Search results for: model for making decisions in emergencies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21829

Search results for: model for making decisions in emergencies

21439 Development of Medical Intelligent Process Model Using Ontology Based Technique

Authors: Emmanuel Chibuogu Asogwa, Tochukwu Sunday Belonwu

Abstract:

An urgent demand for creative solutions has been created by the rapid expansion of medical knowledge, the complexity of patient care, and the requirement for more precise decision-making. As a solution to this problem, the creation of a Medical Intelligent Process Model (MIPM) utilizing ontology-based appears as a promising way to overcome this obstacle and unleash the full potential of healthcare systems. The development of a Medical Intelligent Process Model (MIPM) using ontology-based techniques is motivated by a lack of quick access to relevant medical information and advanced tools for treatment planning and clinical decision-making, which ontology-based techniques can provide. The aim of this work is to develop a structured and knowledge-driven framework that leverages ontology, a formal representation of domain knowledge, to enhance various aspects of healthcare. Object-Oriented Analysis and Design Methodology (OOADM) were adopted in the design of the system as we desired to build a usable and evolvable application. For effective implementation of this work, we used the following materials/methods/tools: the medical dataset for the test of our model in this work was obtained from Kaggle. The ontology-based technique was used with Confusion Matrix, MySQL, Python, Hypertext Markup Language (HTML), Hypertext Preprocessor (PHP), Cascaded Style Sheet (CSS), JavaScript, Dreamweaver, and Fireworks. According to test results on the new system using Confusion Matrix, both the accuracy and overall effectiveness of the medical intelligent process significantly improved by 20% compared to the previous system. Therefore, using the model is recommended for healthcare professionals.

Keywords: ontology-based, model, database, OOADM, healthcare

Procedia PDF Downloads 78
21438 The Constraint of Machine Breakdown after a Match up Scheduling of Paper Manufacturing Industry

Authors: John M. Ikome

Abstract:

In the process of manufacturing, a machine breakdown usually forces a modified flow shop out of the prescribed state, this strategy reschedules part of the initial schedule to match up with the pre-schedule at some point with the objective to create a schedule that is reliable with the other production planning decisions like material flow, production and suppliers by utilizing a critical decision-making concept. We propose a rescheduling strategy and a match-up point that will have a determination procedure through an advanced feedback control mechanism to increase both the schedule quality and stability. These approaches are compared with alternative re-scheduling methods under different experimental settings.

Keywords: scheduling, heuristics, branch, integrated

Procedia PDF Downloads 408
21437 A Review on Existing Challenges of Data Mining and Future Research Perspectives

Authors: Hema Bhardwaj, D. Srinivasa Rao

Abstract:

Technology for analysing, processing, and extracting meaningful data from enormous and complicated datasets can be termed as "big data." The technique of big data mining and big data analysis is extremely helpful for business movements such as making decisions, building organisational plans, researching the market efficiently, improving sales, etc., because typical management tools cannot handle such complicated datasets. Special computational and statistical issues, such as measurement errors, noise accumulation, spurious correlation, and storage and scalability limitations, are brought on by big data. These unique problems call for new computational and statistical paradigms. This research paper offers an overview of the literature on big data mining, its process, along with problems and difficulties, with a focus on the unique characteristics of big data. Organizations have several difficulties when undertaking data mining, which has an impact on their decision-making. Every day, terabytes of data are produced, yet only around 1% of that data is really analyzed. The idea of the mining and analysis of data and knowledge discovery techniques that have recently been created with practical application systems is presented in this study. This article's conclusion also includes a list of issues and difficulties for further research in the area. The report discusses the management's main big data and data mining challenges.

Keywords: big data, data mining, data analysis, knowledge discovery techniques, data mining challenges

Procedia PDF Downloads 110
21436 Ata-Manobo Tribe as Stakeholders in the Making of School Improvement Plan: Basis for Policy Recommendation

Authors: Diobein C. Flores

Abstract:

The populace in Municipality of Talaingod is composed of Ata-Manobo. The said lumads enrich their culture, orientation and self because the place is a hive of their tribe. In lieu, the study would analyze the participation of the Ata-Manobo in the making of school improvement plan (SIP). Thus, it recommends alternative policy options that would help strengthen their involvement. The school stakeholders-Ata Manobo representatives from students, parent-teacher association, alumni, basic sector, municipal/barangay government unit, civic/social organizations and other government various agencies are the key participants in this study. The research used descriptive design. The responses of the representatives were analyzed through the criteria involved in employing Rational Model. The technical dimension, administrative, political acceptability and economic are the criteria in revealing decision. The policy alternative option 3- recommends to formulate policy for the purpose of capacitating stakeholders or governing council members in the making of SIP was pointed out as the most preferred option. This could strengthen the participation among Ata-Manobo as stakeholders in planning. Hence, the formulation alternative policy- capacitating stakeholders in the crafting of school improvement plan is recommended. The suggested initiative would assist the Department of Education in forging consensus across neighborhoods during the making of SIP. The appropriation of the definite budget to be used during the conduct of capability building activities is also suggested. Training-workshops are identified as possible intervention to ensure that the stakeholders are equipped with necessary knowledge and skills needed in the making of SIP. Indeed, the equal opportunities for all stakeholders regardless of their life circumstances must be noted. With the belief, people must be empowered to take advantage and spearhead progress in the making of SIP.

Keywords: Ata-Manobo Tribe, stakeholders, school improvement plan, Municipality of Talaingod, Philippines

Procedia PDF Downloads 322
21435 Development Planning in the System of the Islamic Republic of Iran in the Light of Development Laws: From Rationally Planning to Wisely Decision Making

Authors: Mohammad Sadeghi, Mahdieh Saniee

Abstract:

Nowadays, development laws have become a major branch of engineering science, laws help humankind achieve his/her basic needs, and it is attracted to the attention of the nations. Therefore, lawyers have been invited to contemplate legislator's approaches respecting legislating countries' economic, social and cultural development plans and to observe the reliance of approaches on two elements of distributive justice and transitional justice in light of legal rationality. Legal rationality in development planning has encountered us with this question that whether a rational approach and existing models in the Iran development planning system approximate us to the goal of development laws respecting the rationalist approach and also regarding wisely decision-making model. The present study will investigate processes, approaches, and damages of development planning in the legislation of country development plans to answer this question.

Keywords: rationality, decision-making process, policymaking, development

Procedia PDF Downloads 115
21434 Team Cognitive Heterogeneity and Strategic Decision-Making Flexibility: The Role of Transactive Memory System and Task Complexity

Authors: Rui Xing, Baolin Ye, Nan Zhou, Guohong Wang

Abstract:

Drawing upon a perspective of cognitive interaction, this study explores the relationship between team cognitive heterogeneity and team strategic decision-making flexibility, treating the transactive memory system as a mediator and task complexity as a moderator. The hypotheses were tested in linear regression models by using data gathered from 67 strategic decision-making teams in the new-energy vehicle industry. It is found that team cognitive heterogeneity has a positive impact on strategic decision-making flexibility through the mediation of specialization and coordination of the transactive memory system, which is positively moderated by task complexity.

Keywords: strategic decision-making flexibility, team cognitive heterogeneity, transactive memory system, task complexity

Procedia PDF Downloads 79
21433 Developing a Decision-Making Tool for Prioritizing Green Building Initiatives

Authors: Tayyab Ahmad, Gerard Healey

Abstract:

Sustainability in built environment sector is subject to many development constraints. Building projects are developed under different requirements of deliverables which makes each project unique. For an owner organization, i.e., a higher-education institution, involved in a significant building stock, it is important to prioritize some of the sustainability initiatives over the others in order to align the sustainable building development with organizational goals. The point-based green building rating tools i.e. Green Star, LEED, BREEAM are becoming increasingly popular and are well-acknowledged worldwide for verifying a sustainable development. It is imperative to synthesize a multi-criteria decision-making tool that can capitalize on the point-based methodology of rating systems while customizing the sustainable development of building projects according to the individual requirements and constraints of the client organization. A multi-criteria decision-making tool for the University of Melbourne is developed that builds on the action-learning and experience of implementing Green Buildings at the University of Melbourne. The tool evaluates the different sustainable building initiatives based on the framework of Green Star rating tool of Green Building Council of Australia. For each different sustainability initiative the decision-making tool makes an assessment based on at least five performance criteria including the ease with which a sustainability initiative can be achieved and the potential of a sustainability initiative to enhance project objectives, reduce life-cycle costs, enhance University’s reputation, and increase the confidence in quality construction. The use of a weighted aggregation mathematical model in the proposed tool can have a considerable role in the decision-making process of a Green Building project by indexing the Green Building initiatives in terms of organizational priorities. The index value of each initiative will be based on its alignment with some of the key performance criteria. The usefulness of the decision-making tool is validated by conducting structured interviews with some of the key stakeholders involved in the development of sustainable building projects at the University of Melbourne. The proposed tool is realized to help a client organization in deciding that within limited resources which sustainability initiatives and practices are more important to be pursued than others.

Keywords: higher education institution, multi-criteria decision-making tool, organizational values, prioritizing sustainability initiatives, weighted aggregation model

Procedia PDF Downloads 234
21432 Utilization, Barriers and Determinants of Emergency Medical Services in Mekelle City, Tigray, Ethiopia: A Community-Based Cross-Sectional Study

Authors: Goitom Molalign Takele, Tsegalem Hailemariam Ballo, Kiros Belay Gebrekidan, Birhan Gebresilassie Gebregiorgis

Abstract:

Background: Emergency medical services (EMS) are services that provide out-of-hospital emergency medical care to injured or ill peoples, and transporting to definitive care. EMS is an integral part of the emergency medical system and has been associated with decreased morbidity and mortality related to emergency cases. The aim of this study was to assess the utilization, barriers, and determinants of EMS in Mekelle, Ethiopia. Methods: A community-based cross-sectional study was conducted in selected sub-cities of Mekelle. A multistage sampling method was employed to recruit study participants, and data were collected by trained data collectors using an interviewer-administered questionnaire. Multivariate logistic regression analysis was used to examine the statistical association of the determinants of EMS utilization. Results: Half (50.5%) of the respondents had experienced or witnessed an emergency incident in the past year. The common means of transportations used were Bajaj’s (39.2%) and ambulances (22.7%). Majority (88.1%) of the respondents did not knew the EMS access phone number of an ambulance. As their preferred mode of transportation in case of emergency conditions, 42.2% of the participants reported an ambulance, followed by Bajaj 33.7%. Where participants who had gynecologic emergencies were 9.4 times (AOR=9.4, 95% CI: 1.04, 85, p=0.046), and those who knew any ambulance numbers were 3.6 times (AOR=3.6, 95% CI: 1.22, 10.8, p=0.02) more likely to use ambulance services in case of emergencies. Conclusion: The ambulance utilization level in Mekelle city was low and victims of emergency conditions were being transported mainly using public transports such as Bajaj’s and taxis. Even though the perception of the public towards EMS services is favorable, lack of awareness of EMS access, and lack of integrated EMS system in the city are the barriers that may have contributed to the low utilization. Actions to improve EMS access and integrating the system are warranted to promote the services utilization.

Keywords: emergency medical services, utilization, Mekelle, barriers

Procedia PDF Downloads 77
21431 Web-Based Decision Support Systems and Intelligent Decision-Making: A Systematic Analysis

Authors: Serhat Tüzün, Tufan Demirel

Abstract:

Decision Support Systems (DSS) have been investigated by researchers and technologists for more than 35 years. This paper analyses the developments in the architecture and software of these systems, provides a systematic analysis for different Web-based DSS approaches and Intelligent Decision-making Technologies (IDT), with the suggestion for future studies. Decision Support Systems literature begins with building model-oriented DSS in the late 1960s, theory developments in the 1970s, and the implementation of financial planning systems and Group DSS in the early and mid-80s. Then it documents the origins of Executive Information Systems, online analytic processing (OLAP) and Business Intelligence. The implementation of Web-based DSS occurred in the mid-1990s. With the beginning of the new millennia, intelligence is the main focus on DSS studies. Web-based technologies are having a major impact on design, development and implementation processes for all types of DSS. Web technologies are being utilized for the development of DSS tools by leading developers of decision support technologies. Major companies are encouraging its customers to port their DSS applications, such as data mining, customer relationship management (CRM) and OLAP systems, to a web-based environment. Similarly, real-time data fed from manufacturing plants are now helping floor managers make decisions regarding production adjustment to ensure that high-quality products are produced and delivered. Web-based DSS are being employed by organizations as decision aids for employees as well as customers. A common usage of Web-based DSS has been to assist customers configure product and service according to their needs. These systems allow individual customers to design their own products by choosing from a menu of attributes, components, prices and delivery options. The Intelligent Decision-making Technologies (IDT) domain is a fast growing area of research that integrates various aspects of computer science and information systems. This includes intelligent systems, intelligent technology, intelligent agents, artificial intelligence, fuzzy logic, neural networks, machine learning, knowledge discovery, computational intelligence, data science, big data analytics, inference engines, recommender systems or engines, and a variety of related disciplines. Innovative applications that emerge using IDT often have a significant impact on decision-making processes in government, industry, business, and academia in general. This is particularly pronounced in finance, accounting, healthcare, computer networks, real-time safety monitoring and crisis response systems. Similarly, IDT is commonly used in military decision-making systems, security, marketing, stock market prediction, and robotics. Even though lots of research studies have been conducted on Decision Support Systems, a systematic analysis on the subject is still missing. Because of this necessity, this paper has been prepared to search recent articles about the DSS. The literature has been deeply reviewed and by classifying previous studies according to their preferences, taxonomy for DSS has been prepared. With the aid of the taxonomic review and the recent developments over the subject, this study aims to analyze the future trends in decision support systems.

Keywords: decision support systems, intelligent decision-making, systematic analysis, taxonomic review

Procedia PDF Downloads 279
21430 RAPDAC: Role Centric Attribute Based Policy Driven Access Control Model

Authors: Jamil Ahmed

Abstract:

Access control models aim to decide whether a user should be denied or granted access to the user‟s requested activity. Various access control models have been established and proposed. The most prominent of these models include role-based, attribute-based, policy based access control models as well as role-centric attribute based access control model. In this paper, a novel access control model is presented called “Role centric Attribute based Policy Driven Access Control (RAPDAC) model”. RAPDAC incorporates the concept of “policy” in the “role centric attribute based access control model”. It leverages the concept of "policy‟ by precisely combining the evaluation of conditions, attributes, permissions and roles in order to allow authorization access. This approach allows capturing the "access control policy‟ of a real time application in a well defined manner. RAPDAC model allows making access decision at much finer granularity as illustrated by the case study of a real time library information system.

Keywords: authorization, access control model, role based access control, attribute based access control

Procedia PDF Downloads 159
21429 A Multi-Criteria Decision Making (MCDM) Approach for Assessing the Sustainability Index of Building Façades

Authors: Golshid Gilani, Albert De La Fuente, Ana Blanco

Abstract:

Sustainability assessment of new and existing buildings has generated a growing interest due to the evident environmental, social and economic impacts during their construction and service life. Façades, as one of the most important exterior elements of a building, may contribute to the building sustainability by reducing the amount of energy consumption and providing thermal comfort for the inhabitants, thus minimizing the environmental impact on both the building and on the environment. Various methods have been used for the sustainability assessment of buildings due to the importance of this issue. However, most of the existing methods mainly concentrate on environmental and economic aspects, disregarding the third pillar of sustainability, which is the social aspect. Besides, there is a little focus on comprehensive sustainability assessment of facades, as an important element of a building. This confirms the need of developing methods for assessing the sustainable performance of building façades as an important step in achieving building sustainability. In this respect, this paper aims at presenting a model for assessing the global sustainability of façade systems. for that purpose, the Integrated Value Model for Sustainable Assessment (MIVES), a Multi-Criteria Decision Making model that integrates the main sustainability requirements (economic, environmental and social) and includes the concept of value functions, used as an assessment tool.

Keywords: façade, MCDM, MIVES, sustainability

Procedia PDF Downloads 345
21428 Management Information System to Help Managers for Providing Decision Making in an Organization

Authors: Ajayi Oluwasola Felix

Abstract:

Management information system (MIS) provides information for the managerial activities in an organization. The main purpose of this research is, MIS provides accurate and timely information necessary to facilitate the decision-making process and enable the organizations planning control and operational functions to be carried out effectively. Management information system (MIS) is basically concerned with processing data into information and is then communicated to the various departments in an organization for appropriate decision-making. MIS is a subset of the overall planning and control activities covering the application of humans technologies, and procedures of the organization. The information system is the mechanism to ensure that information is available to the managers in the form they want it and when they need it.

Keywords: Management Information Systems (MIS), information technology, decision-making, MIS in Organizations

Procedia PDF Downloads 556
21427 Automated Vehicle Traffic Control Tower: A Solution to Support the Next Level Automation

Authors: Xiaoyun Zhao, Rami Darwish, Anna Pernestål

Abstract:

Automated vehicles (AVs) have the potential to enhance road capacity, improving road safety and traffic efficiency. Research and development on AVs have been going on for many years. However, when the complicated traffic rules and real situations interacted, AVs fail to make decisions on contradicting situations, and are not able to have control in all conditions due to highly dynamic driving scenarios. This limits AVs’ usage and restricts the full potential benefits that they can bring. Furthermore, regulations, infrastructure development, and public acceptance cannot keep up at the same pace as technology breakthroughs. Facing these challenges, this paper proposes automated vehicle traffic control tower (AVTCT) acting as a safe, efficient and integrated solution for AV control. It introduces a concept of AVTCT for control, management, decision-making, communication and interaction with various aspects in transportation. With the prototype demonstrations and simulations, AVTCT has the potential to overcome the control challenges with AVs and can facilitate AV reaching their full potential. Possible functionalities, benefits as well as challenges of AVTCT are discussed, which set the foundation for the conceptual model, simulation and real application of AVTCT.

Keywords: automated vehicle, connectivity and automation, intelligent transport system, traffic control, traffic safety

Procedia PDF Downloads 138
21426 Business Intelligence Proposal to Improve Decision Making in Companies Using Google Cloud Platform and Microsoft Power BI

Authors: Joel Vilca Tarazona, Igor Aguilar-Alonso

Abstract:

The problem of this research related to business intelligence is the lack of a tool that supports automated and efficient financial analysis for decision-making and allows an evaluation of the financial statements, which is why the availability of the information is difficult. Relevant information to managers and users as an instrument in decision making financial, and administrative. For them, a business intelligence solution is proposed that will reduce information access time, personnel costs, and process automation, proposing a 4-layer architecture based on what was reviewed by the research methodology.

Keywords: decision making, business intelligence, Google Cloud, Microsoft Power BI

Procedia PDF Downloads 99
21425 Pediatric Emergency Dental Visits at King Abdulaziz University Dental Hospital during the COVID-19 Lockdown: A Retrospective Study

Authors: Sara Alhabli, Eman Elashiry, Osama Felemban, Abdullah Almushayt, Faisal Dardeer, Ahmed Mohammad, Fajr Orri, Nada Bamashmous

Abstract:

Background: In December of 2019, the coronavirus (SARS-CoV-2) first appeared and quickly spread to become a worldwide pandemic. This study aimed to evaluate the prevalence and types of pediatric dental emergencies during the COVID-19 lockdown in Jeddah, Saudi Arabia, at the University Dental Hospital (UDH) of King Abdulaziz University (KAU) and identified the management provided for these dental emergency visits. Materials and Methods: Data collection was done retrospectively from electronic dental records for children aged 0-18 that attended the UDH emergency clinic during the period from March 1st, 2020, to September 30th, 2020. An electronic form formulated specifically for this study was used to collect the required data from electronic patient records, including demographic data, emergency classification, management, and referrals. Results: A total of 3146 patients were seen at the emergency clinics during this period, of which 661 were children (21%). Types of emergency conditions included 0.8% emergency cases, 34% urgent, and 65.2% non-urgent conditions. Severe dental pain (73.1%) and abscesses (20%) were the most common urgent dental conditions. Most non-urgent conditions presented for initial or periodic visits, recalls, or routine radiographs (74%). Treatments rarely involved restorations, with 8% among urgent conditions and 5.4% among non-urgent conditions. Antibiotics were only prescribed to 6.9% of urgent conditions. Conclusions: The largest group of children presenting at the emergency dental clinics were found to be children with non-urgent conditions. Tele dentistry can be a solution to avoid large numbers of non-urgent patients presenting to emergency clinics. Additionally, dental care for non-urgent conditions during the pandemic should focus more on procedures with less aerosol generation.

Keywords: COVID-19 pandemic, dental emergencies, oral health, pediatric dentistry, children

Procedia PDF Downloads 97
21424 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: recurrent neural network, players lineup, basketball data, decision making model

Procedia PDF Downloads 133
21423 A System Dynamics Approach to Exploring Personality Traits in Young Children

Authors: Misagh Faezipour

Abstract:

System dynamics is a systems engineering approach that can help address the complex challenges in different systems. Little is known about how the brain represents people to predict behavior. This work is based on how the brain simulates different personal behavior and responds to them in the case of young children ages one to five. As we know, children’s minds/brains are just as clean as a crystal, and throughout time, in their surroundings, families, and education center, they grow to develop and have different kinds of behavior towards the world and the society they live in. Hence, this work aims to identify how young children respond to various personality behavior and observes their reactions towards them from a system dynamics perspective. We will be exploring the Big Five personality traits in young children. A causal model is developed in support of the system dynamics approach. These models graphically present the factors and factor relationships that contribute to the big five personality traits and provide a better understanding of the entire behavior model. A simulator will be developed that includes a set of causal model factors and factor relationships. The simulator models the behavior of different factors related to personality traits and their impacts and can help make more informed decisions in a risk-free environment.

Keywords: personality traits, systems engineering, system dynamics, causal model, behavior model

Procedia PDF Downloads 96
21422 The Quotation-Based Algorithm for Distributed Decision Making

Authors: Gennady P. Ginkul, Sergey Yu. Soloviov

Abstract:

The article proposes to use so-called "quotation-based algorithm" for simulation of decision making process in distributed expert systems and multi-agent systems. The idea was adopted from the techniques for group decision-making. It is based on the assumption that one expert system to perform its logical inference may use rules from another expert system. The application of the algorithm was demonstrated on the example in which the consolidated decision is the decision that requires minimal quotation.

Keywords: backward chaining inference, distributed expert systems, group decision making, multi-agent systems

Procedia PDF Downloads 375
21421 Key Principles and Importance of Applied Geomorphological Maps for Engineering Structure Placement

Authors: Sahar Maleki, Reza Shahbazi, Nayere Sadat Bayat Ghiasi

Abstract:

Applied geomorphological maps are crucial tools in engineering, particularly for the placement of structures. These maps provide precise information about the terrain, including landforms, soil types, and geological features, which are essential for making informed decisions about construction sites. The importance of these maps is evident in risk assessment, as they help identify potential hazards such as landslides, erosion, and flooding, enabling better risk management. Additionally, these maps assist in selecting the most suitable locations for engineering projects. Cost efficiency is another significant benefit, as proper site selection and risk assessment can lead to substantial cost savings by avoiding unsuitable areas and minimizing the need for extensive ground modifications. Ensuring the maps are accurate and up-to-date is crucial for reliable decision-making. Detailed information about various geomorphological features is necessary to provide a comprehensive overview. Integrating geomorphological data with other environmental and engineering data to create a holistic view of the site is one of the most fundamental steps in engineering. In summary, the preparation of applied geomorphological maps is a vital step in the planning and execution of engineering projects, ensuring safety, efficiency, and sustainability. In the Geological Survey of Iran, the preparation of these applied maps has enabled the identification and recognition of areas prone to geological hazards such as landslides, subsidence, earthquakes, and more. Additionally, areas with problematic soils, potential groundwater zones, and safe construction sites are identified and made available to the public.

Keywords: geomorphological maps, geohazards, risk assessment, decision-making

Procedia PDF Downloads 23
21420 Flexible Communication Platform for Crisis Management

Authors: Jiří Barta, Tomáš Ludík, Jiří Urbánek

Abstract:

The topics of disaster and emergency management are highly debated among experts. Fast communication will help to deal with emergencies. Problem is with the network connection and data exchange. The paper suggests a solution, which allows possibilities and perspectives of new flexible communication platform to the protection of communication systems for crisis management. This platform is used for everyday communication and communication in crisis situations too.

Keywords: crisis management, information systems, interoperability, crisis communication, security environment, communication platform

Procedia PDF Downloads 475
21419 Employing Operations Research at Universities to Build Management Systems

Authors: Abdallah A. Hlayel

Abstract:

Operations research science (OR) deals with good success in developing and applying scientific methods for problem solving and decision-making. However, by using OR techniques, we can enhance the use of computer decision support systems to achieve optimal management for institutions. OR applies comprehensive analysis including all factors that affect on it and builds mathematical modeling to solve business or organizational problems. In addition, it improves decision-making and uses available resources efficiently. The adoption of OR by universities would definitely contributes to the development and enhancement of the performance of OR techniques. This paper provides an understanding of the structures, approaches and models of OR in problem solving and decision-making.

Keywords: best candidates' method, decision making, decision support system, operations research

Procedia PDF Downloads 445
21418 A Solution for Production Facility Assignment: An Automotive Subcontract Case

Authors: Cihan Çetinkaya, Eren Özceylan, Kerem Elibal

Abstract:

This paper presents a solution method for selection of production facility. The motivation has been taken from a real life case, an automotive subcontractor which has two production facilities at different cities and parts. The problem is to decide which part(s) should be produced at which facility. To the best of our knowledge, until this study, there was no scientific approach about this problem at the firm and decisions were being given intuitively. In this study, some logistic cost parameters have been defined and with these parameters a mathematical model has been constructed. Defined and collected cost parameters are handling cost of parts, shipment cost of parts and shipment cost of welding fixtures. Constructed multi-objective mathematical model aims to minimize these costs while aims to balance the workload between two locations. Results showed that defined model can give optimum solutions in reasonable computing times. Also, this result gave encouragement to develop the model with addition of new logistic cost parameters.

Keywords: automotive subcontract, facility assignment, logistic costs, multi-objective models

Procedia PDF Downloads 366
21417 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.

Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent

Procedia PDF Downloads 178
21416 Proposing an Improved Managerial-Based Business Process Framework

Authors: Alireza Nikravanshallmani, Jamshid Dehmeshki, Mojtaba Ahmadi

Abstract:

Modeling of business processes, based on BPMN (Business Process Modeling Notation), helps analysts and managers to understand business processes, and, identify their shortages. These models provide a context to make rational decision of organizing business processes activities in an understandable manner. The purpose of this paper is to provide a framework for better understanding of business processes and their problems by reducing the cognitive load of displayed information for their audience at different managerial levels while keeping the essential information which are needed by them. For this reason, we integrate business process diagrams across the different managerial levels to develop a framework to improve the performance of business process management (BPM) projects. The proposed framework is entitled ‘Business process improvement framework based on managerial levels (BPIML)’. This framework, determine a certain type of business process diagrams (BPD) based on BPMN with respect to the objectives and tasks of the various managerial levels of organizations and their roles in BPM projects. This framework will make us able to provide the necessary support for making decisions about business processes. The framework is evaluated with a case study in a real business process improvement project, to demonstrate its superiority over the conventional method. A questionnaire consisted of 10 questions using Likert scale was designed and given to the participants (managers of Bank Refah Kargaran three managerial levels). By examining the results of the questionnaire, it can be said that the proposed framework provide support for correct and timely decisions by increasing the clarity and transparency of the business processes which led to success in BPM projects.

Keywords: business process management (BPM), business process modeling, business process reengineering (BPR), business process optimizing, BPMN

Procedia PDF Downloads 452
21415 Decision Making System for Clinical Datasets

Authors: P. Bharathiraja

Abstract:

Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.

Keywords: decision making, data mining, normalization, fuzzy rule, classification

Procedia PDF Downloads 517
21414 Decision Making, Reward Processing and Response Selection

Authors: Benmansour Nassima, Benmansour Souheyla

Abstract:

The appropriate integration of reward processing and decision making provided by the environment is vital for behavioural success and individuals’ well being in everyday life. Functional neurological investigation has already provided an inclusive image on affective and emotional (motivational) processing in the healthy human brain and has recently focused its interest also on the assessment of brain function in anxious and depressed individuals. This article offers an overview on the theoretical approaches that relate emotion and decision-making, and spotlights investigation with anxious or depressed individuals to reveal how emotions can interfere with decision-making. This research aims at incorporating the emotional structure based on response and stimulation with a Bayesian approach to decision-making in terms of probability and value processing. It seeks to show how studies of individuals with emotional dysfunctions bear out that alterations of decision-making can be considered in terms of altered probability and value subtraction. The utmost objective is to critically determine if the probabilistic representation of belief affords could be a critical approach to scrutinize alterations in probability and value representation in subjective with anxiety and depression, and draw round the general implications of this approach.

Keywords: decision-making, motivation, alteration, reward processing, response selection

Procedia PDF Downloads 477
21413 Cascade Screening for Beta-Thalassemia in Pakistan: Relatives’ Experiences of a Decision Support Intervention in Routine Practice

Authors: Shenaz Ahmed, Hussain Jafri, Muhammed Faran, Wajeeha Naseer Ahmed, Yasmin Rashid, Yasmin Ehsan, Shabnam Bashir, Mushtaq Ahmed

Abstract:

Low uptake of cascade screening for βeta-Thalassaemia Major (β-TM) in the ‘Punjab Thalassaemia Prevention Project’ (PTPP) in Pakistan led to the development of a ‘decision support intervention for relatives’ (DeSIRe). This paper presents the experiences of relatives of children with β-TM of the DeSIRe following its use by PTPP field officers in routine clinical practice. Fifty-four semi-structured qualitative interviews were conducted (April to June 2021) with relatives in seven cities in the Punjab province (Lahore, Sheikhupura, Nankana Sahab, Kasur, Gujranwala, Multan, and Faisalabad). Thematic analysis shows that participants were satisfied with the content of the DeSIRe and its delivery by the field officers in a family meeting. They understood the main purpose of the DeSIRe was to improve their knowledge of β-TM and its inheritance, to enable them to make decisions about thalassemia carrier testing, particularly before marriage. While participants raised concerns about the stigma of testing positive, they believed the DeSIRe was an appropriate intervention, which supported relatives to make informed decisions. Our findings show the DeSIRe is appropriate for use by healthcare professionals in routine practice in a low-middle income country and has the potential to facilitate shared decision-making about cascade screening for thalassemia. Further research is needed to prove the efficacy of the DeSIRe.

Keywords: thalassemia, Pakistan, cascade screening, decision support

Procedia PDF Downloads 240
21412 Agroecological and Socioeconomic Determinants of Conserving Diversity On-Farm: The Case of Wheat Genetic Resources in Ethiopia

Authors: Bedilu Tafesse

Abstract:

Conservation of crop genetic resources presents a challenge of identifying specific determinants driving maintenance of diversity at farm and agroecosystems. The objectives of this study were to identify socioeconomic, market and agroecological determinants of farmers’ maintenance of wheat diversity at the household level and derive implications for policies in designing on-farm conservation programs. We assess wheat diversity at farm level using household survey data. A household decision making model is conceptualized using microeconomic theory to assess and identify factors influencing on-farm rice diversity. The model is then tested econometrically by using various factors affecting farmers’ variety choice and diversity decisions. The findings show that household-specific socioeconomic, agroecological and market factors are important in determining on-farm wheat diversity. The significant variables in explaining richness and evenness of wheat diversity include distance to the nearest market, subsistence ratio, modern variety sold, land types and adult labour working in agriculture. The statistical signs of the factors determining wheat diversity are consistent in explaining the richness, dominance and evenness among rice varieties. Finally, the study implies that the cost-effective means of promoting and sustaining on-farm conservation programmes is to target them in market isolated geographic locations of high crop diversity where farm households have more heterogeneity of agroecological conditions and more active family adult labour working on-farm.

Keywords: diversity indices, dominance, evenness, on-farm conservation, wheat diversity, richness

Procedia PDF Downloads 308
21411 Biases in Macroprudential Supervision and Their Legal Implications

Authors: Anat Keller

Abstract:

Given that macro-prudential supervision is a relatively new policy area and its empirical and analytical research are still in their infancy, its theoretical foundations are also lagging behind. This paper contributes to the developing discussion on effective legal and institutional macroprudential supervision frameworks. In the first part of the paper, it is argued that effectiveness as a key benchmark poses some challenges in the context of macroprudential supervision such as the difficulty in proving causality between supervisory actions and the achievement of the supervisor’s mission. The paper suggests that effectiveness in the macroprudential context should, therefore, be assessed at the supervisory decision-making process (to be differentiated from the supervisory outcomes). The second part of the essay examines whether insights from behavioural economics can point to biases in the macroprudential decision-making process. These biases include, inter alia, preference bias, groupthink bias and inaction bias. It is argued that these biases are exacerbated in the multilateral setting of the macroprudential supervision framework in the EU. The paper then examines how legal and institutional frameworks should be designed to acknowledge and perhaps contain these identified biases. The paper suggests that the effectiveness of macroprudential policy will largely depend on the existence of clear and robust transparency and accountability arrangements. Accountability arrangements can be used as a vehicle for identifying and addressing potential biases in the macro-prudential framework, in particular, inaction bias. Inclusiveness of the public in the supervisory process in the form of transparency and awareness of the logic behind policy decisions may assist in minimising their potential unpopularity thus promoting their effectiveness. Furthermore, a governance structure which facilitates coordination of the macroprudential supervisor with other policymakers and incorporates outside perspectives and opinions could ‘break-down’ groupthink bias as well as inaction bias.

Keywords: behavioural economics and biases, effectiveness of macroprudential supervision, legal and institutional macroprudential frameworks, macroprudential decision-making process

Procedia PDF Downloads 280
21410 A Pedagogical Case Study on Consumer Decision Making Models: A Selection of Smart Phone Apps

Authors: Yong Bum Shin

Abstract:

This case focuses on Weighted additive difference, Conjunctive, Disjunctive, and Elimination by aspects methodologies in consumer decision-making models and the Simple additive weighting (SAW) approach in the multi-criteria decision-making (MCDM) area. Most decision-making models illustrate that the rank reversal phenomenon is unpreventable. This paper presents that rank reversal occurs in popular managerial methods such as Weighted Additive Difference (WAD), Conjunctive Method, Disjunctive Method, Elimination by Aspects (EBA) and MCDM methods as well as such as the Simple Additive Weighting (SAW) and finally Unified Commensurate Multiple (UCM) models which successfully addresses these rank reversal problems in most popular MCDM methods in decision-making area.

Keywords: multiple criteria decision making, rank inconsistency, unified commensurate multiple, analytic hierarchy process

Procedia PDF Downloads 81