Search results for: erodible fraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 969

Search results for: erodible fraction

579 Effect of CuO, Al₂O₃ and ZnO Nanoparticles on the Response Time for Natural Convection

Authors: Mefteh Bouhalleb

Abstract:

With the recent progress in nanotechnology, nanofluids have excellent potentiality in many modern engineering processes, particularly for solar systems such as concentrated solar power plants (CSP). In this context, a numerical simulation is performed to investigate laminar natural convection nanofluids in an inclined rectangular enclosure. Mass conservation, momentum, and energy equations are numerically solved by the finite volume element method using the SIMPLER algorithm for pressure-velocity coupling. In this work, we tested the acting factors on the system response time, such as the particle volume fraction of nanoparticles, particle material, particle size, an inclination angle of enclosure and Rayleigh number. The results show that the diameter of solid particles and Rayleigh number plays an important role in the system response time. The orientation angle of the cavity affects the system response time. A phenomenon of hysteresis appears when the system does not return to its initial state.

Keywords: nanofluid, nanoparticles, heat transfer, time response

Procedia PDF Downloads 72
578 Evaluation of Critical State Behavior of Granular Soil in Confined Compression Tests

Authors: Rabia Chaudhry, Andrew Dawson

Abstract:

Identification of steady/critical state of coarse granular soil is challenging at conventional pressures. This study examines the drained and undrained triaxial tests for large strains on loose to dense, uniformly graded, Leighton Buzzard Fraction A sand. The triaxial tests are conducted under controlled test conditions. The comparison of soil behavior on shear strength characteristics at different effective stresses has been studied at the medium to large strains levels and the uniqueness of the critical state was discussed. The test results showed that there were two steady/critical state lines for drained and undrained conditions at confining pressures less than 1000 kPa. A critical state friction angle is not constant and the overall scatter in the steady/critical state line for the tested sand is ±0.01 in terms of void ratio at stress levels less than 1000 kPa.

Keywords: critical state, stress strain behavior, fabric/structure, triaxial tests

Procedia PDF Downloads 394
577 Numerical Analysis of the Melting of Nano-Enhanced Phase Change Material in a Rectangular Latent Heat Storage Unit

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

Melting of Paraffin Wax (P116) dispersed with Al2O3 nanoparticles in a rectangular latent heat storage unit (LHSU) is numerically investigated. The storage unit consists of a number of vertical and identical plates of nano-enhanced phase change material (NEPCM) separated by rectangular channels in which heat transfer fluid flows (HTF: Water). A two dimensional mathematical model is considered to investigate numerically the heat and flow characteristics of the LHSU. The melting problem was formulated using the enthalpy porosity method. The finite volume approach was used for solving equations. The effects of nanoparticles’ volumetric fraction and the Reynolds number on the thermal performance of the storage unit were investigated.

Keywords: nano-enhanced phase change material (NEPCM), phase change material (PCM), nanoparticles, latent heat storage unit (LHSU), melting.

Procedia PDF Downloads 384
576 Influence of Nanoparticles Phenomena on the Peristaltic Flow of Pseudoplastic Fluid in an Inclined Asymmetric Channel with Different Wave Forms

Authors: Safia Akram

Abstract:

The influence of nanofluid with different waveforms in the presence of inclined asymmetric channel on peristaltic transport of a pseudoplastic fluid is examined. The governing equations for two-dimensional and two directional flows of a pseudoplastic fluid along with nanofluid are modeled and then simplified under the assumptions of long wavelength and low Reynolds number approximation. The exact solutions for temperature and nanoparticle volume fraction are calculated. Series solution of the stream function and pressure gradient are carried out using perturbation technique. The flow quantities have been examined for various physical parameters of interest. It was found, that the magnitude value of the velocity profile decreases with an increase in volume flow rate (Q) and relaxation times (ζ) and increases in sinusoidal, multisinusoidal, trapezoidal and triangular waves. It was also observed that the size of the trapping bolus decreases with the drop of the width of the channel ‘d’ and increases with a rise of relaxation times ζ.

Keywords: nanofluid particles, peristaltic flow, pseudoplastic fluid, different waveforms, inclined asymmetric channel

Procedia PDF Downloads 205
575 Analysis of the Performance of a Solar Water Heating System with Flat Collector

Authors: Georgi Vendramin, Aurea Lúcia, Yamamoto, Carlos Itsuo, Camargo Nogueira, Carlos Eduardo, Lenz, Anderson Miguel, Souza Melegari, Samuel N.

Abstract:

The thermal performance of a solar water heating with 1.00 m2 flat plate collectors in Cascavel-PR, is which presented in this article, paper presents the solution to leverage the marketing of solar heating systems through detailed constituent materials of the solar collector studies, these abundant materials in construction, such as expanded polyethylene, PVC, aluminum and glass tubes, mixing them with new materials to minimize loss of efficiency while decreasing its cost. The system was tested during months and the collector obtained maximum recorded temperature of outlet fluid of 55 °C, while the maximum temperature of the water at the bottom of the hot water tank was 35 °C. The average daily energy collected was 19 6 MJ/d; the energy supplied by the solar plate was 16.2 MJ/d; the loss in the feed pipe was 3.2 MJ/d; the solar fraction was 32.2%, the efficiency of the collector was 45.6% and the efficiency of the system was 37.8%.

Keywords: recycling materials, energy efficiency, solar collector, solar water heating system

Procedia PDF Downloads 569
574 Comprehensive Ultrasonography During Low-flow Bypass in Patients with Symptomatic Internal Carotid Artery (ICA) Occlusion

Authors: G. K. Guseynova, V. V. Krylov, L. T. Khamidova, N. A. Polunina, V. A. Lukyanchikov

Abstract:

The report presents complex ultrasound diagnostics in patients with symptomatic steno-occlusive lesions of extra- and intracranial branches of brachiocephalic arteries (BCA). The tasks and possibilities of ultrasound diagnostics at different stages of treatment of patients with symptomatic occlusion of internal carotid artery (ICA) are covered in detail; qualitative and quantitative characteristics of blood flow; parameters of the wall and lumen of the main arteries of the head; methods of ultrasound examination of indirect assessment of the functional status are presented. Special attention is paid to the description of indicators that are predictors of the consistency of formed extra-intracranial low-flow shunts, examples of functioning and failed anastomoses are analyzed.

Keywords: CBF, cerebral blood flow; CTA, external carotid artery; ICA, internal carotid artery; MCA, middle cerebral artery; MRA, magnetic resonance angiography; OEF, oxygen extraction fraction; TIA, transient ischaemic attack, ultrasound, low-flow bypass, anastomoses

Procedia PDF Downloads 6
573 Production Optimization through Ejector Installation at ESA Platform Offshore North West Java Field

Authors: Arii Bowo Yudhaprasetya, Ario Guritno, Agus Setiawan, Recky Tehupuring, Cosmas Supriatna

Abstract:

The offshore facilities condition of Pertamina Hulu Energi Offshore North West Java (PHE ONWJ) varies greatly from place to place, depending on the characteristics of the presently installed facilities. In some locations, such as ESA platform, gas trap is mainly caused by the occurrence of flash gas phenomenon which is known as mechanical-physical separation process of multiphase flow. Consequently, the presence of gas trap at main oil line would accumulate on certain areas result in a reduced oil stream throughout the pipeline. Any presence of discrete gaseous along continuous oil flow represents a unique flow condition under certain specific volume fraction and velocity field. From gas lift source, a benefit line is used as a motive flow for ejector which is designed to generate a syphon effect to minimize the gas trap phenomenon. Therefore, the ejector’s exhaust stream will flow to the designated point without interfering other systems.

Keywords: diffuser, ejector, flow, fluent

Procedia PDF Downloads 414
572 Numerical Study of Natural Convection Heat Transfer Performance in an Inclined Cavity: Nanofluid and Random Temperature

Authors: Hicham Salhi, Mohamed Si-Ameur, Nadjib Chafai

Abstract:

Natural convection of a nanofluid consisting of water and nanoparticles (Ag or TiO2) in an inclined enclosure cavity, has been studied numerically, heated by a (random temperature, based on the random function). The governing equations are solved numerically using the finite-volume. Results are presented in the form of streamlines, isotherms, and average Nusselt number. In addition, a parametric study is carried out to examine explicitly the volume fraction effects of nanoparticles (Ψ= 0.1, 0.2), the Rayleigh number (Ra=103, 104, 105, 106),the inclination angle of the cavity( égale à 0°, 30°, 45°, 90°, 135°, 180°), types of temperature (constant ,random), types of (NF) (Ag andTiO2). The results reveal that (NPs) addition remarkably enhances heat transfer in the cavity especially for (Ψ= 0.2). Besides, the effect of inclination angle and type of temperature is more pronounced at higher Rayleigh number.

Keywords: nanofluid, natural convection, inclined cavity, random temperature, finite-volume

Procedia PDF Downloads 262
571 Effect of Fuel Lean Reburning Process on NOx Reduction and CO Emission

Authors: Changyeop Lee, Sewon Kim

Abstract:

Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the effect of fuel lean reburning on NOx/CO reduction in LNG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LNG gas as the reburn fuel as well as the main fuel. The effects of reburn fuel fraction and injection manner of the reburn fuel were studied when the fuel lean reburning system was applied. The paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. At steady state, temperature distribution and emission formation in the furnace have been measured and compared. This paper makes clear that in order to decrease both NOx and CO concentrations in the exhaust when the pulsated fuel lean reburning system was adapted, it is important that the control of some factors such as frequency and duty ratio. Also it shows the fuel lean reburning is also effective method to reduce NOx as much as reburning.

Keywords: fuel lean reburn, NOx, CO, LNG flame

Procedia PDF Downloads 403
570 Knowledge and Attitude Towards Strabismus Among Adult Residents in Woreta Town, Northwest Ethiopia: A Community-Based Study

Authors: Henok Biruk Alemayehu, Kalkidan Berhane Tsegaye, Fozia Seid Ali, Nebiyat Feleke Adimassu, Getasew Alemu Mersha

Abstract:

Background: Strabismus is a visual disorder where the eyes are misaligned and point in different directions. Untreated strabismus can lead to amblyopia, loss of binocular vision, and social stigma due to its appearance. Since it is assumed that knowledge is pertinent for early screening and prevention of strabismus, the main objective of this study was to assess knowledge and attitudes toward strabismus in Woreta town, Northwest Ethiopia. Providing data in this area is important for planning health policies. Methods: A community-based cross-sectional study was done in Woreta town from April–May 2020. The sample size was determined using a single population proportion formula by taking a 50% proportion of good knowledge, 95% confidence level, 5% margin of errors, and 10% non- response rate. Accordingly, the final computed sample size was 424. All four kebeles were included in the study. There were 42,595 people in total, with 39,684 adults and 9229 house holds. A sample fraction ’’k’’ was obtained by dividing the number of the household by the calculated sample size of 424. Systematic random sampling with proportional allocation was used to select the participating households with a sampling fraction (K) of 21 i.e. each household was approached in every 21 households included in the study. One individual was selected ran- domly from each household with more than one adult, using the lottery method to obtain a final sample size. The data was collected through a face-to-face interview with a pretested and semi-structured questionnaire which was translated from English to Amharic and back to English to maintain its consistency. Data were entered using epi-data version 3.1, then processed and analyzed via SPSS version- 20. Descriptive and analytical statistics were employed to summarize the data. A p-value of less than 0.05 was used to declare statistical significance. Result: A total of 401 individuals aged over 18 years participated, with a response rate of 94.5%. Of those who responded, 56.6% were males. Of all the participants, 36.9% were illiterate. The proportion of people with poor knowledge of strabismus was 45.1%. It was shown that 53.9% of the respondents had a favorable attitude. Older age, higher educational level, having a history of eye examination, and a having a family history of strabismus were significantly associated with good knowledge of strabismus. A higher educational level, older age, and hearing about strabismus were significantly associated with a favorable attitude toward strabismus. Conclusion and recommendation: The proportion of good knowledge and favorable attitude towards strabismus were lower than previously reported in Gondar City, Northwest Ethiopia. There is a need to provide health education and promotion campaigns on strabismus to the community: what strabismus is, its’ possible treatments and the need to bring children to the eye care center for early diagnosis and treatment. it advocate for prospective research endeavors to employ qualitative study design.Additionally, it suggest the exploration of studies that investigate causal-effect relationship.

Keywords: strabismus, knowledge, attitude, Woreta

Procedia PDF Downloads 41
569 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method

Authors: Balwinder Singh

Abstract:

The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.

Keywords: reinforcement, silicon carbide, fly ash, red mud

Procedia PDF Downloads 135
568 Effect of Carbon Nanotube Reinforcement in Polymer Composite Plates under Static Loading

Authors: S. Madhu, V. V. Subba Rao

Abstract:

In the implementation of carbon nanotube reinforced polymer matrix composites in structural applications, deflection and stress analysis are important considerations. In the present study, a multi scale analysis of deflection and stress analysis of carbon nanotube (CNT) reinforced polymer composite plates is presented. A micromechanics model based on the Mori-Tanaka method is developed by introducing straight CNTs aligned in one direction. The effect of volume fraction and diameter of CNTs on plate deflection and the stresses are investigated using Classical Laminate Plate Theory (CLPT). The study is primarily conducted with the intention of observing the suitability of CNT reinforced polymer composite plates under static loading for structural applications.

Keywords: carbon nanotube, micromechanics, composite plate, multi-scale analysis, classical laminate plate theory

Procedia PDF Downloads 354
567 Study on Constitutive Model of Particle Filling Material Considering Volume Expansion

Authors: Xu Jinsheng, Tong Xin, Zheng Jian, Zhou Changsheng

Abstract:

The NEPE (nitrate ester plasticized polyether) propellant is a kind of particle filling material with relatively high filling fraction. The experimental results show that the microcracks, microvoids and dewetting can cause the stress softening of the material. In this paper, a series of mechanical testing in inclusion with CCD technique were conducted to analyze the evolution of internal defects of propellant. The volume expansion function of the particle filling material was established by measuring of longitudinal and transverse strain with optical deformation measurement system. By analyzing the defects and internal damages of the material, a visco-hyperelastic constitutive model based on free energy theory was proposed incorporating damage function. The proposed constitutive model could accurately predict the mechanical properties of uniaxial tensile tests and tensile-relaxation tests.

Keywords: dewetting, constitutive model, uniaxial tensile tests, visco-hyperelastic, nonlinear

Procedia PDF Downloads 269
566 Wear and Fraction Behavior of Porcelain Coated with Polyurethane/SiO2 Coating Layer

Authors: Ching Yern Chee

Abstract:

Various loading of nano silica is added into polyurethane (PU) and then coated on porcelain substrate. The wear and friction properties of the porcelain substrates coated with polyurethane/nano silica nano composite coatings were investigated using the reciprocating wear testing machine. The friction and wear test of polyurethane/nano silica coated porcelain substrate was studied at different sliding speed and applied load. It was found that the optimum composition of nano silica is 3 wt% which gives the lowest friction coefficient and wear rate in all applied load ranges and sliding speeds. For 3 wt% nano silica filled PU coated porcelain substrate, the increment of sliding speed caused higher wear rates but lower frictions coefficient. Besides, the friction coefficient of nano silica filled PU coated porcelain substrate decreased but the wear rate increased with the applied load.

Keywords: porcelain, nanocomposite coating, morphology, friction, wear behavior

Procedia PDF Downloads 505
565 Preparation and Properties of PP/EPDM Reinforced with Graphene

Authors: M. Haghnegahdar, G. Naderi, M. H. R. Ghoreishy

Abstract:

Polypropylene(PP)/Ethylene Propylene Diene Monomer (EPDM) samples (80/20) containing 0, 0.5, 1, 1.5, 2, 2.5, and 3 (expressed in mass fraction) graphene were prepared using melt compounding method to investigate microstructure, mechanical properties, and thermal stability as well as electrical resistance of samples. X-Ray diffraction data confirmed that graphene platelets are well dispersed in PP/EPDM. Mechanical properties such as tensile strength, impact strength and hardness demonstrated increasing trend by graphene loading which exemplifies substantial reinforcing nature of this kind of nano filler and it's good interaction with polymer chains. At the same time it is found that thermo-oxidative degradation of PP/EPDM nanocomposites is noticeably retarded with the increasing of graphene content. Electrical surface resistivity of the nanocomposite was dramatically changed by forming electrical percolation threshold and leads to change electrical behavior from insulator to semiconductor. Furthermore, these results were confirmed by scanning electron microscopy(SEM), dynamic mechanical thermal analysis (DMTA), and transmission electron microscopy (TEM).

Keywords: nanocomposite, graphene, microstructure, mechanical properties

Procedia PDF Downloads 309
564 Large-Scale Electroencephalogram Biometrics through Contrastive Learning

Authors: Mostafa ‘Neo’ Mohsenvand, Mohammad Rasool Izadi, Pattie Maes

Abstract:

EEG-based biometrics (user identification) has been explored on small datasets of no more than 157 subjects. Here we show that the accuracy of modern supervised methods falls rapidly as the number of users increases to a few thousand. Moreover, supervised methods require a large amount of labeled data for training which limits their applications in real-world scenarios where acquiring data for training should not take more than a few minutes. We show that using contrastive learning for pre-training, it is possible to maintain high accuracy on a dataset of 2130 subjects while only using a fraction of labels. We compare 5 different self-supervised tasks for pre-training of the encoder where our proposed method achieves the accuracy of 96.4%, improving the baseline supervised models by 22.75% and the competing self-supervised model by 3.93%. We also study the effects of the length of the signal and the number of channels on the accuracy of the user-identification models. Our results reveal that signals from temporal and frontal channels contain more identifying features compared to other channels.

Keywords: brainprint, contrastive learning, electroencephalo-gram, self-supervised learning, user identification

Procedia PDF Downloads 135
563 Influence of Water Hardness on Column Adsorption of Paracetamol by Biomass of Babassu Coconut Shell

Authors: O. M. Couto Junior, I. Matos, I. M. Fonseca, P. A. Arroyo, E. A. Silva, M. A. S. D. Barros

Abstract:

This study was the adsorption of paracetamol from aqueous solutions on fixed beds of activated carbon from babassy coconut shell. Several operation conditions on the shape of breakthrough curves were investigated and proposed model is successfully validated with the literature data and obtained experimental data. The initial paracetamol concentration increases from 20 to 50 mg.L-1, and the break point time decreases, tb, from 18.00 to 10.50 hours. The fraction of unused bed length, HUNB, at break-through point is obtained in the range of 1.62 to 2.81 for 20 to 50 mg.L-1 of initial paracetamol concentration. The presence of Ca+2 and Mg+2 are responsible for increasing the hardness of the water, affects significantly the adsorption kinetics, and lower removal efficiency by adsorption of paracetamol on activated carbons. The axial dispersion coefficients, DL, was constants for concentrated feed solution, but this parameter has different values for deionized and hardness water. The mass transfer coefficient, Ks, was increasing with concentrated feed solution.

Keywords: paracetamol, adsorption, water hardness, activated carbon.

Procedia PDF Downloads 293
562 Study of the Buckling of Sandwich Beams Consider Stretching Effect

Authors: R. Bennai, H. Ait Atmane, H. Fourne, B. Ayache

Abstract:

In this work, an analytical approach using a refined theory of hyperbolic shear deformation of a beam was developed to study the buckling of graduated sandwiches beams under different boundary conditions. The effects of transverse shear strains and the transverse normal deformation are considered. The constituent materials of the beam are supposed gradually variable depending on the height direction based on a simple power distribution law in terms of the volume fractions of the constituents; the two materials with which we worked are metals and ceramics. The core layer is taken homogeneous and made of an isotropic material; while the banks layers consist of functionally graded materials with a homogeneous fraction compared to the middle layer. In the end, illustrative examples are presented to show the effects of changes in different parameters such as (material graduation, the stretching effect of the thickness, boundary conditions and thickness ratio-length) on the vibration free of an FGM sandwich beams.

Keywords: FGM materials, refined shear deformation theory, stretching effect, buckling

Procedia PDF Downloads 160
561 Improving the Performance of Proton Exchange Membrane Using Fuzzy Logic

Authors: Sadık Ata, Kevser Dincer

Abstract:

In this study, the performance of proton exchange membrane (PEM) fuel cell was experimentally investigated and modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using Yttria-stabilized zirconia (YSZ). Input-output parameters were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6),High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of performance PEM fuel cell.

Keywords: proton exchange membrane (PEM), fuel cell, rule-based mamdani-type fuzzy (RMBTF) modelling, Yttria-stabilized zirconia (YSZ)

Procedia PDF Downloads 218
560 Extraction of the Volatile Oils of Dictyopteris Membranacea by Focused Microwave Assisted Hydrodistillation and Supercritical Carbon Dioxide: Chemical Composition and Kinetic Data

Authors: Mohamed El Hattab

Abstract:

The Supercritical carbon dioxide (SFE) and the focused microwave-assisted hydrodistillation (FMAHD) were employed to isolate the volatile fraction of the brown alga Dictyopteris membranacea from the crude extract. The volatiles fractions obtained were analyzed by GC/MS. The major compounds in this case: dictyopterene A, 6-butylcyclohepta-1,4-diene, Undec-1-en-3-one, Undeca-1,4-dien-3-one, (3-oxoundec-4-enyl) sulphur, tetradecanoic acid, hexadecanoic acid, 3-hexyl-4,5-dithia-cycloheptanone and albicanol (this later is present only in the FMAHD oil) are identified by comparing their mass spectra with those reported on the commercial MS data base and also on our previously work. A kinetic study realized on both extraction processes and followed by an external standard quantification has allowed the study of the mass percent evolution of the major compounds in the two oils, an empirical mathematical modelling was used to describe their kinetic extraction.

Keywords: dictyopteris membranacea, extraction techniques, mathematical modeling, volatile oils

Procedia PDF Downloads 405
559 Characterization of a Pure Diamond-Like Carbon Film Deposited by Nanosecond Pulsed Laser Deposition

Authors: Camilla G. Goncalves, Benedito Christ, Walter Miyakawa, Antonio J. Abdalla

Abstract:

This work aims to investigate the properties and microstructure of diamond-like carbon film deposited by pulsed laser deposition by ablation of a graphite target in a vacuum chamber on a steel substrate. The equipment was mounted to provide one laser beam. The target of high purity graphite and the steel substrate were polished. The mechanical and tribological properties of the film were characterized using Raman spectroscopy, nanoindentation test, scratch test, roughness profile, tribometer, optical microscopy and SEM images. It was concluded that the pulsed laser deposition (PLD) technique associated with the low-pressure chamber and a graphite target provides a good fraction of sp3 bonding, that the process variable as surface polishing and laser parameter have great influence in tribological properties and in adherence tests performance. The optical microscopy images are efficient to identify the metallurgical bond.

Keywords: characterization, DLC, mechanical properties, pulsed laser deposition

Procedia PDF Downloads 133
558 Effect of TEOS Electrospun Nanofiber Modified Resin on Interlaminar Shear Strength of Glass Fiber/Epoxy Composite

Authors: Dattaji K. Shinde, Ajit D. Kelkar

Abstract:

Interlaminar shear strength (ILSS) of fiber reinforced polymer composite is an important property for most of the structural applications. Matrix modification is an effective method used to improve the interlaminar shear strength of composite. In this paper, EPON 862/w epoxy system was modified using Tetraethyl orthosilicate (TEOS) electrospun nanofibers (ENFs) which were produced using electrospinning method. Unmodified and nanofibers modified resins were used to fabricate glass fiber reinforced polymer composite (GFRP) using H-VARTM method. The ILSS of the Glass Fiber Reinforced Polymeric Composites (GFRP) was investigated. The study shows that introduction of TEOS ENFs in the epoxy resin enhanced the ILSS of GFRPby 15% with 0.6% wt. fraction of TEOS ENFs.

Keywords: electrospun nanofibers, H-VARTM, interlaminar shear strength, matrix modification

Procedia PDF Downloads 197
557 Limiting Fracture Stress of Composite Ceramics with Symmetric Triangle Eutectic

Authors: Jian Zheng, Jinfeng Yu, Xinhua Ni

Abstract:

The limiting fracture stress predicting model of composite ceramics with symmetric triangle eutectic was established based on its special microscopic structure. The symmetric triangle eutectic is consisted of matrix, the strong constraint inter-phase and reinforced fiber inclusions which are 120 degrees uniform symmetrical distribution. Considering the conditions of the rupture of the cohesive bond between matrix and fibers in eutectic and the stress concentration effect at the fiber end, the intrinsic fracture stress of eutectic was obtained. Based on the biggest micro-damage strain in eutectic, defining the load function, the macro-damage fracture stress of symmetric triangle eutectic was determined by boundary conditions. Introducing the conception of critical zone, the theoretical limiting fracture stress forecasting model of composite ceramics was got, and the stress was related to the fiber size and fiber volume fraction in eutectic. The calculated results agreed with the experimental results in the literature.

Keywords: symmetric triangle eutectic, composite ceramics, limiting stress, intrinsic fracture stress

Procedia PDF Downloads 234
556 Entropy Generation of Natural Convection Heat Transfer in a Square Cavity Using Al2O3-Water Nanofluid

Authors: M. Alipanah, A. Ranjbar, E. Farnad, F. Alipanah

Abstract:

Entropy generation of an Al2O3-water nanofluid due to heat transfer and fluid friction irreversibility has been investigated in a square cavity subject to different side wall temperatures using a nanofluid for natural convection flow. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number between 104 to 107 and volume fraction between 0 to 0.05. Based on the obtained dimensionless velocity and temperature values, the distributions of local entropy generation, average entropy generation and average Bejan number are determined. The results are compared for a pure fluid and a nanofluid. It is totally found that the heat transfer and entropy generation of the nanofluid is more than the pure fluid and minimum entropy generation and Nusselt number occur in the pure fluid at any Rayleigh number. Results depict that the addition of nanoparticles to the pure fluid has more effect on the entropy generation as the Rayleigh number goes up.

Keywords: entropy generation, natural convection, bejan number, nuselt number, nanofluid

Procedia PDF Downloads 471
555 Effect of Steel Fibers on Flexural Behavior of Normal and High Strength Concrete

Authors: K. M. Aldossari, W. A. Elsaigh, M. J. Shannag

Abstract:

An experimental study was conducted to investigate the effect of hooked-end steel fibers on the flexural behavior of normal and high strength concrete matrices. The fiber content appropriate for the concrete matrices investigated was also determined based on flexural tests on standard prisms. Parameters investigated include: Matrix compressive strength ranging from 45 MPa to 70 MPa, corresponding to normal and high strength concrete matrices respectively; Fiber volume fraction including 0, 0.5%, 0.76%, and 1%, equivalent to 0, 40, 60, and 80 kg/m3 of hooked-end steel fibers respectively. Test results indicated that flexural strength and toughness of normal and high strength concrete matrices were significantly improved with the increase in the fiber content added; Whereas a slight improvement in compressive strength was observed for the same matrices. Furthermore, the test results indicated that the effect of increasing the fiber content was more pronounced on increasing the flexural strength of high strength concrete than that of normal concrete.

Keywords: concrete, flexural strength, toughness, steel fibers

Procedia PDF Downloads 466
554 Effect of Viscous Dissipation and Axial Conduction in Thermally Developing Region of the Channel Partially Filled with a Porous Material Subjected to Constant Wall Heat Flux

Authors: D Bhargavi, J. Sharath Kumar Reddy

Abstract:

The present investigation has been undertaken to assess the effect of viscous dissipation and axial conduction on forced convection heat transfer in the entrance region of a parallel plate channel with the porous insert attached to both walls of the channel. The flow field is unidirectional. Flow in the porous region corresponds to Darcy-Brinkman model and the clear fluid region to that of plane Poiseuille flow. The effects of the parameters Darcy number, Da, Peclet number, Pe, Brinkman number, Br and a porous fraction γp on the local heat transfer coefficient are analyzed graphically. Effects of viscous dissipation employing the Darcy model and the clear fluid compatible model have been studied.

Keywords: porous material, channel partially filled with a porous material, axial conduction, viscous dissipation

Procedia PDF Downloads 136
553 Heteromolecular Structure Formation in Aqueous Solutions of Ethanol, Tetrahydrofuran and Dimethylformamide

Authors: Sh. Gofurov, O. Ismailova, U. Makhmanov, A. Kokhkharov

Abstract:

The refractometric method has been used to determine optical properties of concentration features of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide at the room temperature. Changes in dielectric permittivity of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide in a wide range of concentrations (0÷1.0 molar fraction) have been studied using molecular dynamics method. The curves depending on the concentration of experimental data on excess refractive indices and excess dielectric permittivity were compared. It has been shown that stable heteromolecular complexes in binary solutions are formed in the concentration range of 0.3÷0.4 mole fractions. The real and complex part of dielectric permittivity was obtained from dipole-dipole autocorrelation functions of molecules. At the concentrations of C = 0.3 / 0.4 m.f. the heteromolecular structures with hydrogen bonds are formed. This is confirmed by the extremum values of excessive dielectric permittivity and excessive refractive index of aqueous solutions.

Keywords: refractometric method, aqueous solution, molecular dynamics, dielectric constant

Procedia PDF Downloads 245
552 Microwave Assisted Extractive Desulfurization of Gas Oil Feedstock

Authors: Hamida Y. Mostafa, Ghada E. Khedr, Dina M. Abd El-Aty

Abstract:

Sulfur compound removal from petroleum fractions is a critical component of environmental protection demands. Solvent extraction, oxidative desulfurization, or hydro-treatment techniques have traditionally been used as the removal processes. While all methods were capable of eliminating sulfur compounds at moderate rates, they had some limitations. A major problem with these routes is their high running expenses, which are caused by their prolonged operation times and high energy consumption. Therefore, new methods for removing sulfur are still necessary. In the current study, a simple assisted desulfurization system for gas oil fraction has been successfully developed using acetonitrile and methanol as a solvent under microwave irradiation. The key variables affecting sulfur removal have been studied, including microwave power, irradiation time, and solvent to gas oil volume ratio. At the conclusion of the research that is being presented, promising results have been found. The results show that a microwave-assisted extractive desulfurization method had remove sulfur with a high degree of efficiency under the suitable conditions.

Keywords: extractive desulfurization, microwave assisted extraction, petroleum fractions, acetonitrile and methanol

Procedia PDF Downloads 77
551 Numerical Study on the Urea Melting and Induced Natural Convection in a Urea Sender Module

Authors: Doo Ki Lee, Man Young Kim

Abstract:

The Urea-Selective Catalytic Reduction (SCR) system is considered to be the most promising technology to fulfill the stringent emission regulation. In the Urea-SCR system, the urea solutions are used as the reducing agent, which is a eutectic composition (32.5wt% of urea). The advantage of this eutectic compositions is that it has a low freezing point approximately at -11 ℃, however, the problem of freezing occurs at low-temperature levels below that freezing point. To prevent freezing of urea solutions, we need heating systems that can melt by heating the frozen urea solutions in urea storage tank at low-temperature environment. In this study, therefore, a numerical investigation of three-dimensional unsteady heating problems analyzed to find the melting characteristics of the urea solutions on melting process. In this work, it can be found that the urea melting initiated by heat conduction from the heater is enhanced by the natural convection inside the melted liquid urea solutions due to the temperature difference. Also, liquid urea solutions are initially concentrated on the upper parts of the urea sender module.

Keywords: urea solution, melting, heat conduction, natural convection, liquid fraction, phase change

Procedia PDF Downloads 242
550 Molecular Basis of Anti-Biofilm and Anti-Adherence Activity of Syzygium aromaticum on Streptococcus mutans: In Vitro and in Vivo Study

Authors: Mohd Adil, Rosina Khan, Asad U. Khan, Vasantha Rupasinghe HP

Abstract:

The study examined the effects of Syzygium aromaticum extracts on the virulence properties of Streptococcus mutans. The activity of glucosyltransferases in the presence of crude and diethylether fraction was reduced to 80% at concentration 78.12μg/ml and 39.06μg/ml respectively. The glycolytic pH drop by S. mutans cells was also disrupted by these extracts without affecting the bacterial viability. Microscopic analysis revealed morphological changes of the S. mutans biofilms, indicating that these plant extracts at sub-MICs could significantly affect the ability of S. mutans to form biofilm with distorted extracellular matrix. Furthermore, with the help of quantitative RT-PCR, the expression of different genes involved in adherence, quorum sensing, in the presence of these extracts were down regulated. The crude and active fractions were found effective in preventing caries development in rats. The data showed that S. aromaticum holds promise as a naturally occurring source of compounds that may prevent biofilm-related oral diseases.

Keywords: biofilm, quorum sensing, Streptococcus mutans, Syzygium aromaticum extract

Procedia PDF Downloads 280