Search results for: random number
11420 The Impact of Cognitive Load on Deceit Detection and Memory Recall in Children’s Interviews: A Meta-Analysis
Authors: Sevilay Çankaya
Abstract:
The detection of deception in children’s interviews is essential for statement veracity. The widely used method for deception detection is building cognitive load, which is the logic of the cognitive interview (CI), and its effectiveness for adults is approved. This meta-analysis delves into the effectiveness of inducing cognitive load as a means of enhancing veracity detection during interviews with children. Additionally, the effectiveness of cognitive load on children's total number of events recalled is assessed as a second part of the analysis. The current meta-analysis includes ten effect sizes from search using databases. For the effect size calculation, Hedge’s g was used with a random effect model by using CMA version 2. Heterogeneity analysis was conducted to detect potential moderators. The overall result indicated that cognitive load had no significant effect on veracity outcomes (g =0.052, 95% CI [-.006,1.25]). However, a high level of heterogeneity was found (I² = 92%). Age, participants’ characteristics, interview setting, and characteristics of the interviewer were coded as possible moderators to explain variance. Age was significant moderator (β = .021; p = .03, R2 = 75%) but the analysis did not reveal statistically significant effects for other potential moderators: participants’ characteristics (Q = 0.106, df = 1, p = .744), interview setting (Q = 2.04, df = 1, p = .154), and characteristics of interviewer (Q = 2.96, df = 1, p = .086). For the second outcome, the total number of events recalled, the overall effect was significant (g =4.121, 95% CI [2.256,5.985]). The cognitive load was effective in total recalled events when interviewing with children. All in all, while age plays a crucial role in determining the impact of cognitive load on veracity, the surrounding context, interviewer attributes, and inherent participant traits may not significantly alter the relationship. These findings throw light on the need for more focused, age-specific methods when using cognitive load measures. It may be possible to improve the precision and dependability of deceit detection in children's interviews with the help of more studies in this field.Keywords: deceit detection, cognitive load, memory recall, children interviews, meta-analysis
Procedia PDF Downloads 5711419 M-Number of Aortic Cannulas Applied During Hypothermic Cardiopulmonary Bypass
Authors: Won-Gon Kim
Abstract:
A standardized system to describe the pressure-flow characteristics of a given cannula has recently been proposed and has been termed ‘the M-number’. Using three different sizes of aortic cannulas in 50 pediatric cardiac patients on hypothermic cardiopulmonary bypass, we analyzed the correlation between experimentally and clinically derived M-numbers, and found this was positive. Clinical M-numbers were typically 0.35 to 0.55 greater than experimental M-numbers, and correlated inversely with a patient's temperature change; this was most probably due to increased blood viscosity, arising from hypothermia. This inverse relationship was more marked in higher M-number cannulas. The clinical data obtained in this study suggest that experimentally derived M-numbers correlate strongly with clinical performance of the cannula, and that the influence of temperature is significant.Keywords: cardiopulmonary bypass, M-number, aortic cannula, pressure-flow characteristics
Procedia PDF Downloads 24411418 Unified Assessment of Power System Reserve-based Reliability Levels
Authors: B. M. Alshammari, M. A. El-Kady
Abstract:
This paper presents a unified framework for assessment of reserve-based reliability levels in electric power systems. The unified approach is based on reserve-based analysis and assessment of the relationship between available generation capacities and required demand levels. The developed approach takes into account the load variations as well as contingencies which occur randomly causing some generation and/or transmission capacities to be lost (become unavailable). The calculated reserve based indices, which are important to assess the reserve capabilities of the power system for various operating scenarios are therefore probabilistic in nature. They reflect the fact that neither the load levels nor the generation or transmission capacities are known with absolute certainty. They are rather subjects to random variations and consequently. The calculated reserve-based reliability indices are all subjects to random variations where only expected values of these indices can be evaluated. This paper presents a unified approach to reserve-based reliability assessment of power systems using various reserve assessment criteria. Practical applications are also presented for demonstration purposes to the Saudi electricity power grid.Keywords: assessment, power system, reserve, reliability
Procedia PDF Downloads 61711417 A Statistical Approach to Predict and Classify the Commercial Hatchability of Chickens Using Extrinsic Parameters of Breeders and Eggs
Authors: M. S. Wickramarachchi, L. S. Nawarathna, C. M. B. Dematawewa
Abstract:
Hatchery performance is critical for the profitability of poultry breeder operations. Some extrinsic parameters of eggs and breeders cause to increase or decrease the hatchability. This study aims to identify the affecting extrinsic parameters on the commercial hatchability of local chicken's eggs and determine the most efficient classification model with a hatchability rate greater than 90%. In this study, seven extrinsic parameters were considered: egg weight, moisture loss, breeders age, number of fertilised eggs, shell width, shell length, and shell thickness. Multiple linear regression was performed to determine the most influencing variable on hatchability. First, the correlation between each parameter and hatchability were checked. Then a multiple regression model was developed, and the accuracy of the fitted model was evaluated. Linear Discriminant Analysis (LDA), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), Support Vector Machines (SVM) with a linear kernel, and Random Forest (RF) algorithms were applied to classify the hatchability. This grouping process was conducted using binary classification techniques. Hatchability was negatively correlated with egg weight, breeders' age, shell width, shell length, and positive correlations were identified with moisture loss, number of fertilised eggs, and shell thickness. Multiple linear regression models were more accurate than single linear models regarding the highest coefficient of determination (R²) with 94% and minimum AIC and BIC values. According to the classification results, RF, CART, and kNN had performed the highest accuracy values 0.99, 0.975, and 0.972, respectively, for the commercial hatchery process. Therefore, the RF is the most appropriate machine learning algorithm for classifying the breeder outcomes, which are economically profitable or not, in a commercial hatchery.Keywords: classification models, egg weight, fertilised eggs, multiple linear regression
Procedia PDF Downloads 8811416 Single Machine Scheduling Problem to Minimize the Number of Tardy Jobs
Authors: Ali Allahverdi, Harun Aydilek, Asiye Aydilek
Abstract:
Minimizing the number of tardy jobs is an important factor to consider while making scheduling decisions. This is because on-time shipments are vital for lowering cost and increasing customers’ satisfaction. This paper addresses the single machine scheduling problem with the objective of minimizing the number of tardy jobs. The only known information is the lower and upper bounds for processing times, and deterministic job due dates. A dominance relation is established, and an algorithm is proposed. Several heuristics are generated from the proposed algorithm. Computational analysis indicates that the performance of one of the heuristics is very close to the optimal solution, i.e., on average, less than 1.5 % from the optimal solution.Keywords: single machine scheduling, number of tardy jobs, heuristi, lower and upper bounds
Procedia PDF Downloads 55511415 Design of Enhanced Adaptive Filter for Integrated Navigation System of FOG-SINS and Star Tracker
Authors: Nassim Bessaad, Qilian Bao, Zhao Jiangkang
Abstract:
The fiber optics gyroscope in the strap-down inertial navigation system (FOG-SINS) suffers from precision degradation due to the influence of random errors. In this work, an enhanced Allan variance (AV) stochastic modeling method combined with discrete wavelet transform (DWT) for signal denoising is implemented to estimate the random process in the FOG signal. Furthermore, we devise a measurement-based iterative adaptive Sage-Husa nonlinear filter with augmented states to integrate a star tracker sensor with SINS. The proposed filter adapts the measurement noise covariance matrix based on the available data. Moreover, the enhanced stochastic modeling scheme is invested in tuning the process noise covariance matrix and the augmented state Gauss-Markov process parameters. Finally, the effectiveness of the proposed filter is investigated by employing the collected data in laboratory conditions. The result shows the filter's improved accuracy in comparison with the conventional Kalman filter (CKF).Keywords: inertial navigation, adaptive filtering, star tracker, FOG
Procedia PDF Downloads 8011414 Experimental Measurements of Mean and Turbulence Quantities behind the Circular Cylinder by Attaching Different Number of Tripping Wires
Authors: Amir Bak Khoshnevis, Mahdieh Khodadadi, Aghil Lotfi
Abstract:
For a bluff body, roughness elements in simulating a turbulent boundary layer, leading to delayed flow separation, a smaller wake, and lower form drag. In the present work, flow past a circular cylinder with using tripping wires is studied experimentally. The wind tunnel used for modeling free stream is open blow circuit (maximum speed = 30m/s and maximum turbulence of free stream = 0.1%). The selected Reynolds number for all tests was constant (Re = 25000). The circular cylinder selected for this experiment is 20 and 400mm in diameter and length, respectively. The aim of this research is to find the optimal operation mode. In this study installed some tripping wires 1mm in diameter, with a different number of wires on the circular cylinder and the wake characteristics of the circular cylinder is studied. Results showed that by increasing number of tripping wires attached to the circular cylinder (6, 8, and 10, respectively), The optimal angle for the tripping wires with 1mm in diameter to be installed on the cylinder is 60̊ (or 6 wires required at angle difference of 60̊). Strouhal number for the cylinder with tripping wires 1mm in diameter at angular position 60̊ showed the maximum value.Keywords: wake of circular cylinder, trip wire, velocity defect, strouhal number
Procedia PDF Downloads 40211413 Proactive Pure Handoff Model with SAW-TOPSIS Selection and Time Series Predict
Authors: Harold Vásquez, Cesar Hernández, Ingrid Páez
Abstract:
This paper approach cognitive radio technic and applied pure proactive handoff Model to decrease interference between PU and SU and comparing it with reactive handoff model. Through the study and analysis of multivariate models SAW and TOPSIS join to 3 dynamic prediction techniques AR, MA ,and ARMA. To evaluate the best model is taken four metrics: number failed handoff, number handoff, number predictions, and number interference. The result presented the advantages using this type of pure proactive models to predict changes in the PU according to the selected channel and reduce interference. The model showed better performance was TOPSIS-MA, although TOPSIS-AR had a higher predictive ability this was not reflected in the interference reduction.Keywords: cognitive radio, spectrum handoff, decision making, time series, wireless networks
Procedia PDF Downloads 49111412 The Development of Space-Time and Space-Number Associations: The Role of Non-Symbolic vs. Symbolic Representations
Authors: Letizia Maria Drammis, Maria Antonella Brandimonte
Abstract:
The idea that people use space representations to think about time and number received support from several lines of research. However, how these representations develop in children and then shape space-time and space-number mappings is still a debated issue. In the present study, 40 children (20 pre-schoolers and 20 elementary-school children) performed 4 main tasks, which required the use of more concrete (non-symbolic) or more abstract (symbolic) space-time and space-number associations. In the non-symbolic conditions, children were required to order pictures of everyday-life events occurring in a specific temporal order (Temporal sequences) and of quantities varying in numerosity (Numerical sequences). In the symbolic conditions, they were asked to perform the typical time-to-position and number-to-position tasks by mapping time-related words and numbers onto lines. Results showed that children performed reliably better in the non-symbolic Time conditions than the symbolic Time conditions, independently of age, whereas only pre-schoolers performed worse in the Number-to-position task (symbolic) as compared to the Numerical sequence (non-symbolic) task. In addition, only older children mapped time-related words onto space following the typical left-right orientation, pre-schoolers’ performance being somewhat mixed. In contrast, mapping numbers onto space showed a clear left-right orientation, independently of age. Overall, these results indicate a cross-domain difference in the way younger and older children process time and number, with time-related tasks being more difficult than number-related tasks only when space-time tasks require symbolic representations.Keywords: space-time associations, space-number associations, orientation, children
Procedia PDF Downloads 33911411 Optimal Number of Reconfigurable Robots in a Transport System
Authors: Mari Chaikovskaia, Jean-Philippe Gayon, Alain Quilliot
Abstract:
We consider a fleet of elementary robots that can be connected in different ways to transport loads of different types. For instance, a single robot can transport a small load, and the association of two robots can either transport a large load or two small loads. We seek to determine the optimal number of robots to transport a set of loads in a given time interval, with or without reconfiguration. We show that the problem with reconfiguration is strongly NP-hard by a reduction to the bin-packing problem. Then, we study a special case with unit capacities and derive simple formulas for the minimum number of robots, up to 3 types of loads. For this special case, we compare the minimum number of robots with or without reconfiguration and show that the gain is limited in absolute value but may be significant for small fleets.Keywords: fleet sizing, reconfigurability, robots, transportation
Procedia PDF Downloads 8711410 Econometric Analysis of Organic Vegetable Production in Turkey
Authors: Ersin Karakaya, Halit Tutar
Abstract:
Reliable foods must be consumed in terms of healthy nutrition. The production and dissemination of diatom products in Turkey is rapidly evolving on the basis of preserving ecological balance, ensuring sustainability in agriculture and offering quality, reliable products to consumers. In this study, year in Turkey as (2002- 2015) to determine values of such as cultivated land of organic vegetable production, production levels, production quantity, number of products, number of farmers. It is intended to make the econometric analysis of the factors affecting the production of organic vegetable production (Number of products, Number of farmers and cultivated land). The main material of the study has created secondary data in relation to the 2002-2015 period as organic vegetable production in Turkey and regression analysis of the factors affecting the value of production of organic vegetable is determined by the Least Squares Method with EViews statistical software package.Keywords: number of farmers, cultivated land, Eviews, Turkey
Procedia PDF Downloads 30711409 An Innovative Auditory Impulsed EEG and Neural Network Based Biometric Identification System
Authors: Ritesh Kumar, Gitanjali Chhetri, Mandira Bhatia, Mohit Mishra, Abhijith Bailur, Abhinav
Abstract:
The prevalence of the internet and technology in our day to day lives is creating more security issues than ever. The need for protecting and providing a secure access to private and business data has led to the development of many security systems. One of the potential solutions is to employ the bio-metric authentication technique. In this paper we present an innovative biometric authentication method that utilizes a person’s EEG signal, which is acquired in response to an auditory stimulus,and transferred wirelessly to a computer that has the necessary ANN algorithm-Multi layer perceptrol neural network because of is its ability to differentiate between information which is not linearly separable.In order to determine the weights of the hidden layer we use Gaussian random weight initialization. MLP utilizes a supervised learning technique called Back propagation for training the network. The complex algorithm used for EEG classification reduces the chances of intrusion into the protected public or private data.Keywords: EEG signal, auditory evoked potential, biometrics, multilayer perceptron neural network, back propagation rule, Gaussian random weight initialization
Procedia PDF Downloads 41311408 An investigation of Leading Edge and Trailing Edge Corrugation for Low Reynolds Number Application
Authors: Syed Hassan Raza Shah, Mohammad Mohammad Ali
Abstract:
The flow over a smoothly profiled airfoil at a low Reynolds number is highly susceptible to separate even at a very low angle of attack. An investigation was made to study the effect of leading-edge and trailing-edge corrugation with the spanwise change in the ridges resulted due to the change in the chord length for an infinite wing. The wind tunnel results using NACA0018 wings revealed that leading and trailing edge corrugation did not have any benefit in terms of aerodynamic efficiency or delayed stall. The leading edge and trailing edge corrugation didn't change the lift curve slope, with the leading edge corrugation wing stalling first in the range of Reynolds number of 50,000 to 125,000.Keywords: leading and trailing edge corrugations, low reynolds number, wind tunnel testing, NACA0018
Procedia PDF Downloads 29111407 Taxonomic Study of Squirrel Order Rodentia, Family Sciuridea of District Jamshoro Pakistan
Authors: Aisha Liaquat Ali, Ghulam Sarwar Gachal, Muhammad Yusuf Sheikh
Abstract:
The squirrel commonly known as ‘Gulhari’ belongs to the order Rodentia, family sciuridea, its sub-species inhabit tropical to sub tropical regions of Asia. The core aim of the present study is to investigate the taxonomy of squirrel in District Jamshoro. Sampling was obtained for the taxonomic identification from various adjoining areas of District Jamshoro by non random method. During present study a total number of 107 specimens were collected from July 2018 to December 2018, specimens were collected from District Jamshoro it was observed that the prevalence of the sub-species Funambulus tristriatus numarius (23.3%), Funambulus pennant tulescens (23.3%) was high while Funambulus tristriatus tristriatus ((20.5%), Funambulus palmarun brodie (18.6%) and the minimum prevalence Funambulus palmaruns palmaruns (14.1%). In the present research, it is established that the climate factors, altitude has principal importance in the poor density of squirrel.Keywords: Jamshoro District Pakistan, squirrel, taxonomy, prevalence
Procedia PDF Downloads 16711406 Estimation of Population Mean Using Characteristics of Poisson Distribution: An Application to Earthquake Data
Authors: Prayas Sharma
Abstract:
This paper proposed a generalized class of estimators, an exponential class of estimators based on the adaption of Sharma and Singh (2015) and Solanki and Singh (2013), and a simple difference estimator for estimating unknown population mean in the case of Poisson distributed population in simple random sampling without replacement. The expressions for mean square errors of the proposed classes of estimators are derived from the first order of approximation. It is shown that the adapted version of Solanki and Singh (2013), the exponential class of estimator, is always more efficient than the usual estimator, ratio, product, exponential ratio, and exponential product type estimators and equally efficient to simple difference estimator. Moreover, the adapted version of Sharma and Singh's (2015) estimator is always more efficient than all the estimators available in the literature. In addition, theoretical findings are supported by an empirical study to show the superiority of the constructed estimators over others with an application to earthquake data of Turkey.Keywords: auxiliary attribute, point bi-serial, mean square error, simple random sampling, Poisson distribution
Procedia PDF Downloads 15711405 The Effect of Cognitive Restructuring and Assertive Training on Improvement of Sexual Behavior of Secondary School Adolescents in Nigeria
Authors: Azu Kalu Oko, Ugboaku Nwanpka
Abstract:
The study investigated the effect of cognitive restructuring and assertive training on improvement of sexual behavior of secondary school adolescents in Nigeria. To guide the study, three research questions and four hypothesis were formulated. The study featured a 2X3 factorial design with a sample of 48 male and female students selected by random sampling using a table of random sample numbers. The three groups are assertive training, cognitive restructuring and control group. The study identified adolescents with deviant sexual behavior using Students Sexual Behavior Inventory (S.S.B.I.) as the research instrument. Ancova and T- Test statistic were used to analyze the data. The findings revealed that: I. Assertive Training and Cognitive Restructuring significantly improved sexual behavior of subjects at post test when compared with the control group. II. The treatment gains made by the two techniques were sustained at one month follow-up interval. III. Cognitive restructuring was more effective than assertiveness training in the improvement of the sexual behavior of students. Implication for education, psychotherapy and counseling were highlighted.Keywords: cognitive restructuring, assertiveness training, adolescents, sexual behavior
Procedia PDF Downloads 58811404 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxics Gases
Authors: Slimane Ouhmad, Abdellah Halimi
Abstract:
In this work, we have applied neural networks method MLP type to a database from an array of six sensors for the detection of three toxic gases. As the choice of the number of hidden layers and the weight values has a great influence on the convergence of the learning algorithm, we proposed, in this article, a mathematical formulation to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases on the one hand, and optimize the computation time on the other hand, the comparison to other results achieved in this case.Keywords: MLP Neural Network, back-propagation, number of neurons in the hidden layer, identification, computing time
Procedia PDF Downloads 34911403 Fem Models of Glued Laminated Timber Beams Enhanced by Bayesian Updating of Elastic Moduli
Authors: L. Melzerová, T. Janda, M. Šejnoha, J. Šejnoha
Abstract:
Two finite element (FEM) models are presented in this paper to address the random nature of the response of glued timber structures made of wood segments with variable elastic moduli evaluated from 3600 indentation measurements. This total database served to create the same number of ensembles as was the number of segments in the tested beam. Statistics of these ensembles were then assigned to given segments of beams and the Latin Hypercube Sampling (LHS) method was called to perform 100 simulations resulting into the ensemble of 100 deflections subjected to statistical evaluation. Here, a detailed geometrical arrangement of individual segments in the laminated beam was considered in the construction of two-dimensional FEM model subjected to in four-point bending to comply with the laboratory tests. Since laboratory measurements of local elastic moduli may in general suffer from a significant experimental error, it appears advantageous to exploit the full scale measurements of timber beams, i.e. deflections, to improve their prior distributions with the help of the Bayesian statistical method. This, however, requires an efficient computational model when simulating the laboratory tests numerically. To this end, a simplified model based on Mindlin’s beam theory was established. The improved posterior distributions show that the most significant change of the Young’s modulus distribution takes place in laminae in the most strained zones, i.e. in the top and bottom layers within the beam center region. Posterior distributions of moduli of elasticity were subsequently utilized in the 2D FEM model and compared with the original simulations.Keywords: Bayesian inference, FEM, four point bending test, laminated timber, parameter estimation, prior and posterior distribution, Young’s modulus
Procedia PDF Downloads 28411402 The Staff Performance Efficiency of the Faculty of Management Science, Suan Sunandha Rajabhat University
Authors: Nipawan Tharasak, Ladda Hirunyava
Abstract:
The objective of the research was to study factors affecting working efficiency and the relationship between working environment, satisfaction to human resources management and operation employees’ working efficiency of Faculty of Management Science, Suan Sunandha Rajabhat University. The sample size of the research was based on 33 employees of Faculty of Management Science. The researcher had classified the support employees into 4 divisions by using Stratified Random Sampling. Individual sample was randomized by using Simple Random Sampling. Data was collected through the instrument. The Statistical Package for the Windows was utilized for data processing. Percentage, mean, standard deviation, the t-test, One-way ANOVA, and Pearson product moment correlation coefficient were applied. The result found the support employees’ satisfaction in human resources management of Faculty of Management Science in following areas: remuneration; employee recruitment & selection; manpower planning; performance evaluation; staff training & developing; and spirit & fairness were overall in good level.Keywords: faculty of management science, operational factors, practice performance, staff working
Procedia PDF Downloads 23511401 Characterization of Number of Subgroups of Finite Groups
Authors: Khyati Sharma, A. Satyanarayana Reddy
Abstract:
The topic of how many subgroups exist within a certain finite group naturally arises in the study of finite groups. Over the years, different researchers have investigated this issue from a variety of angles. The significant contributions of the key mathematicians over the time have been summarized in this article. To this end, we classify finite groups into three categories viz. (a) Groups for which the number of subgroups is less than |G|, (b) equals to |G|, and finally, (c) greater than |G|. Because every element of a finite group generates a cyclic subgroup, counting cyclic subgroups is the most important task in this endeavor. A brief survey on the number of cyclic subgroups of finite groups is also conducted by us. Furthermore, we also covered certain arithmetic relations between the order of a finite group |G| and the number of its distinct cyclic subgroups |C(G)|. In order to provide pertinent context and possibly reveal new novel areas of potential research within the field of research on finite groups, we finally pose and solicit a few open questions.Keywords: abstract algebra, cyclic subgroup, finite group, subgroup
Procedia PDF Downloads 12011400 Analyze Needs for Training on Academic Procrastination Behavior on Students in Indonesia
Authors: Iman Dwi Almunandar, Nellawaty A. Tewu, Anshari Al Ghaniyy
Abstract:
The emergence of academic procrastination behavior among students in Indonesian, especially the students of Faculty of Psychology at YARSI University becomes a habit to be underestimated, so often interfere with the effectiveness of learning process. The lecturers at the Faculty of Psychology YARSI University have very often warned students to be able to do and collect assignments accordance to predetermined deadline. However, they are still violated it. According to researchers, this problem needs to do a proper training for the solution to minimize academic procrastination behavior on students. In this study, researchers conducted analyze needs for deciding whether need the training or not. Number of sample is 30 respondents which being choose with a simple random sampling. Measurement of academic procrastination behavior is using the theory by McCloskey (2011), there are six dimensions: Psychological Belief about Abilities, Distractions, Social Factor of Procrastination, Time Management, Personal Initiative, Laziness. Methods of analyze needs are using Questioner, Interview, Observations, Focus Group Discussion (FGD), Intelligence Tests. The result of analyze needs shows that psychology students generation of 2015 at the Faculty of Psychology YARSI University need for training on Time Management.Keywords: procrastination, psychology, analyze needs, behavior
Procedia PDF Downloads 38311399 Supervised-Component-Based Generalised Linear Regression with Multiple Explanatory Blocks: THEME-SCGLR
Authors: Bry X., Trottier C., Mortier F., Cornu G., Verron T.
Abstract:
We address component-based regularization of a Multivariate Generalized Linear Model (MGLM). A set of random responses Y is assumed to depend, through a GLM, on a set X of explanatory variables, as well as on a set T of additional covariates. X is partitioned into R conceptually homogeneous blocks X1, ... , XR , viewed as explanatory themes. Variables in each Xr are assumed many and redundant. Thus, Generalised Linear Regression (GLR) demands regularization with respect to each Xr. By contrast, variables in T are assumed selected so as to demand no regularization. Regularization is performed searching each Xr for an appropriate number of orthogonal components that both contribute to model Y and capture relevant structural information in Xr. We propose a very general criterion to measure structural relevance (SR) of a component in a block, and show how to take SR into account within a Fisher-scoring-type algorithm in order to estimate the model. We show how to deal with mixed-type explanatory variables. The method, named THEME-SCGLR, is tested on simulated data.Keywords: Component-Model, Fisher Scoring Algorithm, GLM, PLS Regression, SCGLR, SEER, THEME
Procedia PDF Downloads 39711398 Determining the Number of Words Required to Fulfil the Writing Task in an English Proficiency Exam with the Raters’ Scores
Authors: Defne Akinci Midas
Abstract:
The aim of this study was to determine the minimum, and maximum number of words that would be sufficient to fulfill the writing task in the local English Proficiency Exam (EPE) produced and administered at the Middle East Technical University, Ankara, Turkey. The relationship between the number of words and the scores of the written products that had been awarded by two raters in three online EPEs administered in 2020 was examined. The means, standard deviations, percentages, range, minimum and maximum scores as well as correlations of the scores awarded to written products with the words that amount to 0-50, 51-100, 101-150, 151-200, 201-250, 251-300, and so on were computed. The results showed that the raters did not award a full score to texts that had fewer than 100 words. Moreover, the texts that had around 200 words were awarded the highest scores. The highest number of words that earned the highest scores was about 225, and from then onwards, the scores were either stable or lower. A positive low to moderate correlation was found between the number of words and scores awarded to the texts. We understand that the idea of ‘the longer, the better’ did not apply here. The results also showed that words between 101 to about 225 were sufficient to fulfill the writing task to fully display writing skills and language ability in the specific case of this exam.Keywords: English proficiency exam, number of words, scoring, writing task
Procedia PDF Downloads 17611397 Infrastructural Investment and Economic Growth in Indian States: A Panel Data Analysis
Authors: Jonardan Koner, Basabi Bhattacharya, Avinash Purandare
Abstract:
The study is focused to find out the impact of infrastructural investment on economic development in Indian states. The study uses panel data analysis to measure the impact of infrastructural investment on Real Gross Domestic Product in Indian States. Panel data analysis incorporates Unit Root Test, Cointegration Teat, Pooled Ordinary Least Squares, Fixed Effect Approach, Random Effect Approach, Hausman Test. The study analyzes panel data (annual in frequency) ranging from 1991 to 2012 and concludes that infrastructural investment has a desirable impact on economic development in Indian. Finally, the study reveals that the infrastructural investment significantly explains the variation of economic indicator.Keywords: infrastructural investment, real GDP, unit root test, cointegration teat, pooled ordinary least squares, fixed effect approach, random effect approach, Hausman test
Procedia PDF Downloads 40411396 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning
Authors: Pei Yi Lin
Abstract:
Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model
Procedia PDF Downloads 7911395 Acoustic Induced Vibration Response Analysis of Honeycomb Panel
Authors: Po-Yuan Tung, Jen-Chueh Kuo, Chia-Ray Chen, Chien-Hsing Li, Kuo-Liang Pan
Abstract:
The main-body structure of satellite is mainly constructed by lightweight material, it should be able to withstand certain vibration load during launches. Since various kinds of change possibility in the space, it is an extremely important work to study the random vibration response of satellite structure. This paper based on the reciprocity relationship between sound and structure response and it will try to evaluate the dynamic response of satellite main body under random acoustic load excitation. This paper will study the technical process and verify the feasibility of sonic-borne vibration analysis. One simple plate exposed to the uniform acoustic field is utilized to take some important parameters and to validate the acoustics field model of the reverberation chamber. Then import both structure and acoustic field chamber models into the vibro-acoustic coupling analysis software to predict the structure response. During the modeling process, experiment verification is performed to make sure the quality of numerical models. Finally, the surface vibration level can be calculated through the modal participation factor, and the analysis results are presented in PSD spectrum.Keywords: vibration, acoustic, modal, honeycomb panel
Procedia PDF Downloads 55611394 Analyzing the Commentator Network Within the French YouTube Environment
Authors: Kurt Maxwell Kusterer, Sylvain Mignot, Annick Vignes
Abstract:
To our best knowledge YouTube is the largest video hosting platform in the world. A high number of creators, viewers, subscribers and commentators act in this specific eco-system which generates huge sums of money. Views, subscribers, and comments help to increase the popularity of content creators. The most popular creators are sponsored by brands and participate in marketing campaigns. For a few of them, this becomes a financially rewarding profession. This is made possible through the YouTube Partner Program, which shares revenue among creators based on their popularity. We believe that the role of comments in increasing the popularity is to be emphasized. In what follows, YouTube is considered as a bilateral network between the videos and the commentators. Analyzing a detailed data set focused on French YouTubers, we consider each comment as a link between a commentator and a video. Our research question asks what are the predominant features of a video which give it the highest probability to be commented on. Following on from this question, how can we use these features to predict the action of the agent in commenting one video instead of another, considering the characteristics of the commentators, videos, topics, channels, and recommendations. We expect to see that the videos of more popular channels generate higher viewer engagement and thus are more frequently commented. The interest lies in discovering features which have not classically been considered as markers for popularity on the platform. A quick view of our data set shows that 96% of the commentators comment only once on a certain video. Thus, we study a non-weighted bipartite network between commentators and videos built on the sub-sample of 96% of unique comments. A link exists between two nodes when a commentator makes a comment on a video. We run an Exponential Random Graph Model (ERGM) approach to evaluate which characteristics influence the probability of commenting a video. The creation of a link will be explained in terms of common video features, such as duration, quality, number of likes, number of views, etc. Our data is relevant for the period of 2020-2021 and focuses on the French YouTube environment. From this set of 391 588 videos, we extract the channels which can be monetized according to YouTube regulations (channels with at least 1000 subscribers and more than 4000 hours of viewing time during the last twelve months).In the end, we have a data set of 128 462 videos which consist of 4093 channels. Based on these videos, we have a data set of 1 032 771 unique commentators, with a mean of 2 comments per a commentator, a minimum of 1 comment each, and a maximum of 584 comments.Keywords: YouTube, social networks, economics, consumer behaviour
Procedia PDF Downloads 6911393 Algorithm Optimization to Sort in Parallel by Decreasing the Number of the Processors in SIMD (Single Instruction Multiple Data) Systems
Authors: Ali Hosseini
Abstract:
Paralleling is a mechanism to decrease the time necessary to execute the programs. Sorting is one of the important operations to be used in different systems in a way that the proper function of many algorithms and operations depend on sorted data. CRCW_SORT algorithm executes ‘N’ elements sorting in O(1) time on SIMD (Single Instruction Multiple Data) computers with n^2/2-n/2 number of processors. In this article having presented a mechanism by dividing the input string by the hinge element into two less strings the number of the processors to be used in sorting ‘N’ elements in O(1) time has decreased to n^2/8-n/4 in the best state; by this mechanism the best state is when the hinge element is the middle one and the worst state is when it is minimum. The findings from assessing the proposed algorithm by other methods on data collection and number of the processors indicate that the proposed algorithm uses less processors to sort during execution than other methods.Keywords: CRCW, SIMD (Single Instruction Multiple Data) computers, parallel computers, number of the processors
Procedia PDF Downloads 31211392 Slovenian Spatial Legislation over Time and Its Issues
Authors: Andreja Benko
Abstract:
Article presents a short overview of the architects’ profession over time with outlined work of the architectural theoreticians. In the continuation is described a former affiliation of Slovenia as well as the spatial planning documents that were in use until the Slovenia joint Yugoslavia (last part in 1919). This legislation from former Austro-Hungarian monarchy was valid almost until 1950 in some parts of Yugoslavia even longer. Upon that will be mentioned some valid Slovenian spatial documents which will be compared with the German legislation. Analysed will be the number of architect and spatial planners in Slovenia and also their number upon certain region in Slovenia. Based on that will be given also the number from statistical office of Slovenia of the number of buildings between years 2007 and 2012, and described also the collapse of the major construction companies in Slovenia and consequences of that. At the end will be outlined the morality and ethics by spatial interventions and lack of the architectural law in Slovenia as well as the problematic of minimal collaboration between the Ministry of infrastructure and spatial planning with the profession.Keywords: architect, history, legislation, Slovenia
Procedia PDF Downloads 36011391 The Effect of Institutions on Economic Growth: An Analysis Based on Bayesian Panel Data Estimation
Authors: Mohammad Anwar, Shah Waliullah
Abstract:
This study investigated panel data regression models. This paper used Bayesian and classical methods to study the impact of institutions on economic growth from data (1990-2014), especially in developing countries. Under the classical and Bayesian methodology, the two-panel data models were estimated, which are common effects and fixed effects. For the Bayesian approach, the prior information is used in this paper, and normal gamma prior is used for the panel data models. The analysis was done through WinBUGS14 software. The estimated results of the study showed that panel data models are valid models in Bayesian methodology. In the Bayesian approach, the effects of all independent variables were positively and significantly affected by the dependent variables. Based on the standard errors of all models, we must say that the fixed effect model is the best model in the Bayesian estimation of panel data models. Also, it was proved that the fixed effect model has the lowest value of standard error, as compared to other models.Keywords: Bayesian approach, common effect, fixed effect, random effect, Dynamic Random Effect Model
Procedia PDF Downloads 68