Search results for: motor for washing machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3775

Search results for: motor for washing machine

3385 Stereotypical Motor Movement Recognition Using Microsoft Kinect with Artificial Neural Network

Authors: M. Jazouli, S. Elhoufi, A. Majda, A. Zarghili, R. Aalouane

Abstract:

Autism spectrum disorder is a complex developmental disability. It is defined by a certain set of behaviors. Persons with Autism Spectrum Disorders (ASD) frequently engage in stereotyped and repetitive motor movements. The objective of this article is to propose a method to automatically detect this unusual behavior. Our study provides a clinical tool which facilitates for doctors the diagnosis of ASD. We focus on automatic identification of five repetitive gestures among autistic children in real time: body rocking, hand flapping, fingers flapping, hand on the face and hands behind back. In this paper, we present a gesture recognition system for children with autism, which consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using artificial neural network (ANN). The first one uses the Microsoft Kinect sensor, the second one chooses points of interest from the 3D skeleton to characterize the gestures, and the last one proposes a neural connectionist model to perform the supervised classification of data. The experimental results show that our system can achieve above 93.3% recognition rate.

Keywords: ASD, artificial neural network, kinect, stereotypical motor movements

Procedia PDF Downloads 290
3384 The Evolving Customer Experience Management Landscape: A Case Study on the Paper Machine Companies

Authors: Babak Mohajeri, Sen Bao, Timo Nyberg

Abstract:

Customer experience is increasingly the differentiator between successful companies and those who struggle. Currently, customer experiences become more dynamic; and they advance with each interaction between the company and a customer. Every customer conversation and any effort to evolve these conversations would be beneficial and should ultimately result in a positive customer experience. The aim of this paper is to analyze the evolving customer experience management landscape and the relevant challenges and opportunities. A case study on the “paper machine” companies is chosen. Hence, this paper analyzes the challenges and opportunities in customer experience management of paper machine companies for the case of “road to steel”. Road to steel shows the journey of steel from raw material to end product (i.e. paper machine in this paper). ALPHA (Steel company) and BETA (paper machine company), are chosen and their efforts to evolve the customer experiences are investigated. Semi-structured interviews are conducted with experts in those companies to identify the challenges and opportunities of the evolving customer experience management from their point of view. The findings of this paper contribute to the theory and business practices in the realm of the evolving customer experience management landscape.

Keywords: Customer Experience Management, Paper Machine , Value Chain Management, Risk Analysis

Procedia PDF Downloads 336
3383 Auto-Tuning of CNC Parameters According to the Machining Mode Selection

Authors: Jenq-Shyong Chen, Ben-Fong Yu

Abstract:

CNC(computer numerical control) machining centers have been widely used for machining different metal components for various industries. For a specific CNC machine, its everyday job is assigned to cut different products with quite different attributes such as material type, workpiece weight, geometry, tooling, and cutting conditions. Theoretically, the dynamic characteristics of the CNC machine should be properly tuned match each machining job in order to get the optimal machining performance. However, most of the CNC machines are set with only a standard set of CNC parameters. In this study, we have developed an auto-tuning system which can automatically change the CNC parameters and in hence change the machine dynamic characteristics according to the selection of machining modes which are set by the mixed combination of three machine performance indexes: the HO (high surface quality) index, HP (high precision) index and HS (high speed) index. The acceleration, jerk, corner error tolerance, oscillation and dynamic bandwidth of machine’s feed axes have been changed according to the selection of the machine performance indexes. The proposed auto-tuning system of the CNC parameters has been implemented on a PC-based CNC controller and a three-axis machining center. The measured experimental result have shown the promising of our proposed auto-tuning system.

Keywords: auto-tuning, CNC parameters, machining mode, high speed, high accuracy, high surface quality

Procedia PDF Downloads 363
3382 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet

Authors: Azene Zenebe

Abstract:

Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.

Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science

Procedia PDF Downloads 132
3381 Support Vector Machine Based Retinal Therapeutic for Glaucoma Using Machine Learning Algorithm

Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Yang Yung, Tracy Lin Huan

Abstract:

Glaucoma is a group of visual maladies represented by the scheduled optic nerve neuropathy; means to the increasing dwindling in vision ground, resulting in loss of sight. In this paper, a novel support vector machine based retinal therapeutic for glaucoma using machine learning algorithm is conservative. The algorithm has fitting pragmatism; subsequently sustained on correlation clustering mode, it visualizes perfect computations in the multi-dimensional space. Support vector clustering turns out to be comparable to the scale-space advance that investigates the cluster organization by means of a kernel density estimation of the likelihood distribution, where cluster midpoints are idiosyncratic by the neighborhood maxima of the concreteness. The predicted planning has 91% attainment rate on data set deterrent on a consolidation of 500 realistic images of resolute and glaucoma retina; therefore, the computational benefit of depending on the cluster overlapping system pedestal on machine learning algorithm has complete performance in glaucoma therapeutic.

Keywords: machine learning algorithm, correlation clustering mode, cluster overlapping system, glaucoma, kernel density estimation, retinal therapeutic

Procedia PDF Downloads 221
3380 Molecular Motors in Smart Drug Delivery Systems

Authors: Ainoa Guinart, Maria Korpidou, Daniel Doellerer, Cornelia Palivan, Ben L. Feringa

Abstract:

Stimuli responsive systems arise from the need to meet unsolved needs of current molecular drugs. Our study presents the design of a delivery system with high spatiotemporal control and tuneable release profiles. We study the incorporation of a hydrophobic synthetic molecular motor into PDMS-b-PMOXA block copolymer vesicles to create a self-assembled system. We prove their successful incorporation and selective activation by low powered visible light (λ 430 nm, 6.9 mW). We trigger the release of a fluorescent dye with high release efficiencies over sequential cycles (up to 75%) with the ability to turn on and off the release behaviour on demand by light irradiation. Low concentrations of photo-responsive units are proven to trigger release down to 1 mol% of molecular motor. Finally, we test our system in relevant physiological conditions using a lung cancer cell line and the encapsulation of an approved drug. Similar levels of cell viability are observed compared to the free-given drugshowing the potential of our platform to deliver functional drugs on demand with the same efficiency and lower toxicity.

Keywords: molecular motor, polymer, drug delivery, light-responsive, cancer, selfassembly

Procedia PDF Downloads 108
3379 Auto Classification of Multiple ECG Arrhythmic Detection via Machine Learning Techniques: A Review

Authors: Ng Liang Shen, Hau Yuan Wen

Abstract:

Arrhythmia analysis of ECG signal plays a major role in diagnosing most of the cardiac diseases. Therefore, a single arrhythmia detection of an electrocardiographic (ECG) record can determine multiple pattern of various algorithms and match accordingly each ECG beats based on Machine Learning supervised learning. These researchers used different features and classification methods to classify different arrhythmia types. A major problem in these studies is the fact that the symptoms of the disease do not show all the time in the ECG record. Hence, a successful diagnosis might require the manual investigation of several hours of ECG records. The point of this paper presents investigations cardiovascular ailment in Electrocardiogram (ECG) Signals for Cardiac Arrhythmia utilizing examination of ECG irregular wave frames via heart beat as correspond arrhythmia which with Machine Learning Pattern Recognition.

Keywords: electrocardiogram, ECG, classification, machine learning, pattern recognition, detection, QRS

Procedia PDF Downloads 347
3378 The Effects of a Hippotherapy Simulator in Children with Cerebral Palsy: A Pilot Study

Authors: Canan Gunay Yazici, Zubeyir Sarı, Devrim Tarakci

Abstract:

Background: Hippotherapy considered as global techniques used in rehabilitation of children with cerebral palsy as it improved gait pattern, balance, postural control, balance and gross motor skills development but it encounters some problems (such as the excess of the cost of horses' care, nutrition, housing). Hippotherapy simulator is being developed in recent years to overcome these problems. These devices aim to create the effects of hippotherapy made with a real horse on patients by simulating the movements of a real horse. Objectives: To evaluate the efficacy of hippotherapy simulator on gross motor functions, sitting postural control and dynamic balance of children with cerebral palsy (CP). Methods: Fourteen children with CP, aged 6–15 years, seven with a diagnosis of spastic hemiplegia, five of diplegia, two of triplegia, Gross Motor Function Classification System level I-III. The Horse Riding Simulator (HRS), including four-speed program (warm-up, level 1-2-3), was used for hippotherapy simulator. Firstly, each child received Neurodevelopmental Therapy (NDT; 45min twice weekly eight weeks). Subsequently, the same children completed HRS+NDT (30min and 15min respectively, twice weekly eight weeks). Children were assessed pre-treatment, at the end of 8th and 16th week. Gross motor function, sitting postural control, dynamic sitting and standing balance were evaluated by Gross Motor Function Measure-88 (GMFM-88, Dimension B, D, E and Total Score), Trunk Impairment Scale (TIS), Pedalo® Sensamove Balance Test and Pediatric Balance Scale (PBS) respectively. Unit of Scientific Research Project of Marmara University supported our study. Results: All measured variables were a significant increase compared to baseline values after both intervention (NDT and HRS+NDT), except for dynamic sitting balance evaluated by Pedalo®. Especially HRS+NDT, increase in the measured variables was considerably higher than NDT. After NDT, the Total scores of GMFM-88 (mean baseline 62,2 ± 23,5; mean NDT: 66,6 ± 22,2; p < 0,05), TIS (10,4 ± 3,4; 12,1 ± 3; p < 0,05), PBS (37,4 ± 14,6; 39,6 ± 12,9; p < 0,05), Pedalo® sitting (91,2 ± 6,7; 92,3 ± 5,2; p > 0,05) and Pedalo® standing balance points (80,2 ± 10,8; 82,5 ± 11,5; p < 0,05) increased by 7,1%, 2%, 3,9%, 5,2% and 6 % respectively. After HRS+NDT treatment, the total scores of GMFM-88 (mean baseline: 62,2 ± 23,5; mean HRS+NDT: 71,6 ± 21,4; p < 0,05), TIS (10,4 ± 3,4; 15,6 ± 2,9; p < 0,05), PBS (37,4 ± 14,6; 42,5 ± 12; p < 0,05), Pedalo® sitting (91,2 ± 6,7; 93,8 ± 3,7; p > 0,05) and standing balance points (80,2 ± 10,8; 86,2 ± 5,6; p < 0,05) increased by 15,2%, 6%, 7,3%, 6,4%, and 11,9%, respectively, compared to the initial values. Conclusion: Neurodevelopmental therapy provided significant improvements in gross motor functions, sitting postural control, sitting and standing balance of children with CP. When the hippotherapy simulator added to the treatment program, it was observed that these functions were further developed (especially with gross motor functions and dynamic balance). As a result, this pilot study showed that the hippotherapy simulator could be a useful alternative to neurodevelopmental therapy for the improvement of gross motor function, sitting postural control and dynamic balance of children with CP.

Keywords: balance, cerebral palsy, hippotherapy, rehabilitation

Procedia PDF Downloads 121
3377 Corticomotor Excitability after Two Different Repetitive Transcranial Magnetic Stimulation Protocols in Ischemic Stroke Patients

Authors: Asrarul Fikri Abu Hassan, Muhammad Hafiz bin Hanafi, Jafri Malin Abdullah

Abstract:

This study is to compare the motor evoked potential (MEP) changes using different settings of repetitive transcranial magnetic stimulation (rTMS) in the post-haemorrhagic stroke patient which treated conservatively. The goal of the study is to determine changes in corticomotor excitability and functional outcome after repetitive transcranial magnetic stimulation (rTMS) therapy regime. 20 post-stroke patients with upper limb hemiparesis were studied due to haemorrhagic stroke. One of the three settings; (I) Inhibitory setting, or (II) facilitatory setting, or (III) control group, no excitatory or inhibitory setting have been applied randomly during the first meeting. The motor evoked potential (MEP) were recorded before and after application of the rTMS setting. Functional outcomes were evaluated using the Barthel index score. We found pre-treatment MEP values of the lesional side were lower compared to post-treatment values in both settings. In contrast, we found that the pre-treatment MEP values of the non-lesional side were higher compared to post-treatment values in both settings. Interestingly, patients with treatment, either facilitatory setting and inhibitory setting have faster motor recovery compared to the control group. Our data showed both settings might improve the MEP of the upper extremity and functional outcomes in the haemorrhagic stroke patient.

Keywords: Barthel index, corticomotor excitability, motor evoked potential, repetitive transcranial magnetic stimulation, stroke

Procedia PDF Downloads 139
3376 Optimal Implementation of Photovoltaic Water Pumping System

Authors: Sarah Abdourraziq

Abstract:

To improve the efficiency of photovoltaic pumping system, more attention has been paid to their setting up. This paper presents an optimal technique to establish an efficient system under different conditions of irradiance and temperature. The state of place should be carefully studied before stage of installation of the over system: local climate, boreholes, soil, crops and water resources. The studied system consists of a PV panel, a DC-DC boost converter, a DC motor-pump, and storage tank. The concepts shown in this paper presents a support for an optimal installation of each solar pump.

Keywords: photovoltaic pumping system, optimal implementation, boost converter, motor-pump

Procedia PDF Downloads 321
3375 Air Quality Analysis Using Machine Learning Models Under Python Environment

Authors: Salahaeddine Sbai

Abstract:

Air quality analysis using machine learning models is a method employed to assess and predict air pollution levels. This approach leverages the capabilities of machine learning algorithms to analyze vast amounts of air quality data and extract valuable insights. By training these models on historical air quality data, they can learn patterns and relationships between various factors such as weather conditions, pollutant emissions, and geographical features. The trained models can then be used to predict air quality levels in real-time or forecast future pollution levels. This application of machine learning in air quality analysis enables policymakers, environmental agencies, and the general public to make informed decisions regarding health, environmental impact, and mitigation strategies. By understanding the factors influencing air quality, interventions can be implemented to reduce pollution levels, mitigate health risks, and enhance overall air quality management. Climate change is having significant impacts on Morocco, affecting various aspects of the country's environment, economy, and society. In this study, we use some machine learning models under python environment to predict and analysis air quality change over North of Morocco to evaluate the climate change impact on agriculture.

Keywords: air quality, machine learning models, pollution, pollutant emissions

Procedia PDF Downloads 63
3374 Review of Different Machine Learning Algorithms

Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui

Abstract:

Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.

Keywords: Data Mining, Web Mining, classification, ML Algorithms

Procedia PDF Downloads 266
3373 Flood-prone Urban Area Mapping Using Machine Learning, a Case Sudy of M'sila City (Algeria)

Authors: Medjadj Tarek, Ghribi Hayet

Abstract:

This study aims to develop a flood sensitivity assessment tool using machine learning (ML) techniques and geographic information system (GIS). The importance of this study is integrating the geographic information systems (GIS) and machine learning (ML) techniques for mapping flood risks, which help decision-makers to identify the most vulnerable areas and take the necessary precautions to face this type of natural disaster. To reach this goal, we will study the case of the city of M'sila, which is among the areas most vulnerable to floods. This study drew a map of flood-prone areas based on the methodology where we have made a comparison between 3 machine learning algorithms: the xGboost model, the Random Forest algorithm and the K Nearest Neighbour algorithm. Each of them gave an accuracy respectively of 97.92 - 95 - 93.75. In the process of mapping flood-prone areas, the first model was relied upon, which gave the greatest accuracy (xGboost).

Keywords: Geographic information systems (GIS), machine learning (ML), emergency mapping, flood disaster management

Procedia PDF Downloads 70
3372 The Role of Optimization and Machine Learning in e-Commerce Logistics in 2030

Authors: Vincenzo Capalbo, Gianpaolo Ghiani, Emanuele Manni

Abstract:

Global e-commerce sales have reached unprecedented levels in the past few years. As this trend is only predicted to go up as we continue into the ’20s, new challenges will be faced by companies when planning and controlling e-commerce logistics. In this paper, we survey the related literature on Optimization and Machine Learning as well as on combined methodologies. We also identify the distinctive features of next-generation planning algorithms - namely scalability, model-and-run features and learning capabilities - that will be fundamental to cope with the scale and complexity of logistics in the next decade.

Keywords: e-commerce, hardware acceleration, logistics, machine learning, mixed integer programming, optimization

Procedia PDF Downloads 214
3371 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: deregulated energy market, forecasting, machine learning, system marginal price

Procedia PDF Downloads 187
3370 A Deep Learning Approach to Subsection Identification in Electronic Health Records

Authors: Nitin Shravan, Sudarsun Santhiappan, B. Sivaselvan

Abstract:

Subsection identification, in the context of Electronic Health Records (EHRs), is identifying the important sections for down-stream tasks like auto-coding. In this work, we classify the text present in EHRs according to their information, using machine learning and deep learning techniques. We initially describe briefly about the problem and formulate it as a text classification problem. Then, we discuss upon the methods from the literature. We try two approaches - traditional feature extraction based machine learning methods and deep learning methods. Through experiments on a private dataset, we establish that the deep learning methods perform better than the feature extraction based Machine Learning Models.

Keywords: deep learning, machine learning, semantic clinical classification, subsection identification, text classification

Procedia PDF Downloads 192
3369 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation

Procedia PDF Downloads 214
3368 Intelligent Production Machine

Authors: A. Şahinoğlu, R. Gürbüz, A. Güllü, M. Karhan

Abstract:

This study in production machines, it is aimed that machine will automatically perceive cutting data and alter cutting parameters. The two most important parameters have to be checked in machine control unit are progress feed rate and speeds. These parameters are aimed to be controlled by sounds of machine. Optimum sound’s features introduced to computer. During process, real time data is received and converted by Matlab software. Data is converted into numerical values. According to them progress and speeds decreases/increases at a certain rate and thus optimum sound is acquired. Cutting process is made in respect of optimum cutting parameters. During chip remove progress, features of cutting tools, kind of cut material, cutting parameters and used machine; affects on various parameters. Instead of required parameters need to be measured such as temperature, vibration, and tool wear that emerged during cutting process; detailed analysis of the sound emerged during cutting process will provide detection of various data that included in the cutting process by the much more easy and economic way. The relation between cutting parameters and sound is being identified.

Keywords: cutting process, sound processing, intelligent late, sound analysis

Procedia PDF Downloads 312
3367 Functional Connectivity Signatures of Polygenic Depression Risk in Youth

Authors: Louise Moles, Steve Riley, Sarah D. Lichenstein, Marzieh Babaeianjelodar, Robert Kohler, Annie Cheng, Corey Horien Abigail Greene, Wenjing Luo, Jonathan Ahern, Bohan Xu, Yize Zhao, Chun Chieh Fan, R. Todd Constable, Sarah W. Yip

Abstract:

Background: Risks for depression are myriad and include both genetic and brain-based factors. However, relationships between these systems are poorly understood, limiting understanding of disease etiology, particularly at the developmental level. Methods: We use a data-driven machine learning approach connectome-based predictive modeling (CPM) to identify functional connectivity signatures associated with polygenic risk scores for depression (DEP-PRS) among youth from the Adolescent Brain and Cognitive Development (ABCD) study across diverse brain states, i.e., during resting state, during affective working memory, during response inhibition, during reward processing. Results: Using 10-fold cross-validation with 100 iterations and permutation testing, CPM identified connectivity signatures of DEP-PRS across all examined brain states (rho’s=0.20-0.27, p’s<.001). Across brain states, DEP-PRS was positively predicted by increased connectivity between frontoparietal and salience networks, increased motor-sensory network connectivity, decreased salience to subcortical connectivity, and decreased subcortical to motor-sensory connectivity. Subsampling analyses demonstrated that model accuracies were robust across random subsamples of N’s=1,000, N’s=500, and N’s=250 but became unstable at N’s=100. Conclusions: These data, for the first time, identify neural networks of polygenic depression risk in a large sample of youth before the onset of significant clinical impairment. Identified networks may be considered potential treatment targets or vulnerability markers for depression risk.

Keywords: genetics, functional connectivity, pre-adolescents, depression

Procedia PDF Downloads 34
3366 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: bioassay, machine learning, preprocessing, virtual screen

Procedia PDF Downloads 254
3365 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey

Authors: Lavanya Madhuri Bollipo, K. V. Kadambari

Abstract:

Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.

Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)

Procedia PDF Downloads 372
3364 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks

Authors: Anne-Lena Kampen, Øivind Kure

Abstract:

Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.

Keywords: central machine learning, embedded machine learning, energy consumption, local machine learning, wireless sensor networks, WSN

Procedia PDF Downloads 125
3363 Proportional and Integral Controller-Based Direct Current Servo Motor Speed Characterization

Authors: Adel Salem Bahakeem, Ahmad Jamal, Mir Md. Maruf Morshed, Elwaleed Awad Khidir

Abstract:

Direct Current (DC) servo motors, or simply DC motors, play an important role in many industrial applications such as manufacturing of plastics, precise positioning of the equipment, and operating computer-controlled systems where speed of feed control, maintaining the position, and ensuring to have a constantly desired output is very critical. These parameters can be controlled with the help of control systems such as the Proportional Integral Derivative (PID) controller. The aim of the current work is to investigate the effects of Proportional (P) and Integral (I) controllers on the steady state and transient response of the DC motor. The controller gains are varied to observe their effects on the error, damping, and stability of the steady and transient motor response. The current investigation is conducted experimentally on a servo trainer CE 110 using analog PI controller CE 120 and theoretically using Simulink in MATLAB. Both experimental and theoretical work involves varying integral controller gain to obtain the response to a steady-state input, varying, individually, the proportional and integral controller gains to obtain the response to a step input function at a certain frequency, and theoretically obtaining the proportional and integral controller gains for desired values of damping ratio and response frequency. Results reveal that a proportional controller helps reduce the steady-state and transient error between the input signal and output response and makes the system more stable. In addition, it also speeds up the response of the system. On the other hand, the integral controller eliminates the error but tends to make the system unstable with induced oscillations and slow response to eliminate the error. From the current work, it is desired to achieve a stable response of the servo motor in terms of its angular velocity subjected to steady-state and transient input signals by utilizing the strengths of both P and I controllers.

Keywords: DC servo motor, proportional controller, integral controller, controller gain optimization, Simulink

Procedia PDF Downloads 87
3362 A 2-D and 3-D Embroidered Textrode Testing Framework Adhering to ISO Standards

Authors: Komal K., Cleary F., Wells J S.G., Bennett L

Abstract:

Smart fabric garments enable various monitoring applications across sectors such as healthcare, sports and fitness, and the military. Healthcare smart garments monitoring EEG, EMG, and ECG rely on the use of electrodes (dry or wet). However, such electrodes, when used for long-term monitoring, can cause discomfort and skin irritation for the wearer because of their inflexible structure and weight. Ongoing research has been investigating textile-based electrodes (textrodes) in order to provide more comfortable and usable fabric-based electrodes capable of providing intuitive biopotential monitoring. Progress has been made in this space, but they still face a critical design challenge in maintaining consistent skin contact, which directly impacts signal quality. Furthermore, there is a lack of an ISO-based testing framework to validate the electrode design and assess its ability to achieve enhanced performance, strength, usability, and durability. This study proposes the development and evaluation of an ISO-compliant testing framework for standard 2D and advanced 3D embroidered textrodes designs that have a unique structure in order to establish enhanced skin contact for the wearer. This testing framework leverages ISO standards: ISO 13934-1:2013 for tensile and zone-wise strength tests; ISO 13937-2 for tear tests; and ISO 6330 for washing, validating the textrode's performance, a necessity for wearables health parameter monitoring applications. Five textrodes (C1-C5) were designed using EPC win digitization software. Varying patterns such as running stitches, lock stitches, back-to-back stitches, and moss stitches were used to create various embroidered tetrodes samples using Madeira HC12 conductive thread with a resistivity of 100 ohm/m. The textrode designs were then fabricated using a ZSK technical embroidery machine. A comparative analysis was conducted based on a series of laboratory tests adhering to ISO compliance requirements. Tests focusing on the application of strain were applied to the textrodes, and these included: (1) analysis of the electrode's overall surface area strength; (2) assessment of the robustness of the textrodes boundaries; and (3) the assignment of fault test zones to each textrode, where vertical and horizontal slits of 3mm were applied to evaluate the performance of textrodes and its durability. Specific ISO-compliant tests linked to washing were conducted multiple times on each textrode sample to assess both mechanical and chemical damage. Additionally, abrasion and pilling tests were performed to evaluate mechanical damage on the surface of the textrodes and to compare it with the washing test. Finally, the textrodes were assessed based on morphological and surface resistance changes. Results demonstrate that textrode C4, featuring a 3-D layered structure consisting of foam, fabric, and conductive thread layers, significantly enhances skin-electrode contact for biopotential recording. The inclusion of a 3D foam layer was particularly effective in maintaining the shape of the electrode during strain tests, making it the top-performing textrode sample. Therefore, the layered 3D design structure of textrode C4 ranks highest when tested for durability, reusability, and washability. The ISO testing framework established in this study will support future research, validating the durability and reliability of textrodes for a wide range of applications.

Keywords: smart fabric, textrodes, testing framework, ISO compliant

Procedia PDF Downloads 45
3361 Fundamental Research Dissension between Hot and Cold Chamber High Pressure Die Casting

Authors: Sahil Kumar, Surinder Pal, Rahul Kapoor

Abstract:

This paper is focused on to define the basic difference between hot and cold chamber high pressure die casting process which is not fully defined in a research before paper which we have studied. The pressure die casting is basically defined into two types (1) Hot chamber Die Casting (2) Cold chamber Die Casting. Cold chamber die casting is used for casting alloys that require high pressure and have a high melting temperature, such as brass, aluminum, magnesium, copper based alloys and other high melting point nonferrous alloys. Hot chamber die casting is suitable for casting zinc, tin, lead, and low melting point alloys. In hot chamber die casting machine, the molten metal is an integral pan of the machine. It mainly consists of hot chamber and gooseneck type metal container made of cast iron. This machine is mainly used for low melting alloys and alloys of metals like zinc, lead etc. Metals and alloys having a high melting point and those which are having an affinity for iron cannot be cast by this machine, which could otherwise attack the shot sleeve and damage the machine.

Keywords: hot chamber die casting, cold chamber die casting, metals and alloys, casting technology

Procedia PDF Downloads 596
3360 FPGA Based Vector Control of PM Motor Using Sliding Mode Observer

Authors: Hanan Mikhael Dawood, Afaneen Anwer Abood Al-Khazraji

Abstract:

The paper presents an investigation of field oriented control strategy of Permanent Magnet Synchronous Motor (PMSM) based on hardware in the loop simulation (HIL) over a wide speed range. A sensorless rotor position estimation using sliding mode observer for permanent magnet synchronous motor is illustrated considering the effects of magnetic saturation between the d and q axes. The cross saturation between d and q axes has been calculated by finite-element analysis. Therefore, the inductance measurement regards the saturation and cross saturation which are used to obtain the suitable id-characteristics in base and flux weakening regions. Real time matrix multiplication in Field Programmable Gate Array (FPGA) using floating point number system is used utilizing Quartus-II environment to develop FPGA designs and then download these designs files into development kit. dSPACE DS1103 is utilized for Pulse Width Modulation (PWM) switching and the controller. The hardware in the loop results conducted to that from the Matlab simulation. Various dynamic conditions have been investigated.

Keywords: magnetic saturation, rotor position estimation, sliding mode observer, hardware in the loop (HIL)

Procedia PDF Downloads 505
3359 The 10,000 Fold Effect Retrograde Neurotransmission: A Newer Concept for Paraplegia’s Physiological Revival by the Use of Intrathecal Sodium Nitroprusside

Authors: V. K. Tewari, M. Hussain, H. K. D. Gupta

Abstract:

B-Methylprednisolone-level-1-benefit (20%) usually given in paraplegia (but within 8hrs). Patients wait-long-duration for physiological-recovery. Intrathecal-Sodium-Nitroprusside(ITSNP) has been used-in vasospasm-due-to-subarachnoid-hemorrhage. ITSNP-has been studied-here for wide-window-period-range for-treatment, fast-recovery/affordability. 2- for acute-cases-and 1-mechanism-for chronic-cases, which-are-interrelated, are being-proposed-for-physiological-recovery. retrograde-neurotransmission, vasospasm and long-term-potentiation-(ltp) mechanisms are proposed here for recovery. It’s a case-control-prospective-study. 82paraplegia-patients(10patients taken as control-no superfusion or dextrose5% superfusion and 72patients as ITSNP-group). The mean time for superfusion was 14.11 days. ITSNP administered at a dosage of 0.2 mg/kg bo wt. Pre/post ITSNP monitored by SSEP/MEP. After-2-Hours in ITSNP-group Mean-Change-From-Baseline-Asia Motor/Sensory-Score 13.84%/13.10%, after-24-hours MOTOR-1.27-points decrease(3.77%) and SENSORY 10.5points-increase(6.22%)as compared to Control-group no-change noted upto 24-hours, At-7days ITSNP motor/sensory;11.56%/6.22% as compared to Control-group 7.60/4.48%, At-2-months in ITSNP 27.69%/6.22% as compared to Control-group 16.02/4.5%. SSEP/MEP-documented-improvements-noted. ITSNP, a-swift-acting-drug in treatment-of-paraplegia, is effective within-two-hours(mean-change-MOTOR-13.84% and SENSORY-13.10%) on-mean14.11th postparaplegia-day with a small-detrimental-response after-24-hours which-recovers-fast.

Keywords: paraplegias, intrathecal sodium nitroprusside, retrograde transmission, the 10, 000 fold effect, perforators, vasodilatations, long term potenciations

Procedia PDF Downloads 389
3358 Spectral Clustering for Manufacturing Cell Formation

Authors: Yessica Nataliani, Miin-Shen Yang

Abstract:

Cell formation (CF) is an important step in group technology. It is used in designing cellular manufacturing systems using similarities between parts in relation to machines so that it can identify part families and machine groups. There are many CF methods in the literature, but there is less spectral clustering used in CF. In this paper, we propose a spectral clustering algorithm for machine-part CF. Some experimental examples are used to illustrate its efficiency. Overall, the spectral clustering algorithm can be used in CF with a wide variety of machine/part matrices.

Keywords: group technology, cell formation, spectral clustering, grouping efficiency

Procedia PDF Downloads 380
3357 Cognitive Effects of Repetitive Transcranial Magnetic Stimulation in Patients with Parkinson's Disease

Authors: Ana Munguia, Gerardo Ortiz, Guadalupe Gonzalez, Fiacro Jimenez

Abstract:

Parkinson's disease (PD) is a neurodegenerative disorder that causes motor and cognitive symptoms. The first-choice treatment for these patients is pharmacological, but this generates several side effects. Because of that new treatments were introduced such as Repetitive Transcranial Magnetic Stimulation (rTMS) in order to improve the life quality of the patients. Several studies suggest significant changes in motor symptoms. However, there is a great diversity in the number of pulses, amplitude, frequency and stimulation targets, which results in inconsistent data. In addition, these studies do not have an analysis of the neuropsychological effects of the treatment. The main purpose of this study is to evaluate the impact of rTMS on the cognitive performance of 6 patients with H&Y III and IV (45-65 years, 3 men and 3 women). An initial neuropsychological and neurological evaluation was performed. Patients were randomized into two groups; in the first phase one received rTMS in the supplementary motor area, the other group in the dorsolateral prefrontal cortex contralateral to the most affected hemibody. In the second phase, each group received the stimulation in the area that he had not been stimulated previously. Reassessments were carried out at the beginning, at the end of each phase and a follow-up was carried out 6 months after the conclusion of the stimulation. In these preliminary results, it is reported that there's no statistically significant difference before and after receiving rTMS in the neuropsychological test scores of the patients, which suggests that the cognitive performance of patients is not detrimental. There are even tendencies towards an improvement in executive functioning after the treatment. What added to motor improvement, showed positive effects in the activities of the patients' daily life. In a later and more detailed analysis, will be evaluated the effects in each of the patients separately in relation to the functionality of the patients in their daily lives.

Keywords: Parkinson's disease, rTMS, cognitive, treatment

Procedia PDF Downloads 128
3356 Measuring the Effectiveness of Response Inhibition regarding to Motor Complexity: Evidence from the Stroop Effect

Authors: Germán Gálvez-García, Marta Lavin, Javiera Peña, Javier Albayay, Claudio Bascour, Jesus Fernandez-Gomez, Alicia Pérez-Gálvez

Abstract:

We studied the effectiveness of response inhibition in movements with different degrees of motor complexity when they were executed in isolation and alternately. Sixteen participants performed the Stroop task which was used as a measure of response inhibition. Participants responded by lifting the index finger and reaching the screen with the same finger. Both actions were performed separately and alternately in different experimental blocks. Repeated measures ANOVAs were used to compare reaction time, movement time, kinematic errors and Movement errors across conditions (experimental block, movement, and congruency). Delta plots were constructed to perform distributional analyses of response inhibition and accuracy rate. The effectiveness of response inhibition did not show difference when the movements were performed in separated blocks. Nevertheless, it showed differences when they were performed alternately in the same experimental block, being more effective for the lifting action. This could be due to a competition of the available resources during a more complex scenario which also demands to adopt some strategy to avoid errors.

Keywords: response inhibition, motor complexity, Stroop task, delta plots

Procedia PDF Downloads 375