Search results for: second order sliding modes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14610

Search results for: second order sliding modes

14220 Vertical and Lateral Vibration Response for Corrugated Track Curves Supported on High-Density Polyethylene and Hytrel Rail Pads

Authors: B.M. Balekwa, D.V.V. Kallon, D.J. Fourie

Abstract:

Modal analysis is applied to establish the dynamic difference between vibration response of the rails supported on High Density Polyethylene (HDPE) and Hytrel/6358 rail pads. The experiment was conducted to obtain the results in the form of Frequency Response Functions (FRFs) in the vertical and lateral directions. Three antiresonance modes are seen in the vertical direction; one occurs at about 150 Hz when the rail resting on the Hytrel/6358 pad experiences a force mid-span. For the rail resting on this type of rail pad, no antiresonance occurs when the force is applied on the point of the rail that is resting on the pad and directly on top of a sleeper. The two antiresonance modes occur in a frequency range of 250 – 300 Hz in the vertical direction for the rail resting on HDPE pads. At resonance, the rail vibrates with a higher amplitude, but at antiresonance, the rail transmits vibration downwards to the sleepers. When the rail is at antiresonance, the stiffness of the rail pads play a vital role in terms of damping the vertical vibration to protect the sleepers. From the FRFs it is understood that the Hytrel/6358 rail pads perform better than the HDPE in terms of vertical response, given that at a lower frequency range of 0 – 300 Hz only one antiresonance mode was identified for vertical vibration of the rail supported on Hytrel/6358. This means the rail is at antiresonance only once within this frequency range and this is the only time when vibration is transmitted downwards.

Keywords: accelerance, FRF, rail corrugation, rail pad

Procedia PDF Downloads 151
14219 Wear Particle Analysis from used Gear Lubricants for Maintenance Diagnostics

Authors: Surapol Raadnui

Abstract:

This particular work describes an experimental investigation on gear wear in which wear and pitting were intentionally allowed to occur, namely, moisture corrosion pitting, acid-induced corrosion pitting, hard contaminant-related pitting and mechanical induced wear. A back to back spur gear test rig and a grease lubricated worm gear rig were used. The tests samples of wear debris were collected and assessed through the utilization of an optical microscope in order to correlate and compare the debris morphology to pitting and wear degradation of the worn gears. In addition, weight loss from all test gear pairs were assessed with utilization of statistical design of experiment. It can be deduced that wear debris characteristics from both cases exhibited a direct relationship with different pitting and wear modes. Thus, it should be possible to detect and diagnose gear pitting and wear utilization of worn surfaces, generated wear debris and quantitative measurement such as weight loss.

Keywords: predictive maintenance, worm gear, spur gear, wear debris analysis, problem diagnostic

Procedia PDF Downloads 133
14218 Influence оf Viscous Dampers on Seismic Response оf Isolated Bridges Including Soil Structure Interaction

Authors: Marija Vitanova, Aleksandra Bogdanovic, Kemal Edip, Viktor Hristovski, Vlado Micov

Abstract:

Bridges represent critical structures in lifeline systems. They provide reliable modes of transportation, so their failure can seriously obstruct relief and rehabilitation work. Earthquake ground motions can cause significant damages in bridges, so during the strong earthquakes, they can easily collapse. The base isolation technique has been quite effective in seismic response mitigation of the bridges in reducing the piers base shear. The effect of soil structure interaction on the dynamic responses of seismically isolated three span girder bridge with viscous dampers is investigated. Viscous dampers are installed in the mid span of the bridge to control bearing displacement. The soil surrounding the foundation of piers has been analyzed by applying different soil densities in order to consider the soil stiffness. The soil medium has been assumed as a four layered infill as dense and loose medium. The boundaries in the soil medium are considered as infinite elements in order to absorb the radiating waves. The formulation of infinite elements is the same as for the finite elements in addition to the mapping of the domain. Based on the iso-parametric concept, the infinite element in global coordinate is mapped onto an element in local coordinate system. In the formulation of the infinite element, only the positive direction extends to infinity thus allowing the waves to propagate outside of the soil medium. Dynamic analyses for two levels of earthquake intensity are performed in time domain using direct integration method. In order to specify the effects of the SSI, the responses of the isolated and controlled isolated bridges are compared. It is observed that the soil surrounding the piers has significant effects on the bearing displacement of the isolated RC bridges. In addition, it is observed that the seismic responses of isolated RC bridge reduced significantly with the installation of the viscous dampers.

Keywords: viscous dampers, reinforced concrete girder bridges, seismic response, SSI

Procedia PDF Downloads 101
14217 The Exploration of the Physical Properties of the Combinations of Selenium-Based Ternary Chalcogenides AScSe₂ (A=K, Cs) for Photovoltaic Applications

Authors: Ayesha Asma, Aqsa Arooj

Abstract:

It is an essential need in this era of Science and Technology to investigate some unique and appropriate materials for optoelectronic applications. Here, we deliberated, for the first time, the structural, optoelectronic, mechanical, vibrational, and thermo dynamical properties of hexagonal structure selenium-based ternary chalcogenides AScSe₂ (A= K, Cs) by using Perdew-Burke-Ernzerhof Generalized-Gradient-Approximation (PBE-GGA). The lattice angles for these materials are found as α=β=90o and γ=120o. KScSe₂ optimized with lattice parameters a=b=4.3 (Å), c=7.81 (Å) whereas CsScSe₂ got relaxed at a=b=4.43 (Å) and c=8.51 (Å). However, HSE06 functional has overestimated the lattice parameters to the extent that for KScSe₂ a=b=4.92 (Å), c=7.10 (Å), and CsScSe₂ a=b=5.15 (Å), c=7.09 (Å). The energy band gap of these materials calculated via PBE-GGA and HSE06 functionals confirms their semiconducting nature. Concerning Born’s criteria, these materials are mechanically stable ones. Moreover, the temperature dependence of thermodynamic potentials and specific heat at constant volume are also determined while using the harmonic approximation. The negative values of free energy ensure their thermodynamic stability. The vibrational modes are calculated by plotting the phonon dispersion and the vibrational density of states (VDOS), where infrared (IR) and Raman spectroscopy are used to characterize the vibrational modes. The various optical parameters are examined at a smearing value of 0.5eV. These parameters unveil that these materials are good absorbers of incident light in ultra-violet (UV) regions and may be utilized in photovoltaic applications.

Keywords: structural, optimized, vibrational, ultraviolet

Procedia PDF Downloads 14
14216 Genome-Wide Mining of Potential Guide RNAs for Streptococcus pyogenes and Neisseria meningitides CRISPR-Cas Systems for Genome Engineering

Authors: Farahnaz Sadat Golestan Hashemi, Mohd Razi Ismail, Mohd Y. Rafii

Abstract:

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) system can facilitate targeted genome editing in organisms. Dual or single guide RNA (gRNA) can program the Cas9 nuclease to cut target DNA in particular areas; thus, introducing concise mutations either via error-prone non-homologous end-joining repairing or via incorporating foreign DNAs by homologous recombination between donor DNA and target area. In spite of high demand of such promising technology, developing a well-organized procedure in order for reliable mining of potential target sites for gRNAs in large genomic data is still challenging. Hence, we aimed to perform high-throughput detection of target sites by specific PAMs for not only common Streptococcus pyogenes (SpCas9) but also for Neisseria meningitides (NmCas9) CRISPR-Cas systems. Previous research confirmed the successful application of such RNA-guided Cas9 orthologs for effective gene targeting and subsequently genome manipulation. However, Cas9 orthologs need their particular PAM sequence for DNA cleavage activity. Activity levels are based on the sequence of the protospacer and specific combinations of favorable PAM bases. Therefore, based on the specific length and sequence of PAM followed by a constant length of the target site for the two orthogonals of Cas9 protein, we created a reliable procedure to explore possible gRNA sequences. To mine CRISPR target sites, four different searching modes of sgRNA binding to target DNA strand were applied. These searching modes are as follows i) coding strand searching, ii) anti-coding strand searching, iii) both strand searching, and iv) paired-gRNA searching. Finally, a complete list of all potential gRNAs along with their locations, strands, and PAMs sequence orientation can be provided for both SpCas9 as well as another potential Cas9 ortholog (NmCas9). The artificial design of potential gRNAs in a genome of interest can accelerate functional genomic studies. Consequently, the application of such novel genome editing tool (CRISPR/Cas technology) will enhance by presenting increased versatility and efficiency.

Keywords: CRISPR/Cas9 genome editing, gRNA mining, SpCas9, NmCas9

Procedia PDF Downloads 233
14215 Structural Modeling and Experimental-Numerical Correlation of the Dynamic Behavior of the Portuguese Guitar by Using a Structural-Fluid Coupled Model

Authors: M. Vieira, V. Infante, P. Serrão, A. Ribeiro

Abstract:

The Portuguese guitar is a pear-shaped plucked chordophone particularly known for its role in Fado, the most distinctive traditional Portuguese musical style. The acknowledgment of the dynamic behavior of the Portuguese guitar, specifically of its modal and mode shape response, has been the focus of different authors. In this research, the experimental results of the dynamic behavior of the guitar, which were previously obtained, are correlated with a vibro-acoustic finite element model of the guitar. The modelling of the guitar offered several challenges which are presented in this work. The results of the correlation between experimental and numerical data are presented and indicate good correspondence for the studied mode shapes. The influence of the air inside the chamber, for the finite element analysis, is shown to be crucial to understand the low-frequency modes of the Portuguese guitar, while, for higher frequency modes, the geometry of the guitar assumes greater relevance. Comparison is made with the classical guitar, providing relevant information about the intrinsic differences between the two, such as between its tones and other acoustical properties. These results represent a sustained base for future work, which will allow the study of the influence of different location and geometry of diverse components of the Portuguese guitar, being as well an asset to the comprehension of its musical properties and qualities and may, furthermore, represent an advantage for its players and luthiers.

Keywords: dynamic behavior of guitars, instrument acoustics, modal analysis, Portuguese guitar

Procedia PDF Downloads 380
14214 Fractional Order Sallen-Key Filters

Authors: Ahmed Soltan, Ahmed G. Radwan, Ahmed M. Soliman

Abstract:

This work aims to generalize the integer order Sallen-Key filters into the fractional-order domain. The analysis in the case of two different fractional-order elements introduced where the general transfer function becomes four terms which are unusual in the conventional case. In addition, the effect of the transfer function parameters on the filter poles and hence the stability is introduced and closed forms for the filter critical frequencies are driven. Finally, different examples of the fractional order Sallen-Key filter design are presented with circuit simulations using ADS where a great matching between the numerical and simulation results is obtained.

Keywords: Sallen-Key, fractance, stability, low-pass filter, analog filter

Procedia PDF Downloads 680
14213 Toward the Decarbonisation of EU Transport Sector: Impacts and Challenges of the Diffusion of Electric Vehicles

Authors: Francesca Fermi, Paola Astegiano, Angelo Martino, Stephanie Heitel, Michael Krail

Abstract:

In order to achieve the targeted emission reductions for the decarbonisation of the European economy by 2050, fundamental contributions are required from both energy and transport sectors. The objective of this paper is to analyse the impacts of a largescale diffusion of e-vehicles, either battery-based or fuel cells, together with the implementation of transport policies aiming at decreasing the use of motorised private modes in order to achieve greenhouse gas emission reduction goals, in the context of a future high share of renewable energy. The analysis of the impacts and challenges of future scenarios on transport sector is performed with the ASTRA (ASsessment of TRAnsport Strategies) model. ASTRA is a strategic system-dynamic model at European scale (EU28 countries, Switzerland and Norway), consisting of different sub-modules related to specific aspects: the transport system (e.g. passenger trips, tonnes moved), the vehicle fleet (composition and evolution of technologies), the demographic system, the economic system, the environmental system (energy consumption, emissions). A key feature of ASTRA is that the modules are linked together: changes in one system are transmitted to other systems and can feed-back to the original source of variation. Thanks to its multidimensional structure, ASTRA is capable to simulate a wide range of impacts stemming from the application of transport policy measures: the model addresses direct impacts as well as second-level and third-level impacts. The simulation of the different scenarios is performed within the REFLEX project, where the ASTRA model is employed in combination with several energy models in a comprehensive Modelling System. From the transport sector perspective, some of the impacts are driven by the trend of electricity price estimated from the energy modelling system. Nevertheless, the major drivers to a low carbon transport sector are policies related to increased fuel efficiency of conventional drivetrain technologies, improvement of demand management (e.g. increase of public transport and car sharing services/usage) and diffusion of environmentally friendly vehicles (e.g. electric vehicles). The final modelling results of the REFLEX project will be available from October 2018. The analysis of the impacts and challenges of future scenarios is performed in terms of transport, environmental and social indicators. The diffusion of e-vehicles produces a consistent reduction of future greenhouse gas emissions, although the decarbonisation target can be achieved only with the contribution of complementary transport policies on demand management and supporting the deployment of low-emission alternative energy for non-road transport modes. The paper explores the implications through time of transport policy measures on mobility and environment, underlying to what extent they can contribute to a decarbonisation of the transport sector. Acknowledgements: The results refer to the REFLEX project which has received grants from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 691685.

Keywords: decarbonisation, greenhouse gas emissions, e-mobility, transport policies, energy

Procedia PDF Downloads 132
14212 A Continuous Boundary Value Method of Order 8 for Solving the General Second Order Multipoint Boundary Value Problems

Authors: T. A. Biala

Abstract:

This paper deals with the numerical integration of the general second order multipoint boundary value problems. This has been achieved by the development of a continuous linear multistep method (LMM). The continuous LMM is used to construct a main discrete method to be used with some initial and final methods (also obtained from the continuous LMM) so that they form a discrete analogue of the continuous second order boundary value problems. These methods are used as boundary value methods and adapted to cope with the integration of the general second order multipoint boundary value problems. The convergence, the use and the region of absolute stability of the methods are discussed. Several numerical examples are implemented to elucidate our solution process.

Keywords: linear multistep methods, boundary value methods, second order multipoint boundary value problems, convergence

Procedia PDF Downloads 356
14211 Tailoring Polycrystalline Diamond for Increasing Earth-Drilling Challenges

Authors: Jie Chen, Chris Cheng, Kai Zhang

Abstract:

Polycrystalline diamond compact (PDC) cutters with a polycrystalline diamond (PCD) table supported by a cemented tungsten carbide substrate have been widely used for earth-drilling tools in the oil and gas industry. Both wear and impact resistances are key figure of merits of PDC cutters, and they are closely related to the microstructure of the PCD table. As oil and gas exploration enters deeper, harder, and more complex formations, plus increasing requirement of accelerated downhole drilling speed and drilling cost reduction, current PDC cutters face unprecedented challenges for maintaining a longer drilling life than ever. Excessive wear on uneven hard formations, spalling, chipping, and premature fracture due to impact loads are common failure modes of PDC cutters in the field. Tailoring microstructure of the PCD table is one of the effective approaches to improve the wear and impact resistances of PDC cutters, along with other factors such as cutter geometry and bit design. In this research, cross-sectional microstructure, fracture surface, wear surface, and elemental composition of PDC cutters were analyzed using scanning electron microscopy (SEM) with both backscattered electron and secondary electron detectors, and energy dispersive X-ray spectroscopy (EDS). The microstructure and elemental composition were further correlated with the wear and impact resistances of corresponding PDC cutters. Wear modes and impact toughening mechanisms of state-of-the-art PDCs were identified. Directions to further improve the wear and impact resistances of PDC cutters were proposed.

Keywords: fracture surface, microstructure, polycrystalline diamond, PDC, wear surface

Procedia PDF Downloads 35
14210 Governance Models of Higher Education Institutions

Authors: Zoran Barac, Maja Martinovic

Abstract:

Higher Education Institutions (HEIs) are a special kind of organization, with its unique purpose and combination of actors. From the societal point of view, they are central institutions in the society that are involved in the activities of education, research, and innovation. At the same time, their societal function derives complex relationships between involved actors, ranging from students, faculty and administration, business community and corporate partners, government agencies, to the general public. HEIs are also particularly interesting as objects of governance research because of their unique public purpose and combination of stakeholders. Furthermore, they are the special type of institutions from an organizational viewpoint. HEIs are often described as “loosely coupled systems” or “organized anarchies“ that implies the challenging nature of their governance models. Governance models of HEIs describe roles, constellations, and modes of interaction of the involved actors in the process of strategic direction and holistic control of institutions, taking into account each particular context. Many governance models of the HEIs are primarily based on the balance of power among the involved actors. Besides the actors’ power and influence, leadership style and environmental contingency could impact the governance model of an HEI. Analyzing them through the frameworks of institutional and contingency theories, HEI governance models originate as outcomes of their institutional and contingency adaptation. HEIs tend to fit to institutional context comprised of formal and informal institutional rules. By fitting to institutional context, HEIs are converging to each other in terms of their structures, policies, and practices. On the other hand, contingency framework implies that there is no governance model that is suitable for all situations. Consequently, the contingency approach begins with identifying contingency variables that might impact a particular governance model. In order to be effective, the governance model should fit to contingency variables. While the institutional context creates converging forces on HEI governance actors and approaches, contingency variables are the causes of divergence of actors’ behavior and governance models. Finally, an HEI governance model is a balanced adaptation of the HEIs to the institutional context and contingency variables. It also encompasses roles, constellations, and modes of interaction of involved actors influenced by institutional and contingency pressures. Actors’ adaptation to the institutional context brings benefits of legitimacy and resources. On the other hand, the adaptation of the actors’ to the contingency variables brings high performance and effectiveness. HEI governance models outlined and analyzed in this paper are collegial, bureaucratic, entrepreneurial, network, professional, political, anarchical, cybernetic, trustee, stakeholder, and amalgam models.

Keywords: governance, governance models, higher education institutions, institutional context, situational context

Procedia PDF Downloads 315
14209 Environmental Quality in Urban Areas: Legal Aspect and Institutional Dimension: A Case Study of Algeria

Authors: Youcef Lakhdar Hamina

Abstract:

In order to tame the ecological damage specificity, it is imperative to assert the procedural and objective liability aspect, which leads us to analyse current trends based on the development of preventive civil liability based on the precautionary principle. Our research focuses on the instruments of the environment protection in urban areas based on two complementary aspects appearing contradictory and refer directly to the institutional dimensions: - The preventive aspect: considered as a main objective of the environmental policy which highlights the different legal mechanisms for the environment protection by highlighting the role of administration in its implementation (environmental planning, tax incentives, modes of participation of all actors, etc.). - The healing-repressive aspect: considered as an approach for the identification of ecological damage and the forms of reparation (spatial and temporal-responsibility) to the impossibility of predicting with rigor and precision, the appearance of ecological damage, which cannot be avoided.

Keywords: environmental law, environmental taxes, environmental damage, eco responsibility, precautionary principle, environmental management

Procedia PDF Downloads 388
14208 Effect of Self-Lubricating Carbon Materials on the Tribological Performance of Ultra-High Molecular Weight Polyethylene

Authors: Nayeli Camacho, Fernanda Lara-Perez, Carolina Ortega-Portilla, Diego G. Espinosa-Arbelaez, Juan M. Alvarado-Orozco, Guillermo C. Mondragon-Rodriguez

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) has been the gold standard material for total knee replacements for almost five decades. Wear damage to UHMWPE articulating surface is inevitable due to the natural sliding and rolling movements of the knee. This generates a considerable amount of wear debris, which results in mechanical instability of the joint, reduces joint mobility, increases pain with detrimental biologic responses, and causes component loosening. The presence of wear particles has been closely related to adverse reactions in the knee joint surrounding tissue, especially for particles in the range of 0.3 to 2 μm. Carbon-based materials possess excellent mechanical properties and have shown great promise in tribological applications. In this study, diamond-like carbon coatings (DLC) and carbon nanotubes (CNTs) were used to decrease the wear rate of ultra-high molecular weight polyethylene. A titanium doped DLC (Ti-DLC) was deposited by magnetron sputtering on stainless steel precision spheres while CNTs were used as a second phase reinforcement in UHMWPE at a concentration of 1.25 wt.%. A comparative tribological analysis of the wear of UHMWPE and UHMWPE-CNTs with a stainless steel counterpart with and without Ti-DLC coating is presented. The experimental wear testing was performed on a pin-on-disc tribometer under dry conditions, using a reciprocating movement with a load of 1 N at a frequency of 2 Hz for 100,000 and 200,000 cycles. The wear tracks were analyzed with high-resolution scanning electron microscopy to determine wear modes and observe the size and shape of the wear debris. Furthermore, profilometry was used to study the depth of the wear tracks and to map the wear of the articulating surface. The wear tracks at 100,000 and 200,000 cycles on all samples were relatively shallow, and they were in the range of average roughness. It was observed that the Ti-DLC coating decreases the mass loss in the UHMWPE and the depth of the wear track. The combination of both carbon-based materials decreased the material loss compared to the system of stainless steel and UHMWPE. Burnishing of the surface was the predominant wear mode observed with all the systems, more subtle for the systems with Ti-DLC coatings. Meanwhile, in the system composed of stainless steel-UHMWPE, the intrinsic surface roughness of the material was completely replaced by the wear tracks.

Keywords: CNT reinforcement, self-lubricating materials, Ti-DLC, UHMWPE tribological performance

Procedia PDF Downloads 93
14207 The Use of Videoconferencing in a Task-Based Beginners' Chinese Class

Authors: Sijia Guo

Abstract:

The development of new technologies and the falling cost of high-speed Internet access have made it easier for institutes and language teachers to opt different ways to communicate with students at distance. The emergence of web-conferencing applications, which integrate text, chat, audio / video and graphic facilities, offers great opportunities for language learning to through the multimodal environment. This paper reports on data elicited from a Ph.D. study of using web-conferencing in the teaching of first-year Chinese class in order to promote learners’ collaborative learning. Firstly, a comparison of four desktop videoconferencing (DVC) tools was conducted to determine the pedagogical value of the videoconferencing tool-Blackboard Collaborate. Secondly, the evaluation of 14 campus-based Chinese learners who conducted five one-hour online sessions via the multimodal environment reveals the users’ choice of modes and their learning preference. The findings show that the tasks designed for the web-conferencing environment contributed to the learners’ collaborative learning and second language acquisition.

Keywords: computer-mediated communication (CMC), CALL evaluation, TBLT, web-conferencing, online Chinese teaching

Procedia PDF Downloads 288
14206 The Effects of Peer Education on Condom Use Intentions: A Comprehensive Sex Education Quality Improvement Project

Authors: Janell Jayamohan

Abstract:

A pilot project based on the Theory of Planned Behavior was completed at a single sex female international high school in order to improve the quality of comprehensive sex education in a 12th grade classroom. The student sample is representative of a growing phenomenon of “Third Culture Kids” or global nomads; often in today’s world, culture transcends any one dominant influence and blends values from multiple sources. The Objective was to improve intentions of condom use during the students’ first or next intercourse. A peer-education session which focused on condom attitudes, social norms, and self-efficacy - central tenets of the Theory of Planned Behavior - was added to an existing curriculum in order to achieve this objective. Peer educators were given liberty of creating and executing the lesson to their homeroom, a sample of 23 senior students, with minimal intervention from faculty, the desired outcome being that the students themselves would be the best judge of what is culturally relevant and important to their peers. The school nurse and school counselor acted as faculty facilitators but did not assist in the creation or delivery of the lesson, only checked for medical accuracy. The participating sample of students completed a pre and post-test with validated questions assessing changes in attitudes and overall satisfaction with the peer education lesson. As this intervention was completed during the Covid-19 pandemic, the peer education session was completed in a virtual classroom environment, limiting the modes of information delivery available to the peer educators, but is planned to be replicated in an in-person environment in subsequent cycles.

Keywords: adolescents, condoms, peer education, sex education, theory of planned behavior, third culture kids

Procedia PDF Downloads 110
14205 An Approximate Lateral-Torsional Buckling Mode Function for Cantilever I-Beams

Authors: H. Ozbasaran

Abstract:

Lateral torsional buckling is a global stability loss which should be considered in the design of slender structural members under flexure about their strong axis. It is possible to compute the load which causes lateral torsional buckling of a beam by finite element analysis, however, closed form equations are needed in engineering practice. Such equations can be obtained by using energy method. Unfortunately, this method has a vital drawback. In lateral torsional buckling applications of energy method, a proper function for the critical lateral torsional buckling mode should be chosen which can be thought as the variation of twisting angle along the buckled beam. The accuracy of the results depends on how close is the chosen function to the exact mode. Since critical lateral torsional buckling mode of the cantilever I-beams varies due to material properties, section properties, and loading case, the hardest step is to determine a proper mode function. This paper presents an approximate function for critical lateral torsional buckling mode of doubly symmetric cantilever I-beams. Coefficient matrices are calculated for the concentrated load at the free end, uniformly distributed load and constant moment along the beam cases. Critical lateral torsional buckling modes obtained by presented function and exact solutions are compared. It is found that the modes obtained by presented function coincide with differential equation solutions for considered loading cases.

Keywords: buckling mode, cantilever, lateral-torsional buckling, I-beam

Procedia PDF Downloads 349
14204 Study of Rayleigh-Bénard-Brinkman Convection Using LTNE Model and Coupled, Real Ginzburg-Landau Equations

Authors: P. G. Siddheshwar, R. K. Vanishree, C. Kanchana

Abstract:

A local nonlinear stability analysis using a eight-mode expansion is performed in arriving at the coupled amplitude equations for Rayleigh-Bénard-Brinkman convection (RBBC) in the presence of LTNE effects. Streamlines and isotherms are obtained in the two-dimensional unsteady finite-amplitude convection regime. The parameters’ influence on heat transport is found to be more pronounced at small time than at long times. Results of the Rayleigh-Bénard convection is obtained as a particular case of the present study. Additional modes are shown not to significantly influence the heat transport thus leading us to infer that five minimal modes are sufficient to make a study of RBBC. The present problem that uses rolls as a pattern of manifestation of instability is a needed first step in the direction of making a very general non-local study of two-dimensional unsteady convection. The results may be useful in determining the preferred range of parameters’ values while making rheometric measurements in fluids to ascertain fluid properties such as viscosity. The results of LTE are obtained as a limiting case of the results of LTNE obtained in the paper.

Keywords: coupled Ginzburg–Landau model, local thermal non-equilibrium (LTNE), local thermal equilibrium (LTE), Rayleigh–Bénard-Brinkman convection

Procedia PDF Downloads 221
14203 Characterizing Solid Glass in Bending, Torsion and Tension: High-Temperature Dynamic Mechanical Analysis up to 950 °C

Authors: Matthias Walluch, José Alberto Rodríguez, Christopher Giehl, Gunther Arnold, Daniela Ehgartner

Abstract:

Dynamic mechanical analysis (DMA) is a powerful method to characterize viscoelastic properties and phase transitions for a wide range of materials. It is often used to characterize polymers and their temperature-dependent behavior, including thermal transitions like the glass transition temperature Tg, via determination of storage and loss moduli in tension (Young’s modulus, E) and shear or torsion (shear modulus, G) or other testing modes. While production and application temperatures for polymers are often limited to several hundred degrees, material properties of glasses usually require characterization at temperatures exceeding 600 °C. This contribution highlights a high temperature setup for rotational and oscillatory rheometry as well as for DMA in different modes. The implemented standard convection oven enables the characterization of glass in different loading modes at temperatures up to 950 °C. Three-point bending, tension and torsional measurements on different glasses, with E and G moduli as a function of frequency and temperature, are presented. Additional tests include superimposing several frequencies in a single temperature sweep (“multiwave”). This type of test results in a considerable reduction of the experiment time and allows to evaluate structural changes of the material and their frequency dependence. Furthermore, DMA in torsion and tension was performed to determine the complex Poisson’s ratio as a function of frequency and temperature within a single test definition. Tests were performed in a frequency range from 0.1 to 10 Hz and temperatures up to the glass transition. While variations in the frequency did not reveal significant changes of the complex Poisson’s ratio of the glass, a monotonic increase of this parameter was observed when increasing the temperature. This contribution outlines the possibilities of DMA in bending, tension and torsion for an extended temperature range. It allows the precise mechanical characterization of material behavior from room temperature up to the glass transition and the softening temperature interval. Compared to other thermo-analytical methods, like Dynamic Scanning Calorimetry (DSC) where mechanical stress is neglected, the frequency-dependence links measurement results (e.g. relaxation times) to real applications

Keywords: dynamic mechanical analysis, oscillatory rheometry, Poisson's ratio, solid glass, viscoelasticity

Procedia PDF Downloads 58
14202 Disruption of Cancer Cell Proliferation by Magnetic Field

Authors: Ming Ze Kao

Abstract:

Static magnetic fields (SMF) are widely used in several medical applications, especially in diagnosis of tumors. However, biological effects of the SMFs on modulating cell physiology through the Lorentz force, which is highly frequency and magnitude dependent, remain to be elucidated. Specific patterns from SMFs of static MF, delivered by means of Halbach array magnets with a gradient increment of 6.857mT/mm from center to border, were found to have profound inhibitory effect on the growth rate of human cell line derived from Nasopharyngeal carcinoma patients. The SMFs, which were shown to be noncontact, selectively impact rapid dividing cells while quiescent cells stay intact. The phenomenon acts in two modes: the arrest of cell proliferation in the G2/M phase and destruction of cell mitosis in cell division. First mode is manifested by impacting the proper formation of mitotic spindle, whereas the second results in disintegration of the cancer cell. Both modes are demonstrated when SMF was applied for 24 hours to cancer cells, the results revealed that metaphase arrest during mitosis due to activation of DNA damage response (DDR), resulting in high expression of ATM-NBS1-CHEK signaling pathways and higher G2/M phase ratio compared with control group. Here, experimental data suggest that the SMFs cause activation of cell cycle checkpoints, which implies the MFs as a potential therapeutic modality as a sensitizer for radiotherapy or chemotherapy.

Keywords: static magnetic field, DNA damage response, Halbach array, magnetic therapy

Procedia PDF Downloads 97
14201 Analysis of Evolution of Higher Order Solitons by Numerical Simulation

Authors: K. Khadidja

Abstract:

Solitons are stable solution of nonlinear Schrodinger equation. Their stability is due to the exact combination between nonlinearity and dispersion which causes pulse broadening. Higher order solitons are born when nonlinear length is N multiple of dispersive length. Soliton order is determined by the number N itself. In this paper, evolution of higher order solitons is illustrated by simulation using Matlab. Results show that higher order solitons change their shape periodically, the reason why they are bad for transmission comparing to fundamental solitons which are constant. Partial analysis of a soliton of higher order explains that the periodic shape is due to the interplay between nonlinearity and dispersion which are not equal during a period. This class of solitons has many applications such as generation of supercontinuum and the impulse compression on the Femtosecond scale. As a conclusion, the periodicity which is harmful to transmission can be beneficial in other applications.

Keywords: dispersion, nonlinearity, optical fiber, soliton

Procedia PDF Downloads 147
14200 Anomaly Detection in Financial Markets Using Tucker Decomposition

Authors: Salma Krafessi

Abstract:

The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.

Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models

Procedia PDF Downloads 36
14199 Electromagnetic Radiation Generation by Two-Color Sinusoidal Laser Pulses Propagating in Plasma

Authors: Nirmal Kumar Verma, Pallavi Jha

Abstract:

Generation of the electromagnetic radiation oscillating at the frequencies in the terahertz range by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization, and spectroscopic techniques. Due to nonionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals, when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser-plasma based THz radiation sources. The present paper is devoted to the study of the enhanced electromagnetic radiation generation by propagation of two-color, linearly polarized laser pulses through the magnetized plasma. The two lasers pulse orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through the homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode.

Keywords: two-color laser pulses, electromagnetic radiation, magnetized plasma, ordinary and extraordinary modes

Procedia PDF Downloads 265
14198 Analysis of Lead Time Delays in Supply Chain: A Case Study

Authors: Abdel-Aziz M. Mohamed, Nermeen Coutry

Abstract:

Lead time is an important measure of supply chain performance. It impacts both customer satisfactions as well as the total cost of inventory. This paper presents the result of a study on the analysis of the customer order lead-time for a multinational company. In the study, the lead time was divided into three stages: order entry, order fulfillment, and order delivery. A sample of size 2,425 order lines from the company records were considered for this study. The sample data includes information regarding customer orders from the time of order entry until order delivery. Data regarding the lead time of each sage for different orders were also provided. Summary statistics on lead time data reveals that about 30% of the orders were delivered after the scheduled due date. The result of the multiple linear regression analysis technique revealed that component type, logistics parameter, order size and the customer type have significant impact on lead time. Data analysis on the stages of lead time indicates that stage 2 consumes over 50% of the lead time. Pareto analysis was made to study the reasons for the customer order delay in each of the 3 stages. Recommendation was given to resolve the problem.

Keywords: lead time reduction, customer satisfaction, service quality, statistical analysis

Procedia PDF Downloads 703
14197 Simplified Analysis Procedure for Seismic Evaluation of Tall Building at Structure and Component Level

Authors: Tahir Mehmood, Pennung Warnitchai

Abstract:

Simplified static analysis procedures such Nonlinear Static Procedure (NSP) are gaining popularity for the seismic evaluation of buildings. However, these simplified procedures accounts only for the seismic responses of the fundamental vibration mode of the structure. Some other procedures which can take into account the higher modes of vibration, lack in accuracy to determine the component responses. Hence, such procedures are not suitable for evaluating the structures where many vibration modes may participate significantly or where component responses are needed to be evaluated. Moreover, these procedures were found to either computationally expensive or tedious to obtain individual component responses. In this paper, a simplified but accurate procedure is studied. It is called the Uncoupled Modal Response History Analysis (UMRHA) procedure. In this procedure, the nonlinear response of each vibration mode is first computed, and they are later on combined into the total response of the structure. The responses of four tall buildings are computed by this simplified UMRHA procedure and compared with those obtained from the NLRHA procedure. The comparison shows that the UMRHA procedure is able to accurately compute the global responses, i.e., story shears and story overturning moments, floor accelerations and inter-story drifts as well as the component level responses of these tall buildings with heights varying from 20 to 44 stories. The required computational effort is also extremely low compared to that of the Nonlinear Response History Analysis (NLRHA) procedure.

Keywords: higher mode effects, seismic evaluation procedure, tall buildings, component responses

Procedia PDF Downloads 328
14196 Double Clustering as an Unsupervised Approach for Order Picking of Distributed Warehouses

Authors: Hsin-Yi Huang, Ming-Sheng Liu, Jiun-Yan Shiau

Abstract:

Planning the order picking lists of warehouses to achieve when the costs associated with logistics on the operational performance is a significant challenge. In e-commerce era, this task is especially important productive processes are high. Nowadays, many order planning techniques employ supervised machine learning algorithms. However, the definition of which features should be processed by such algorithms is not a simple task, being crucial to the proposed technique’s success. Against this background, we consider whether unsupervised algorithms can enhance the planning of order-picking lists. A Zone2 picking approach, which is based on using clustering algorithms twice, is developed. A simplified example is given to demonstrate the merit of our approach.

Keywords: order picking, warehouse, clustering, unsupervised learning

Procedia PDF Downloads 134
14195 Application Reliability Method for the Analysis of the Stability Limit States of Large Concrete Dams

Authors: Mustapha Kamel Mihoubi, Essadik Kerkar, Abdelhamid Hebbouche

Abstract:

According to the randomness of most of the factors affecting the stability of a gravity dam, probability theory is generally used to TESTING the risk of failure and there is a confusing logical transition from the state of stability failed state, so the stability failure process is considered as a probable event. The control of risk of product failures is of capital importance for the control from a cross analysis of the gravity of the consequences and effects of the probability of occurrence of identified major accidents and can incur a significant risk to the concrete dam structures. Probabilistic risk analysis models are used to provide a better understanding the reliability and structural failure of the works, including when calculating stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of the reliability analysis methods including the methods used in engineering. It is in our case of the use of level II methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type FORM (First Order Reliability Method), SORM (Second Order Reliability Method). By way of comparison, a second level III method was used which generates a full analysis of the problem and involving an integration of the probability density function of, random variables are extended to the field of security by using of the method of Mont-Carlo simulations. Taking into account the change in stress following load combinations: normal, exceptional and extreme the acting on the dam, calculation results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities thus causing a significant decrease in strength, especially in the presence of combinations of unique and extreme loads. Shear forces then induce a shift threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case THE increase of uplift in a hypothetical default of the drainage system.

Keywords: dam, failure, limit state, monte-carlo, reliability, probability, sliding, Taylor

Procedia PDF Downloads 301
14194 Soliton Solutions of the Higher-Order Nonlinear Schrödinger Equation with Dispersion Effects

Authors: H. Triki, Y. Hamaizi, A. El-Akrmi

Abstract:

We consider the higher order nonlinear Schrödinger equation model with fourth-order dispersion, cubic-quintic terms, and self-steepening. This equation governs the propagation of fem to second pulses in optical fibers. We present new bright and dark solitary wave type solutions for such a model under certain parametric conditions. This kind of solution may be useful to explain some physical phenomena related to wave propagation in a nonlinear optical fiber systems supporting high-order nonlinear and dispersive effects.

Keywords: nonlinear Schrödinger equation, high-order effects, soliton solution

Procedia PDF Downloads 614
14193 A Phase Field Approach to Model Crack Interface Interaction in Ceramic Matrix Composites

Authors: Dhaladhuli Pranavi, Amirtham Rajagopal

Abstract:

There are various failure modes in ceramic matrix composites; notable ones are fiber breakage, matrix cracking and fiber matrix debonding. Crack nucleation and propagation in microstructure of such composites requires an understanding of interaction of crack with the multiple inclusion heterogeneous system and interfaces. In order to assess structural integrity, the material parameters especially of the interface that governs the crack growth should be determined. In the present work, a nonlocal phase field approach is proposed to model the crack interface interaction in such composites. Nonlocal approaches help in understanding the complex mechanisms of delamination growth and mitigation and operates at a material length scale. The performance of the proposed formulation is illustrated through representative numerical examples. The model proposed is implemented in the framework of the finite element method. Several parametric studies on interface crack interaction are conducted. The proposed model is easy and simple to implement and works very well in modeling fracture in composite systems.

Keywords: composite, interface, nonlocal, phase field

Procedia PDF Downloads 124
14192 Neural Network Approach For Clustering Host Community: Based on Perceptions Toward Tourism, Their Satisfaction Level and Demographic Attributes in Iran (Lahijan)

Authors: Nasibeh Mohammadpour, Ali Rajabzadeh, Adel Azar, Hamid Zargham Borujeni,

Abstract:

Generally, various industries development depends on their stakeholders and beneficiaries supports. One of the most important stakeholders in tourism industry ( which has become one of the most important lucrative and employment-generating activities at the international level these days) are host communities in tourist destination which are affected and effect on this industry development. Recognizing host community and its segmentations can be important to get their support for future decisions and policy making. In order to identify these segments, in this study, clustering of the residents has been done by using some tools that are designed to encounter human complexities and have ability to model and generalize complex systems without any needs for the initial clusters’ seeds like classic methods. Neural networks can help to meet these expectations. The research have been planned to design neural networks-based mathematical model for clustering the host community effectively according to multi criteria, and identifies differences among segments. In order to achieve this goal, the residents’ segmentation has been done by demographic characteristics, their attitude towards the tourism development, the level of satisfaction and the type of their support in this field. The applied method is self-organized neural networks and the results have compared with K-means. As the results show, the use of Self- Organized Map (SOM) method provides much better results by considering the Cophenetic correlation and between clusters variance coefficients. Based on these criteria, the host community is divided into five sections with unique and distinctive features, which are in the best condition (in comparison other modes) according to Cophenetic correlation coefficient of 0.8769 and between clusters variance of 0.1412.

Keywords: Artificial Nural Network, Clustering , Resident, SOM, Tourism

Procedia PDF Downloads 155
14191 Evaluating Forecasts Through Stochastic Loss Order

Authors: Wilmer Osvaldo Martinez, Manuel Dario Hernandez, Juan Manuel Julio

Abstract:

We propose to assess the performance of k forecast procedures by exploring the distributions of forecast errors and error losses. We argue that non systematic forecast errors minimize when their distributions are symmetric and unimodal, and that forecast accuracy should be assessed through stochastic loss order rather than expected loss order, which is the way it is customarily performed in previous work. Moreover, since forecast performance evaluation can be understood as a one way analysis of variance, we propose to explore loss distributions under two circumstances; when a strict (but unknown) joint stochastic order exists among the losses of all forecast alternatives, and when such order happens among subsets of alternative procedures. In spite of the fact that loss stochastic order is stronger than loss moment order, our proposals are at least as powerful as competing tests, and are robust to the correlation, autocorrelation and heteroskedasticity settings they consider. In addition, since our proposals do not require samples of the same size, their scope is also wider, and provided that they test the whole loss distribution instead of just loss moments, they can also be used to study forecast distributions as well. We illustrate the usefulness of our proposals by evaluating a set of real world forecasts.

Keywords: forecast evaluation, stochastic order, multiple comparison, non parametric test

Procedia PDF Downloads 70