of yttrium (0.1-0.5 wt.%) as reinforcement are developed through cold compaction. The microstructures of the developed composite samples revealed that the yttrium reinforcement caused grain refinement up to 0.3 wt.% and beyond which the refinement is not effective. The microstructure revealed Al2Cu precipitation which strengthened the composite up to 0.3 wt.% yttrium reinforcement. Upon further increase in yttrium reinforcement, the intermetallics and the precipitation coarsen and their corresponding strengthening effect decreases. The mechanical characterization revealed that the composite sample reinforced with 0.3 wt.% yttrium showed highest mechanical properties like 82 HV of hardness, 276 MPa Ultimate Tensile Strength (UTS), 229 MPa Yield Strength (YS) and an elongation (EL) of 18.9% respectively. However, the relative density of the developed composites decreased with the increase in yttrium reinforcement.

Keywords: mechanical properties, AA 2024 matrix, yttrium reinforcement, cold compaction, precipitation

Procedia PDF Downloads 124
18299 Mechanical Characterization of Extrudable Foamed Concrete: An Experimental Study

Authors: D. Falliano, D. De Domenico, G. Ricciardi, E. Gugliandolo

Abstract:

This paper is focused on the mechanical characterization of foamed concrete specimens with protein-based foaming agent. Unlike classic foamed concrete, a peculiar property of the analyzed foamed concrete is the extrudability, which is achieved via a specific additive in the concrete mix that significantly improves the cohesion and viscosity of the fresh cementitious paste. A broad experimental campaign was conducted to evaluate the compressive strength and the indirect tensile strength of the specimens. The study has comprised three different cement types, two water/cement ratios, three curing conditions and three target dry densities. The variability of the strength values upon the above mentioned factors is discussed.

Keywords: cement type, curing conditions, density, extrudable concrete, foamed concrete, mechanical characterization

Procedia PDF Downloads 239
18298 Simplified Ultimate Strength Assessment of Ship Structures Based on Biro Klasifikasi Indonesia Rules for Hull

Authors: Sukron Makmun, Topan Firmandha, Siswanto

Abstract:

Ultimate Strength Assessment on ship cross section in accordance with Biro Klasifikasi Indonesia (BKI) Rules for Hull, follows step by step incremental iterative approach. In this approach, ship cross section is divided into plate-stiffener combinations and hard corners element. The average stress-strain relationship (σ-ε) for all structural elements will be defined, where the subscript k refers to the modes 0, 1, 2, 3 or 4. These results would be verified with a commercial software calculation in similar cases. The numerical calculations of buckling strength are in accordance with the commercial software (GL Rules ND). Then the comparison of failure behaviours of stiffened panels and hard corners are presented. Where failure modes 3 are likely to occur first follows the failure mode 4 and the last one is the failure mode 1.

Keywords: ultimate strength assessment, BKI rules, incremental, plate-stiffener combination and hard corner, commercial software

Procedia PDF Downloads 345
18297 Effect of Leachate Presence on Shear Strength Parameters of Bentonite-Amended Zeolite Soil

Authors: R. Ziaie Moayed, H. Keshavarz Hedayati

Abstract:

Over recent years, due to increased population and increased waste production, groundwater protection has become more important, therefore, designing engineered barrier systems such as landfill liners to prevent the entry of leachate into groundwater should be done with greater accuracy. These measures generally involve the application of low permeability soils such as clays. Bentonite is a natural clay with low permeability which makes it a suitable soil for using in liners. Also zeolite with high cation exchange capacity can help to reduce of hazardous materials risk. Bentonite expands when wet, absorbing as much as several times its dry mass in water. This property may effect on some structural properties of soil such as shear strength. In present study, shear strength parameters are determined by both leachates polluted and not polluted bentonite-amended zeolite soil with mixing rates (B/Z) of 5%-10% and 20% with unconfined compression test to obtain the differences. It is shown that leachate presence causes reduction in resistance in general.

Keywords: bentonite, leachate, shear strength parameters, unconfined compression test

Procedia PDF Downloads 85
18296 Load Carrying Capacity of Soils Reinforced with Encased Stone Columns

Authors: S. Chandrakaran, G. Govind

Abstract:

Stone columns are effectively used to improve bearing strength of soils and also for many geotechnical applications. In soft soils when stone columns are loaded they undergo large settlements due to insufficient lateral confinement. Use of geosynthetics encasement has proved to be a solution for this problem. In this paper, results of a laboratory experimental study carried out with model stone columns with and without encasement. Sand was used for making test beds, and grain size of soil varies from 0.075mm to 4.75mm. Woven geotextiles produced by Gareware ropes India with mass per unit area of 240gm/M2 and having tensile strength of 52KN/m is used for the present investigation. Tests were performed with large scale direct shear box and also using scaled laboratory plate load tests. Stone column of 50mm and 75mm is used for the present investigation. Diameter of stone column, size of stones used for making stone columns is varied in making stone column in the present study. Two types of stone were used namely small and bigger in size. Results indicate that there is an increase in angle of internal friction and also an increase in the shear strength of soil when stone columns are encased. With stone columns with 50mm dia, an average increase of 7% in shear strength and 4.6 % in angle of internal friction was achieved. When large stones were used increase in the shear strength was 12.2%, and angle of internal friction was increased to 5.4%. When the stone column diameter has increased to 75mm increase in shear strength and angle of internal friction was increased with smaller size of stones to 7.9 and 7.5%, and with large size stones, it was 7.7 and 5.48% respectively. Similar results are obtained in plate load tests, also.

Keywords: stone columns, encasement, shear strength, plate load test

Procedia PDF Downloads 215
18295 Development of Coir Reinforced Composite for Automotive Parts Application

Authors: Okpala Charles Chikwendu, Ezeanyim Okechukwu Chiedu, Onukwuli Somto Kenneth

Abstract:

The demand for lightweight and fuel-efficient automobiles has led to the use of fiber-reinforced polymer composites in place of traditional metal parts. Coir, a natural fiber, offers qualities such as low cost, good tensile strength, and biodegradability, making it a potential filler material for automotive components. However, poor interfacial adhesion between coir and polymeric matrices has been a challenge. To address poor interfacial adhesion with polymeric matrices due to their moisture content and method of preparation, the extracted coir was chemically treated using NaOH. To develop a side view mirror encasement by investigating the mechanical effect of fiber percentage composition, fiber length and percentage composition of Epoxy in a coir fiber reinforced composite, polyester was adopted as the resin for the mold, while that of the product is Epoxy. Coir served as the filler material for the product. Specimens with varied compositions of fiber loading (15, 30 and 45) %, length (10, 15, 20, 30 and 45) mm, and (55, 70, 85) % weight of epoxy resin were fabricated using hand lay-up technique, while those specimens were later subjected to mechanical tests (Tensile, Flexural and Impact test). The results of the mechanical test showed that the optimal solution for the input factors is coir at 45%, epoxy at 54.543%, and 45mm coir length, which was used for the development of a vehicle’s side view mirror encasement. The optimal solutions for the response parameters are 49.333 Mpa for tensile strength, flexural for 57.118 Mpa, impact strength for 34.787 KJ/M2, young modulus for 4.788 GPa, stress for 4.534 KN, and 20.483 mm for strain. The models that were developed using Design Expert software revealed that the input factors can achieve the response parameters in the system with 94% desirability. The study showed that coir is quite durable for filler material in an epoxy composite for automobile applications and that fiber loading and length have a significant effect on the mechanical behavior of coir fiber-reinforced epoxy composites. The coir's low density, considerable tensile strength, and bio-degradability contribute to its eco-friendliness and potential for reducing the environmental hazards of synthetic automotive components.

Keywords: coir, composite, coir fiber, coconut husk, polymer, automobile, mechanical test

Procedia PDF Downloads 33
18294 90-Day Strength Training Intervention Decreases Incidence of Sarcopenia: A Pre- and Posttest Pilot Study of Older Adults in a Skilled Nursing Facility

Authors: Donna-Marie Phyllis Lanton

Abstract:

Sarcopenia is a well-known geriatric syndrome characterized by the progressive and generalized loss of muscle quantity or quality. The incidence of sarcopenia increases with age and is associated with adverse outcomes such as the increased risk of falls, cognitive impairment, loss of independence, diminished quality of life, increased health costs, need for care in a skilled nursing facility, and increased mortality. Physical activity, including resistance training, is the most prevalent recommendation for treating and preventing sarcopenia. Residents (N = 23) of a skilled nursing facility in East Orlando, Florida, participated in a 90-day strength training program designed using the PARIHS framework to improve measures of muscle mass, muscle strength, physical performance, and quality of life. Residents engaged in both resistance and balance exercises for 1 hour two times a week. Baseline data were collected and compared to data at Days 30, 60, and 90. T tests indicated significant gains on all measures from baseline to 90 days: muscle mass increased by 1.2 (t[22] = 2.85, p = .009), grip strength increased by 4.02 (t[22] = 8.15, p < .001), balance increased by 2.13 (t[22] = 18.64, p < .001), gait speed increased by 1.83 (t[22] = 17.84, p < .001), chair speed increased 1.87 (t[22] = 16.36, p < .001), and quality of life score increased by 17.5 (t[22] = 19.26, p < .001). For residents with sarcopenia in skilled nursing facilities, a 90-day strength training program with resistance and balance exercises may provide an option for decreasing the incidence of sarcopenia among that population

Keywords: muscle mass, muscle strength, older adults, PARIHS framework

Procedia PDF Downloads 68
18293 Effect of Printing Process on Mechanical Properties and Porosity of 3D Printed Concrete Strips

Authors: Wei Chen

Abstract:

3D concrete printing technology is a novel and highly efficient construction method that holds significant promise for advancing low-carbon initiatives within the construction industry. In contrast to traditional construction practices, 3D printing offers a manual and formwork-free approach, resulting in a transformative shift in labor requirements and fabrication techniques. This transition yields substantial reductions in carbon emissions during the construction phase, as well as decreased on-site waste generation. Furthermore, when compared to conventionally printed concrete, 3D concrete exhibits mechanical anisotropy due to its layer-by-layer construction methodology. Therefore, it becomes imperative to investigate the influence of the printing process on the mechanical properties of 3D printed strips and to optimize the mechanical characteristics of these coagulated strips. In this study, we conducted three-dimensional reconstructions of printed blocks using both circular and directional print heads, incorporating various overlap distances between strips, and employed CT scanning for comprehensive analysis. Our research focused on assessing mechanical properties and micro-pore characteristics under different loading orientations.Our findings reveal that increasing the overlap degree between strips leads to enhanced mechanical properties of the strips. However, it's noteworthy that once full overlap is achieved, further increases in the degree of coincidence do not lead to a decrease in porosity between strips. Additionally, due to its superior printing cross-sectional area, the square printing head exhibited the most favorable impact on mechanical properties.This paper aims to improve the tensile strength, tensile ductility, and bending toughness of a recently developed ‘one-part’ geopolymer for 3D concrete printing (3DCP) applications, in order to address the insufficient tensile strength and brittle fracture characteristics of geopolymer materials in 3D printing scenarios where materials are subjected to tensile stress. The effects of steel fiber content, and aspect ratio, on mechanical properties, were systematically discussed, including compressive strength, flexure strength, splitting tensile strength, uniaxial tensile strength, bending toughness, and the anisotropy of 3DP-OPGFRC, respectively. The fiber distribution in the printed samples was obtained through x-ray computed tomography (X-CT) testing. In addition, the underlying mechanisms were discussed to provide a deep understanding of the role steel fiber played in the reinforcement. The experimental results showed that the flexural strength increased by 282% to 26.1MP, and the compressive strength also reached 104.5Mpa. A high tensile ductility, appreciable bending toughness, and strain-hardening behavior can be achieved with steel fiber incorporation. In addition, it has an advantage over the OPC-based steel fiber-reinforced 3D printing materials given in the existing literature (flexural strength 15 Mpa); It is also superior to the tensile strength (<6Mpa) of current geopolymer fiber reinforcements used for 3D printing. It is anticipated that the development of this 3D printable steel fiber reinforced ‘one-part’ geopolymer will be used to meet high tensile strength requirements for printing scenarios.

Keywords: 3D printing concrete, mechanical anisotropy, micro-pore structure, printing technology

Procedia PDF Downloads 54
18292 Shear Strength Characteristics of Sand Mixed with Particulate Rubber

Authors: Firas Daghistani, Hossam Abuel Naga

Abstract:

Waste tyres is a global problem that has a negative effect on the environment, where there are approximately one billion waste tyres discarded worldwide yearly. Waste tyres are discarded in stockpiles, where they provide harm to the environment in many ways. Finding applications to these materials can help in reducing this global problem. One of these applications is recycling these waste materials and using them in geotechnical engineering. Recycled waste tyre particulates can be mixed with sand to form a lightweight material with varying shear strength characteristics. Contradicting results were found in the literature on the inclusion of particulate rubber to sand, where some experiments found that the inclusion of particulate rubber can increase the shear strength of the mixture, while other experiments stated that the addition of particulate rubber decreases the shear strength of the mixture. This research further investigates the inclusion of particulate rubber to sand and whether it can increase or decrease the shear strength characteristics of the mixture. For the experiment, a series of direct shear tests were performed on a poorly graded sand with a mean particle size of 0.32 mm mixed with recycled poorly graded particulate rubber with a mean particle size of 0.51 mm. The shear tests were performedon four normal stresses 30, 55, 105, 200 kPa at a shear rate of 1 mm/minute. Different percentages ofparticulate rubber content were used in the mixture i.e., 10%, 20%, 30% and 50% of sand dry weight at three density states, namely loose, slight dense, and dense state. The size ratio of the mixture,which is the mean particle size of the particulate rubber divided by the mean particle size of the sand, was 1.59. The results identified multiple parameters that can influence the shear strength of the mixture. The parameters were: normal stress, particulate rubber content, mixture gradation, mixture size ratio, and the mixture’s density. The inclusion of particulate rubber tosand showed a decrease to the internal friction angle and an increase to the apparent cohesion. Overall, the inclusion of particulate rubber did not have a significant influenceon the shear strength of the mixture. For all the dense states at the low normal stresses 33 and 55 kPa, the inclusion of particulate rubber showed aslight increase in the shear strength where the peak was at 20% rubber content of the sand’s dry weight. On the other hand, at the high normal stresses 105, and 200 kPa, there was a slight decrease in the shear strength.

Keywords: shear strength, direct shear, sand-rubber mixture, waste material, granular material

Procedia PDF Downloads 110
18291 The Acute Effects of a Warm-Up Including Different Dynamic Stretching on Hamstring Stiffness, Flexibility, and Strength

Authors: Che Hsiu Chen, Kuo Wei Tseng, Zih Jian Huang, Hon Wen Cheng

Abstract:

A typical warm-up contains both stretching exercises and jogging. The static stretching prior to training or competition may cause detrimental effects to athletic performance. However, it is unclear whether different types of dynamic stretching exercises had different acute effects on knee flexors stiffness, flexibility, and strength. The purpose of this study was to analyze the knee flexors stiffness, flexibility, and strength gains after dynamic straight leg raise (DSLR) and dynamic modified toe-touch (MTT) stretching. Sixteen healthy university active men (height 176.27 ± 4.03 cm; weight 72.27 ± 8.90 kg; age 22.09 ± 2.31 years). After 5 minutes (8km/h) of running subjects performed 2 randomly ordered stretching protocols: DSLR and MTT stretching protocols. There were a total of six, 30 seconds bouts of dynamic stretching (15 repetitions) with 30seconds rest between bouts. The outcome measures were maximal voluntary isokinetic concentric hamstring strength (60°/s), muscle flexibility test by passive straight leg raise (PSLR), active straight leg raise (ASLR), and muscle stiffness using ultrasound Acoustic Radiation Forced Impulse (ARFI) elastography before and immediately after stretching. The muscle stiffness and concentric strength decreased significantly (p < .05), the flexibility no significant change after DSLR protocol (p > .05). The concentric strength decreased significantly (p < .05), the flexibility and muscle stiffness no significant change after MTT protocol (p > .05), whereas no significant differences were found for the DSLR and MTT. Our findings suggest that dynamic stretching (30s x 6 bouts) resulted in change in muscle stiffness or may be induced slack in the musculotendinous unit thereby, reducing force production. Therefore, 30s x 6 bouts of dynamic stretching adversely affects efforts of hamstring muscle maximal concentric strength.

Keywords: sport injury, ultrasound, eccentric exercise, performance

Procedia PDF Downloads 260
18290 Comparison of Double Unit Tunnel Form Building before and after Repair and Retrofit under in-Plane Cyclic Loading

Authors: S. A. Anuar, N. H. Hamid, M. H. Hashim, S. M. D. Salleh

Abstract:

This paper present the experimental work on the seismic performance of double unit tunnel form building (TFB) subjected to in-plane lateral cyclic loading. A one third scale of 3-storey double unit of TFB is tested at ±0.01%, ±0.1%, ±0.25%, ±0.5%, ±0.75% and ±1.0% drifts until the structure achieves its strength degradation. After that, the TFB is repaired and retrofitted using additional shear wall, steel angle and CFRP sheet. A similar testing approach is applied to the specimen after repair and retrofit. The crack patterns, lateral strength, stiffness, ductility and equivalent viscous damping (EVD) were analyzed and compared before and after repair and retrofit. The result indicates that the lateral strength increases by 22 in pushing direction and 27% in pulling direction. Moreover, the stiffness and ductility obtained before and after retrofit increase tremendously by 87.87% and 39.66%, respectively. Meanwhile, the energy absorption measured by equivalent viscous damping obtained after retrofit increase by 12.34% in pulling direction. It can be concluded that the proposed retrofit method is capable to increase the lateral strength capacity, stiffness and energy absorption of double unit TFB.

Keywords: tunnel form building, in-plane lateral cyclic loading, crack pattern, lateral strength, stiffness, ductility, equivalent viscous damping, repair and retrofit

Procedia PDF Downloads 325
18289 Acid Attack on Cement Mortars Modified with Rubber Aggregates and EVA Polymer Binder

Authors: Konstantinos Sotiriadis, Michael Tupý, Nikol Žižková, Vít Petránek

Abstract:

The acid attack on cement mortars modified with rubber aggregates and EVA polymer binder was studied. Mortar specimens were prepared using a type CEM I 42.5 Portland cement and siliceous sand, as well as by substituting 25% of sand with shredded used automobile tires, and by adding EVA polymer in two percentages (5% and 10% of cement mass). Some specimens were only air cured, at laboratory conditions, and their compressive strength and water absorption were determined. The rest specimens were stored in acid solutions (HCl, H2SO4, HNO3) after 28 days of initial curing, and stored at laboratory temperature. Compressive strength tests, mass measurements and visual inspection took place for 28 days. Compressive strength and water absorption of the air-cured specimens were significantly decreased when rubber aggregates are used. The addition of EVA polymer further reduced water absorption, while had no important impact on strength. Compressive strength values were affected in a greater extent by hydrochloric acid solution, followed by sulfate and nitric acid solutions. The addition of EVA polymer decreased compressive strength loss for the specimens with rubber aggregates stored in hydrochloric and nitric acid solutions. The specimens without polymer binder showed similar mass loss, which was higher in sulfate acid solution followed by hydrochloric and nitric acid solutions. The use of EVA polymer delayed mass loss, while its content did not affect it significantly.

Keywords: acid attack, mortar, EVA polymer, rubber aggregates

Procedia PDF Downloads 265
18288 Utilization of Waste Crushed Tile as Coarse Aggregate in Concrete

Authors: Harkaranjit Singh, Arun Kumar

Abstract:

Depletion of natural resources is a common phenomenon in developing countries like India due to rapid urbanization and industrialization involving construction of infrastructure and other amenities. In view of this, people have started searching for suitable other viable alternative materials for concrete so that the existing natural resources could be preserved to the possible extent for the future generation. In this process, different industrial waste materials such as fly ash, blast furnace slag, quarry dust, tile waste, bricks, broken glass waste, waste aggregate from demolition of structures, ceramic insulator waste, etc. have been tried as a viable substitute material to the conventional materials in concrete and has also been succeeded. This paper describes the studies conducted on strength characteristics of concrete made with utilizing of crushed tiles as a coarse aggregate. The waste crushed tiles can be used as coarse aggregates with the replacement ratio of 0, 50, 75 and 100% were used. Mechanical and physical tests were conducted on specimens. It was found that, the concrete made of waste ceramic tile aggregate produced more strength in compression, and flexure.

Keywords: compressive strength, flexural strength, waste crushed tile, concrete

Procedia PDF Downloads 381
18287 Evaluation of Tensile Strength of Natural Fibres Reinforced Epoxy Composites Using Fly Ash as Filler Material

Authors: Balwinder Singh, Veerpaul Kaur Mann

Abstract:

A composite material is formed by the combination of two or more phases or materials. Natural minerals-derived Basalt fiber is a kind of fiber being introduced in the polymer composite industry due to its good mechanical properties similar to synthetic fibers and low cost, environment friendly. Also, there is a rising trend towards the use of industrial wastes as fillers in polymer composites with the aim of improving the properties of the composites. The mechanical properties of the fiber-reinforced polymer composites are influenced by various factors like fiber length, fiber weight %, filler weight %, filler size, etc. Thus, a detailed study has been done on the characterization of short-chopped Basalt fiber-reinforced polymer matrix composites using fly ash as filler. Taguchi’s L9 orthogonal array has been used to develop the composites by considering fiber length (6, 9 and 12 mm), fiber weight % (25, 30 and 35 %) and filler weight % (0, 5 and 10%) as input parameters with their respective levels and a thorough analysis on the mechanical characteristics (tensile strength and impact strength) has been done using ANOVA analysis with the help of MINITAB14 software. The investigation revealed that fiber weight is the most significant parameter affecting tensile strength, followed by fiber length and fiber weight %, respectively, while impact characterization showed that fiber length is the most significant factor, followed by fly ash weight, respectively. Introduction of fly ash proved to be beneficial in both the characterization with enhanced values upto 5% fly ash weight. The present study on the natural fibres reinforced epoxy composites using fly ash as filler material to study the effect of input parameters on the tensile strength in order to maximize tensile strength of the composites. Fabrication of composites based on Taguchi L9 orthogonal array design of experiments by using three factors fibre type, fibre weight % and fly ash % with three levels of each factor. The Optimization of composition of natural fibre reinforces composites using ANOVA for obtaining maximum tensile strength on fabricated composites revealed that the natural fibres along with fly ash can be successfully used with epoxy resin to prepare polymer matrix composites with good mechanical properties. Paddy- Paddy fibre gives high elasticity to the fibre composite due to presence of approximately hexagonal structure of cellulose present in paddy fibre. Coir- Coir fibre gives less tensile strength than paddy fibre as Coir fibre is brittle in nature when it pulls breakage occurs showing less tensile strength. Banana- Banana fibre has the least tensile strength in comparison to the paddy & coir fibre due to less cellulose content. Higher fibre weight leads to reduction in tensile strength due to increased nuclei of air pockets. Increasing fly ash content reduces tensile strength due to nonbonding of fly ash particles with natural fibre. Fly ash is also not very strong as compared to the epoxy resin leading to reduction in tensile strength.

Keywords: tensile strength and epoxy resin. basalt Fiber, taguchi, polymer matrix, natural fiber

Procedia PDF Downloads 26
18286 Investigation of the Properties of Epoxy Modified Binders Based on Epoxy Oligomer with Improved Deformation and Strength Properties

Authors: Hlaing Zaw Oo, N. Kostromina, V. Osipchik, T. Kravchenko, K. Yakovleva

Abstract:

The process of modification of ed-20 epoxy resin synthesized by vinyl-containing compounds is considered. It is shown that the introduction of vinyl-containing compounds into the composition based on epoxy resin ED-20 allows adjusting the technological and operational characteristics of the binder. For improvement of the properties of epoxy resin, following modifiers were selected: polyvinylformalethyl, polyvinyl butyral and composition of linear and aromatic amines (Аramine) as a hardener. Now the big range of hardeners of epoxy resins exists that allows varying technological properties of compositions, and also thermophysical and strength indicators. The nature of the aramin type hardener has a significant impact on the spatial parameters of the mesh, glass transition temperature, and strength characteristics. Epoxy composite materials based on ED-20 modified with polyvinyl butyral were obtained and investigated. It is shown that the composition of resins based on derivatives of polyvinyl butyral and ED-20 allows obtaining composite materials with a higher complex of deformation-strength, adhesion and thermal properties, better water resistance, frost resistance, chemical resistance, and impact strength. The magnitude of the effect depends on the chemical structure, temperature and curing time. In the area of concentrations, where the effect of composite synergy is appearing, the values of strength and stiffness significantly exceed the similar parameters of the individual components of the mixture. The polymer-polymer compositions form their class of materials with diverse specific properties that ensure their competitive application. Coatings with high performance under cyclic loading have been obtained based on epoxy oligomers modified with vinyl-containing compounds.

Keywords: epoxy resins, modification, vinyl-containing compounds, deformation, strength properties

Procedia PDF Downloads 87