Search results for: cox proportional hazard regression
3839 Sensitivity Based Robust Optimization Using 9 Level Orthogonal Array and Stepwise Regression
Authors: K. K. Lee, H. W. Han, H. L. Kang, T. A. Kim, S. H. Han
Abstract:
For the robust optimization of the manufacturing product design, there are design objectives that must be achieved, such as a minimization of the mean and standard deviation in objective functions within the required sensitivity constraints. The authors utilized the sensitivity of objective functions and constraints with respect to the effective design variables to reduce the computational burden associated with the evaluation of the probabilities. The individual mean and sensitivity values could be estimated easily by using the 9 level orthogonal array based response surface models optimized by the stepwise regression. The present study evaluates a proposed procedure from the robust optimization of rubber domes that are commonly used for keyboard switching, by using the 9 level orthogonal array and stepwise regression along with a desirability function. In addition, a new robust optimization process, i.e., the I2GEO (Identify, Integrate, Generate, Explore and Optimize), was proposed on the basis of the robust optimization in rubber domes. The optimized results from the response surface models and the estimated results by using the finite element analysis were consistent within a small margin of error. The standard deviation of objective function is decreasing 54.17% with suggested sensitivity based robust optimization. (Business for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Small and Medium Business Administration in 2017, S2455569)Keywords: objective function, orthogonal array, response surface model, robust optimization, stepwise regression
Procedia PDF Downloads 2883838 Linear Regression Estimation of Tactile Comfort for Denim Fabrics Based on In-Plane Shear Behavior
Authors: Nazli Uren, Ayse Okur
Abstract:
Tactile comfort of a textile product is an essential property and a major concern when it comes to customer perceptions and preferences. The subjective nature of comfort and the difficulties regarding the simulation of human hand sensory feelings make it hard to establish a well-accepted link between tactile comfort and objective evaluations. On the other hand, shear behavior of a fabric is a mechanical parameter which can be measured by various objective test methods. The principal aim of this study is to determine the tactile comfort of commercially available denim fabrics by subjective measurements, create a tactile score database for denim fabrics and investigate the relations between tactile comfort and shear behavior. In-plane shear behaviors of 17 different commercially available denim fabrics with a variety of raw material and weave structure were measured by a custom design shear frame and conventional bias extension method in two corresponding diagonal directions. Tactile comfort of denim fabrics was determined via subjective customer evaluations as well. Aforesaid relations were statistically investigated and introduced as regression equations. The analyses regarding the relations between tactile comfort and shear behavior showed that there are considerably high correlation coefficients. The suggested regression equations were likewise found out to be statistically significant. Accordingly, it was concluded that the tactile comfort of denim fabrics can be estimated with a high precision, based on the results of in-plane shear behavior measurements.Keywords: denim fabrics, in-plane shear behavior, linear regression estimation, tactile comfort
Procedia PDF Downloads 3023837 Flash Flood in Gabes City (Tunisia): Hazard Mapping and Vulnerability Assessment
Authors: Habib Abida, Noura Dahri
Abstract:
Flash floods are among the most serious natural hazards that have disastrous environmental and human impacts. They are associated with exceptional rain events, characterized by short durations, very high intensities, rapid flows and small spatial extent. Flash floods happen very suddenly and are difficult to forecast. They generally cause damage to agricultural crops and property, infrastructures, and may even result in the loss of human lives. The city of Gabes (South-eastern Tunisia) has been exposed to numerous damaging floods because of its mild topography, clay soil, high urbanization rate and erratic rainfall distribution. The risks associated with this situation are expected to increase further in the future because of climate change, deemed responsible for the increase of the frequency and the severity of this natural hazard. Recently, exceptional events hit Gabes City causing death and major property losses. A major flooding event hit the region on June 2nd, 2014, causing human deaths and major material losses. It resulted in the stagnation of storm water in the numerous low zones of the study area, endangering thereby human health and causing disastrous environmental impacts. The characterization of flood risk in Gabes Watershed (South-eastern Tunisia) is considered an important step for flood management. Analytical Hierarchy Process (AHP) method coupled with Monte Carlo simulation and geographic information system were applied to delineate and characterize flood areas. A spatial database was developed based on geological map, digital elevation model, land use, and rainfall data in order to evaluate the different factors susceptible to affect flood analysis. Results obtained were validated by remote sensing data for the zones that showed very high flood hazard during the extreme rainfall event of June 2014 that hit the study basin. Moreover, a survey was conducted from different areas of the city in order to understand and explore the different causes of this disaster, its extent and its consequences.Keywords: analytical hierarchy process, flash floods, Gabes, remote sensing, Tunisia
Procedia PDF Downloads 1093836 A Statistical Approach to Predict and Classify the Commercial Hatchability of Chickens Using Extrinsic Parameters of Breeders and Eggs
Authors: M. S. Wickramarachchi, L. S. Nawarathna, C. M. B. Dematawewa
Abstract:
Hatchery performance is critical for the profitability of poultry breeder operations. Some extrinsic parameters of eggs and breeders cause to increase or decrease the hatchability. This study aims to identify the affecting extrinsic parameters on the commercial hatchability of local chicken's eggs and determine the most efficient classification model with a hatchability rate greater than 90%. In this study, seven extrinsic parameters were considered: egg weight, moisture loss, breeders age, number of fertilised eggs, shell width, shell length, and shell thickness. Multiple linear regression was performed to determine the most influencing variable on hatchability. First, the correlation between each parameter and hatchability were checked. Then a multiple regression model was developed, and the accuracy of the fitted model was evaluated. Linear Discriminant Analysis (LDA), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), Support Vector Machines (SVM) with a linear kernel, and Random Forest (RF) algorithms were applied to classify the hatchability. This grouping process was conducted using binary classification techniques. Hatchability was negatively correlated with egg weight, breeders' age, shell width, shell length, and positive correlations were identified with moisture loss, number of fertilised eggs, and shell thickness. Multiple linear regression models were more accurate than single linear models regarding the highest coefficient of determination (R²) with 94% and minimum AIC and BIC values. According to the classification results, RF, CART, and kNN had performed the highest accuracy values 0.99, 0.975, and 0.972, respectively, for the commercial hatchery process. Therefore, the RF is the most appropriate machine learning algorithm for classifying the breeder outcomes, which are economically profitable or not, in a commercial hatchery.Keywords: classification models, egg weight, fertilised eggs, multiple linear regression
Procedia PDF Downloads 873835 The Impact of Prior Cancer History on the Prognosis of Salivary Gland Cancer Patients: A Population-based Study from the Surveillance, Epidemiology, and End Results (SEER) Database
Authors: Junhong Li, Danni Cheng, Yaxin Luo, Xiaowei Yi, Ke Qiu, Wendu Pang, Minzi Mao, Yufang Rao, Yao Song, Jianjun Ren, Yu Zhao
Abstract:
Background: The number of multiple cancer patients was increasing, and the impact of prior cancer history on salivary gland cancer patients remains unclear. Methods: Clinical, demographic and pathological information on salivary gland cancer patients were retrospectively collected from the Surveillance, Epidemiology, and End Results (SEER) database from 2004 to 2017, and the characteristics and prognosis between patients with a prior cancer and those without prior caner were compared. Univariate and multivariate cox proportional regression models were used for the analysis of prognosis. A risk score model was established to exam the impact of treatment on patients with a prior cancer in different risk groups. Results: A total of 9098 salivary gland cancer patients were identified, and 1635 of them had a prior cancer history. Salivary gland cancer patients with prior cancer had worse survival compared with those without a prior cancer (p<0.001). Patients with a different type of first cancer had a distinct prognosis (p<0.001), and longer latent time was associated with better survival (p=0.006) in the univariate model, although both became nonsignificant in the multivariate model. Salivary gland cancer patients with a prior cancer were divided into low-risk (n= 321), intermediate-risk (n=223), and high-risk (n=62) groups and the results showed that patients at high risk could benefit from surgery, radiation therapy, and chemotherapy, and those at intermediate risk could benefit from surgery. Conclusion: Prior cancer history had an adverse impact on the survival of salivary gland cancer patients, and individualized treatment should be seriously considered for them.Keywords: prior cancer history, prognosis, salivary gland cancer, SEER
Procedia PDF Downloads 1463834 Non-Methane Hydrocarbons Emission during the Photocopying Process
Authors: Kiurski S. Jelena, Aksentijević M. Snežana, Kecić S. Vesna, Oros B. Ivana
Abstract:
The prosperity of electronic equipment in photocopying environment not only has improved work efficiency, but also has changed indoor air quality. Considering the number of photocopying employed, indoor air quality might be worse than in general office environments. Determining the contribution from any type of equipment to indoor air pollution is a complex matter. Non-methane hydrocarbons are known to have an important role of air quality due to their high reactivity. The presence of hazardous pollutants in indoor air has been detected in one photocopying shop in Novi Sad, Serbia. Air samples were collected and analyzed for five days, during 8-hr working time in three-time intervals, whereas three different sampling points were determined. Using multiple linear regression model and software package STATISTICA 10 the concentrations of occupational hazards and micro-climates parameters were mutually correlated. Based on the obtained multiple coefficients of determination (0.3751, 0.2389, and 0.1975), a weak positive correlation between the observed variables was determined. Small values of parameter F indicated that there was no statistically significant difference between the concentration levels of non-methane hydrocarbons and micro-climates parameters. The results showed that variable could be presented by the general regression model: y = b0 + b1xi1+ b2xi2. Obtained regression equations allow to measure the quantitative agreement between the variation of variables and thus obtain more accurate knowledge of their mutual relations.Keywords: non-methane hydrocarbons, photocopying process, multiple regression analysis, indoor air quality, pollutant emission
Procedia PDF Downloads 3783833 Principal Component Regression in Amylose Content on the Malaysian Market Rice Grains Using Near Infrared Reflectance Spectroscopy
Authors: Syahira Ibrahim, Herlina Abdul Rahim
Abstract:
The amylose content is an essential element in determining the texture and taste of rice grains. This paper evaluates the use of VIS-SWNIRS in estimating the amylose content for seven varieties of rice grains available in the Malaysian market. Each type consists of 30 samples and all the samples are scanned using the spectroscopy to obtain a range of values between 680-1000nm. The Savitzky-Golay (SG) smoothing filter is applied to each sample’s data before the Principal Component Regression (PCR) technique is used to examine the data and produce a single value for each sample. This value is then compared with reference values obtained from the standard iodine colorimetric test in terms of its coefficient of determination, R2. Results show that this technique produced low R2 values of less than 0.50. In order to improve the result, the range should include a wavelength range of 1100-2500nm and the number of samples processed should also be increased.Keywords: amylose content, diffuse reflectance, Malaysia rice grain, principal component regression (PCR), Visible and Shortwave near-infrared spectroscopy (VIS-SWNIRS)
Procedia PDF Downloads 3823832 The Impact Of The Covid-19 Lockdown On Solid Waste Pollution And Environmental Hazard. A Blessing In Disguise? A Case Of Liberia
Authors: Eric Berry White
Abstract:
The paper examines the causality between solid waste pollution and lockdown. Particularly in 2020, the world experiences the takeover of the Corona virus pandemic, and most countries decided to adopt lockdown measure as the best solution to curtail the spread of the virus. On March 20, 2020, the Government of Liberia implemented a curfew that starts from 3:00PM to 6:00AM. This means that no unauthorized person is allowed to be in the streets during this time. In most developing countries, the issue of public waste and environmental hazard pollution tend to have a high effect among the slum communities where there are markets. This research covers 6 slums communities around the two biggest market hubs within Monrovia, and the result shows that the lockdown measure significantly reduced public waste pollution by reducing the movement of marketers in slum communities , where limited educational and sensitization for young people is reflected on their job market exclusion, jobless circle, and youth workforce concentration in informal work market. The study discovered that with public awareness and sensitization with females, solid waste could be reduced by 13 percentage point. But there is no evidence that awareness among male conduce pollution. within affected communities, Despite the impact of the lockdown on food consumption, these results emphasized that with the right monitoring of waste and aware, pollution could be reduce. By understanding these results and implementing the best policy, the paper recommends that dump sites be close at certain hours.Keywords: lockdown, environmental, pollution, waste
Procedia PDF Downloads 803831 Future Projection of Glacial Lake Outburst Floods Hazard: A Hydrodynamic Study of the Highest Lake in the Dhauliganga Basin, Uttarakhand
Authors: Ashim Sattar, Ajanta Goswami, Anil V. Kulkarni
Abstract:
Glacial lake outburst floods (GLOF) highly contributes to mountain hazards in the Himalaya. Over the past decade, high altitude lakes in the Himalaya has been showing notable growth in their size and number. The key reason is rapid retreat of its glacier front. Hydrodynamic modeling GLOF using shallow water equations (SWE) would result in understanding its impact in the downstream region. The present study incorporates remote sensing based ice thickness modeling to determine the future extent of the Dhauliganga Lake to map the over deepening extent around the highest lake in the Dhauliganga basin. The maximum future volume of the lake calculated using area-volume scaling is used to model a GLOF event. The GLOF hydrograph is routed along the channel using one dimensional and two dimensional model to understand the flood wave propagation till it reaches the 1st hydropower station located 72 km downstream of the lake. The present extent of the lake calculated using SENTINEL 2 images is 0.13 km². The maximum future extent of the lake, mapped by investigating the glacier bed has a calculated scaled volume of 3.48 x 106 m³. The GLOF modeling releasing the future volume of the lake resulted in a breach hydrograph with a peak flood of 4995 m³/s at just downstream of the lake. Hydraulic routingKeywords: GLOF, glacial lake outburst floods, mountain hazard, Central Himalaya, future projection
Procedia PDF Downloads 1623830 Modeling the Impacts of Road Construction on Lands Values
Authors: Maha Almumaiz, Harry Evdorides
Abstract:
Change in land value typically occurs when a new interurban road construction causes an increase in accessibility; this change in the adjacent lands values differs according to land characteristics such as geographic location, land use type, land area and sale time (appraisal time). A multiple regression model is obtained to predict the percent change in land value (CLV) based on four independent variables namely land distance from the constructed road, area of land, nature of land use and time from the works completion of the road. The random values of percent change in land value were generated using Microsoft Excel with a range of up to 35%. The trend of change in land value with the four independent variables was determined from the literature references. The statistical analysis and model building process has been made by using the IBM SPSS V23 software. The Regression model suggests, for lands that are located within 3 miles as the straight distance from the road, the percent CLV is between (0-35%) which is depending on many factors including distance from the constructed road, land use, land area and time from works completion of the new road.Keywords: interurban road, land use types, new road construction, percent CLV, regression model
Procedia PDF Downloads 2663829 Numerical Modeling of Geogrid Reinforced Soil Bed under Strip Footings Using Finite Element Analysis
Authors: Ahmed M. Gamal, Adel M. Belal, S. A. Elsoud
Abstract:
This article aims to study the effect of reinforcement inclusions (geogrids) on the sand dunes bearing capacity under strip footings. In this research experimental physical model was carried out to study the effect of the first geogrid reinforcement depth (u/B), the spacing between the reinforcement (h/B) and its extension relative to the footing length (L/B) on the mobilized bearing capacity. This paper presents the numerical modeling using the commercial finite element package (PLAXIS version 8.2) to simulate the laboratory physical model, studying the same parameters previously handled in the experimental work (u/B, L/B & h/B) for the purpose of validation. In this study the soil, the geogrid, the interface element and the boundary condition are discussed with a set of finite element results and the validation. Then the validated FEM used for studying real material and dimensions of strip foundation. Based on the experimental and numerical investigation results, a significant increase in the bearing capacity of footings has occurred due to an appropriate location of the inclusions in sand. The optimum embedment depth of the first reinforcement layer (u/B) is equal to 0.25. The optimum spacing between each successive reinforcement layer (h/B) is equal to 0.75 B. The optimum Length of the reinforcement layer (L/B) is equal to 7.5 B. The optimum number of reinforcement is equal to 4 layers. The study showed a directly proportional relation between the number of reinforcement layer and the Bearing Capacity Ratio BCR, and an inversely proportional relation between the footing width and the BCR.Keywords: reinforced soil, geogrid, sand dunes, bearing capacity
Procedia PDF Downloads 4193828 Quantitative Structure Activity Relationship and Insilco Docking of Substituted 1,3,4-Oxadiazole Derivatives as Potential Glucosamine-6-Phosphate Synthase Inhibitors
Authors: Suman Bala, Sunil Kamboj, Vipin Saini
Abstract:
Quantitative Structure Activity Relationship (QSAR) analysis has been developed to relate antifungal activity of novel substituted 1,3,4-oxadiazole against Candida albicans and Aspergillus niger using computer assisted multiple regression analysis. The study has shown the better relationship between antifungal activities with respect to various descriptors established by multiple regression analysis. The analysis has shown statistically significant correlation with R2 values 0.932 and 0.782 against Candida albicans and Aspergillus niger respectively. These derivatives were further subjected to molecular docking studies to investigate the interactions between the target compounds and amino acid residues present in the active site of glucosamine-6-phosphate synthase. All the synthesized compounds have better docking score as compared to standard fluconazole. Our results could be used for the further design as well as development of optimal and potential antifungal agents.Keywords: 1, 3, 4-oxadiazole, QSAR, multiple linear regression, docking, glucosamine-6-phosphate synthase
Procedia PDF Downloads 3413827 A Study on Characteristics of Hedonic Price Models in Korea Based on Meta-Regression Analysis
Authors: Minseo Jo
Abstract:
The purpose of this paper is to examine the factors in the hedonic price models, that has significance impact in determining the price of apartments. There are many variables employed in the hedonic price models and their effectiveness vary differently according to the researchers and the regions they are analysing. In order to consider various conditions, the meta-regression analysis has been selected for the study. In this paper, four meta-independent variables, from the 65 hedonic price models to analysis. The factors that influence the prices of apartments, as well as including factors that influence the prices of apartments, regions, which are divided into two of the research performed, years of research performed, the coefficients of the functions employed. The covariance between the four meta-variables and p-value of the coefficients and the four meta-variables and number of data used in the 65 hedonic price models have been analyzed in this study. The six factors that are most important in deciding the prices of apartments are positioning of apartments, the noise of the apartments, points of the compass and views from the apartments, proximity to the public transportations, companies that have constructed the apartments, social environments (such as schools etc.).Keywords: hedonic price model, housing price, meta-regression analysis, characteristics
Procedia PDF Downloads 4023826 Switched System Diagnosis Based on Intelligent State Filtering with Unknown Models
Authors: Nada Slimane, Foued Theljani, Faouzi Bouani
Abstract:
The paper addresses the problem of fault diagnosis for systems operating in several modes (normal or faulty) based on states assessment. We use, for this purpose, a methodology consisting of three main processes: 1) sequential data clustering, 2) linear model regression and 3) state filtering. Typically, Kalman Filter (KF) is an algorithm that provides estimation of unknown states using a sequence of I/O measurements. Inevitably, although it is an efficient technique for state estimation, it presents two main weaknesses. First, it merely predicts states without being able to isolate/classify them according to their different operating modes, whether normal or faulty modes. To deal with this dilemma, the KF is endowed with an extra clustering step based fully on sequential version of the k-means algorithm. Second, to provide state estimation, KF requires state space models, which can be unknown. A linear regularized regression is used to identify the required models. To prove its effectiveness, the proposed approach is assessed on a simulated benchmark.Keywords: clustering, diagnosis, Kalman Filtering, k-means, regularized regression
Procedia PDF Downloads 1823825 A Feasibility Study on Producing Bio-Coal from Orange Peel Residue by Using Torrefaction
Authors: Huashan Tai, Chien-Hui Lung
Abstract:
Nowadays people use massive fossil fuels which not only cause environmental impacts and global climate change, but also cause the depletion of non-renewable energy such as coal and oil. Bioenergy is currently the most widely used renewable energy, and agricultural waste is one of the main raw materials for bioenergy. In this study, we use orange peel residue, which is easier to collect from agricultural waste to produce bio-coal by torrefaction. The orange peel residue (with 25 to 30% moisture) was treated by torrefaction, and the experiments were conducted with initial temperature at room temperature (approximately at 25° C), with heating rates of 10, 30, and 50°C / min, with terminal temperatures at 150, 200, 250, 300, 350℃, and with residence time of 10, 20, and 30 minutes. The results revealed that the heating value, ash content and energy densification ratio of the solid products after torrefaction are in direct proportion to terminal temperatures and residence time, and are inversely proportional to heating rates. The moisture content, solid mass yield, energy yield, and volumetric energy density of the solid products after torrefaction are inversely proportional to terminal temperatures and residence time, and are in direct proportion to heating rates. In conclusion, we found that the heating values of the solid products were 1.3 times higher than those of the raw orange peels before torrefaction, and the volumetric energy densities were increased by 1.45 times under operating parameters with terminal temperature at 250°C, residence time of 10 minutes, and heating rate of 10°C / min of torrefaction. The results indicated that the residue of orange peel treated by torrefaction improved its energy density and fuel properties, and became more suitable for bio-fuel applications.Keywords: biomass energy, orange, torrefaction
Procedia PDF Downloads 2893824 Upward Spread Forced Smoldering Phenomenon: Effects and Applications
Authors: Akshita Swaminathan, Vinayak Malhotra
Abstract:
Smoldering is one of the most persistent types of combustion which can take place for very long periods (hours, days, months) if there is an abundance of fuel. It causes quite a notable number of accidents and is one of the prime suspects for fire and safety hazards. It can be ignited with weaker ignition and is more difficult to suppress than flaming combustion. Upward spread smoldering is the case in which the air flow is parallel to the direction of the smoldering front. This type of smoldering is quite uncontrollable, and hence, there is a need to study this phenomenon. As compared to flaming combustion, a smoldering phenomenon often goes unrecognised and hence is a cause for various fire accidents. A simplified experimental setup was raised to study the upward spread smoldering, its effects due to varying forced flow and its effects when it takes place in the presence of external heat sources and alternative energy sources such as acoustic energy. Linear configurations were studied depending on varying forced flow effects on upward spread smoldering. Effect of varying forced flow on upward spread smoldering was observed and studied: (i) in the presence of external heat source (ii) in the presence of external alternative energy sources (acoustic energy). The role of ash removal was observed and studied. Results indicate that upward spread forced smoldering was affected by various key controlling parameters such as the speed of the forced flow, surface orientation, interspace distance (distance between forced flow and the pilot fuel). When an external heat source was placed on either side of the pilot fuel, it was observed that the smoldering phenomenon was affected. The surface orientation and interspace distance between the external heat sources and the pilot fuel were found to play a huge role in altering the regression rate. Lastly, by impinging an alternative energy source in the form of acoustic energy on the smoldering front, it was observed that varying frequencies affected the smoldering phenomenon in different ways. The surface orientation also played an important role. This project highlights the importance of fire and safety hazard and means of better combustion for all kinds of scientific research and practical applications. The knowledge acquired from this work can be applied to various engineering systems ranging from aircrafts, spacecrafts and even to buildings fires, wildfires and help us in better understanding and hence avoiding such widespread fires. Various fire disasters have been recorded in aircrafts due to small electric short circuits which led to smoldering fires. These eventually caused the engine to catch fire that cost damage to life and property. Studying this phenomenon can help us to control, if not prevent, such disasters.Keywords: alternative energy sources, flaming combustion, ignition, regression rate, smoldering
Procedia PDF Downloads 1443823 Examining the Effects of College Education on Democratic Attitudes in China: A Regression Discontinuity Analysis
Authors: Gang Wang
Abstract:
Education is widely believed to be a prerequisite for democracy and civil society, but the causal link between education and outcome variables is usually hardly to be identified. This study applies a fuzzy regression discontinuity design to examine the effects of college education on democratic attitudes in the Chinese context. In the analysis treatment assignment is determined by students’ college entry years and thus naturally selected by subjects’ ages. Using a sample of Chinese college students collected in Beijing in 2009, this study finds that college education actually reduces undergraduates’ motivation for political development in China but promotes political loyalty to the authoritarian government. Further hypotheses tests explain these interesting findings from two perspectives. The first is related to the complexity of politics. As college students progress over time, they increasingly realize the complexity of political reform in China’s authoritarian regime and rather stay away from politics. The second is related to students’ career opportunities. As students are close to graduation, they are immersed with job hunting and have a reduced interest in political freedom.Keywords: china, college education, democratic attitudes, regression discontinuity
Procedia PDF Downloads 3513822 Analysis of the Fire Hazard Posed by Petrol Stations in Stellenbosch and the Extent to Which Planning Acknowledges Risk
Authors: Kwanele Qonono
Abstract:
Despite the significance and economic benefits of petrol stations in South Africa, these still pose a huge risk of fire and explosion threatening public safety. This research paper examines the extent to which land-use planning in Stellenbosch, South Africa, considers the fire risk posed by petrol stations and the implications for public safety as well as preparedness for large fires or explosions. To achieve this, the research identified the land-use types around petrol stations in Stellenbosch and determined the extent to which their locations comply with the local, national, and international land-use planning regulations. A mixed research method consisting of the collection and analysis of geospatial data and qualitative data was an applied method, where petrol stations within a six-kilometre radius of Stellenbosch’s town centre were utilised as study sites. The research examined the risk of fires/explosions at these petrol stations. The research investigated Stellenbosch Municipality’s institutional preparedness to respond in the event of a fire/explosion at these petrol stations. The research observed that siting of petrol stations does not comply with local, national, and international good practices, thus exposing the surrounding developments to fires and explosions. Land-use planning practice does not consider hazards created by petrol stations. Despite the potential for major fires at petrol stations, Stellenbosch Municipality’s level of preparedness to respond to petrol station fires appears low due to the prioritisation of more frequent events.Keywords: petrol stations, technological hazard, drr, land-use planning, risk analysis
Procedia PDF Downloads 1053821 Probabilistic Approach to the Spatial Identification of the Environmental Sources behind Mortality Rates in Europe
Authors: Alina Svechkina, Boris A. Portnov
Abstract:
In line with a rapid increase in pollution sources and enforcement of stricter air pollution regulation, which lowers pollution levels, it becomes more difficult to identify actual risk sources behind the observed morbidity patterns, and new approaches are required to identify potential risks and take preventive actions. In the present study, we discuss a probabilistic approach to the spatial identification of a priori unidentified environmental health hazards. The underlying assumption behind the tested approach is that the observed adverse health patterns (morbidity, mortality) can become a source of information on the geographic location of environmental risk factors that stand behind them. Using this approach, we analyzed sources of environmental exposure using data on mortality rates available for the year 2015 for NUTS 3 (Nomenclature of Territorial Units for Statistics) subdivisions of the European Union. We identified several areas in the southwestern part of Europe as primary risk sources for the observed mortality patterns. Multivariate regressions, controlled by geographical location, climate conditions, GDP (gross domestic product) per capita, dependency ratios, population density, and the level of road freight revealed that mortality rates decline as a function of distance from the identified hazard location. We recommend the proposed approach an exploratory analysis tool for initial investigation of regional patterns of population morbidity patterns and factors behind it.Keywords: mortality, environmental hazards, air pollution, distance decay gradient, multi regression analysis, Europe, NUTS3
Procedia PDF Downloads 1673820 The Principal-Agent Model with Moral Hazard in the Brazilian Innovation System: The Case of 'Lei do Bem'
Authors: Felippe Clemente, Evaldo Henrique da Silva
Abstract:
The need to adopt some type of industrial policy and innovation in Brazil is a recurring theme in the discussion of public interventions aimed at boosting economic growth. For many years, the country has adopted various policies to change its productive structure in order to increase the participation of sectors that would have the greatest potential to generate innovation and economic growth. Only in the 2000s, tax incentives as a policy to support industrial and technological innovation are being adopted in Brazil as a phenomenon associated with rates of productivity growth and economic development. In this context, in late 2004 and 2005, Brazil reformulated its institutional apparatus for innovation in order to approach the OECD conventions and the Frascati Manual. The Innovation Law (2004) and the 'Lei do Bem' (2005) reduced some institutional barriers to innovation, provided incentives for university-business cooperation, and modified access to tax incentives for innovation. Chapter III of the 'Lei do Bem' (no. 11,196/05) is currently the most comprehensive fiscal incentive to stimulate innovation. It complies with the requirements, which stipulates that the Union should encourage innovation in the company or industry by granting tax incentives. With its introduction, the bureaucratic procedure was simplified by not requiring pre-approval of projects or participation in bidding documents. However, preliminary analysis suggests that this instrument has not yet been able to stimulate the sector diversification of these investments in Brazil, since its benefits are mostly captured by sectors that already developed this activity, thus showing problems with moral hazard. It is necessary, then, to analyze the 'Lei do Bem' to know if there is indeed the need for some change, investigating what changes should be implanted in the Brazilian innovation policy. This work, therefore, shows itself as a first effort to analyze a current national problem, evaluating the effectiveness of the 'Lei do Bem' and suggesting public policies that help and direct the State to the elaboration of legislative laws capable of encouraging agents to follow what they describes. As a preliminary result, it is known that 130 firms used fiscal incentives for innovation in 2006, 320 in 2007 and 552 in 2008. Although this number is on the rise, it is still small, if it is considered that there are around 6 thousand firms that perform Research and Development (R&D) activities in Brazil. Moreover, another obstacle to the 'Lei do Bem' is the percentages of tax incentives provided to companies. These percentages reveal a significant sectoral correlation between R&D expenditures of large companies and R&D expenses of companies that accessed the 'Lei do Bem', reaching a correlation of 95.8% in 2008. With these results, it becomes relevant to investigate the law's ability to stimulate private investments in R&D.Keywords: brazilian innovation system, moral hazard, R&D, Lei do Bem
Procedia PDF Downloads 3373819 Count Data Regression Modeling: An Application to Spontaneous Abortion in India
Authors: Prashant Verma, Prafulla K. Swain, K. K. Singh, Mukti Khetan
Abstract:
Objective: In India, around 20,000 women die every year due to abortion-related complications. In the modelling of count variables, there is sometimes a preponderance of zero counts. This article concerns the estimation of various count regression models to predict the average number of spontaneous abortion among women in the Punjab state of India. It also assesses the factors associated with the number of spontaneous abortions. Materials and methods: The study included 27,173 married women of Punjab obtained from the DLHS-4 survey (2012-13). Poisson regression (PR), Negative binomial (NB) regression, zero hurdle negative binomial (ZHNB), and zero-inflated negative binomial (ZINB) models were employed to predict the average number of spontaneous abortions and to identify the determinants affecting the number of spontaneous abortions. Results: Statistical comparisons among four estimation methods revealed that the ZINB model provides the best prediction for the number of spontaneous abortions. Antenatal care (ANC) place, place of residence, total children born to a woman, woman's education and economic status were found to be the most significant factors affecting the occurrence of spontaneous abortion. Conclusions: The study offers a practical demonstration of techniques designed to handle count variables. Statistical comparisons among four estimation models revealed that the ZINB model provided the best prediction for the number of spontaneous abortions and is recommended to be used to predict the number of spontaneous abortions. The study suggests that women receive institutional Antenatal care to attain limited parity. It also advocates promoting higher education among women in Punjab, India.Keywords: count data, spontaneous abortion, Poisson model, negative binomial model, zero hurdle negative binomial, zero-inflated negative binomial, regression
Procedia PDF Downloads 1553818 Business Constraints and Growth Potential of Smes: Case Study of Electrical Industry in Pakistan
Authors: Muhammad Waseem Akram
Abstract:
The current study attempts to analyze the impact of business constraints on the growth potential and performance of Small and Medium Enterprises (SMEs) in the electrical industry of Pakistan. Primary data have been utilized for the study collected from the electrical industry cluster in Sargodha, Pakistan. OLS regression is used to assess the impact of business constraints on the performance of SMEs by controlling the effect of Technology Level, Innovations, and Firm Size. To associate business constraints with the growth potential of SMEs, the study utilized Tetrachoric Correlation and Logistic Regression. Findings reveal that all the business constraints negatively affect the performance of SMEs in the electrical industry except Political Instability. Results of Tetrachoric Correlation show that all the business constraints are negatively correlated with the growth potential of SMEs. Logistic Regression results show that Energy Constraint, Inflation and Price Instability, and Bad Business Practices, all three business constraints cause to reduce the probability of income growth in sample SMEs.Keywords: SMEs, business constraints, performance, growth potential
Procedia PDF Downloads 1693817 Application of Nonparametric Geographically Weighted Regression to Evaluate the Unemployment Rate in East Java
Authors: Sifriyani Sifriyani, I Nyoman Budiantara, Sri Haryatmi, Gunardi Gunardi
Abstract:
East Java Province has a first rank as a province that has the most counties and cities in Indonesia and has the largest population. In 2015, the population reached 38.847.561 million, this figure showed a very high population growth. High population growth is feared to lead to increase the levels of unemployment. In this study, the researchers mapped and modeled the unemployment rate with 6 variables that were supposed to influence. Modeling was done by nonparametric geographically weighted regression methods with truncated spline approach. This method was chosen because spline method is a flexible method, these models tend to look for its own estimation. In this modeling, there were point knots, the point that showed the changes of data. The selection of the optimum point knots was done by selecting the most minimun value of Generalized Cross Validation (GCV). Based on the research, 6 variables were declared to affect the level of unemployment in eastern Java. They were the percentage of population that is educated above high school, the rate of economic growth, the population density, the investment ratio of total labor force, the regional minimum wage and the ratio of the number of big industry and medium scale industry from the work force. The nonparametric geographically weighted regression models with truncated spline approach had a coefficient of determination 98.95% and the value of MSE equal to 0.0047.Keywords: East Java, nonparametric geographically weighted regression, spatial, spline approach, unemployed rate
Procedia PDF Downloads 3213816 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry
Authors: Deepika Christopher, Garima Anand
Abstract:
To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications
Procedia PDF Downloads 573815 Impact of Water Interventions under WASH Program in the South-west Coastal Region of Bangladesh
Authors: S. M. Ashikur Elahee, Md. Zahidur Rahman, Md. Shofiqur Rahman
Abstract:
This study evaluated the impact of different water interventions under WASH program on access of household's to safe drinking water. Following survey method, the study was carried out in two Upazila of South-west coastal region of Bangladesh namely Koyra from Khulna and Shymnagar from Satkhira district. Being an explanatory study, a total of 200 household's selected applying random sampling technique were interviewed using a structured interview schedule. The predicted probability suggests that around 62 percent household's are out of year-round access to safe drinking water whereby, only 25 percent household's have access at SPHERE standard (913 Liters/per person/per year). Besides, majority (78 percent) of the household's have not accessed at both indicators simultaneously. The distance from household residence to the water source varies from 0 to 25 kilometer with an average distance of 2.03 kilometers. The study also reveals that the increase in monthly income around BDT 1,000 leads to additional 11 liters (coefficient 0.01 at p < 0.1) consumption of safe drinking water for a person/year. As expected, lining up time has significant negative relationship with dependent variables i.e., for higher lining up time, the probability of getting access for both SPHERE standard and year round access variables becomes lower. According to ordinary least square (OLS) regression results, water consumption decreases at 93 liters for per person/year of a household if one member is added to that household. Regarding water consumption intensity, ordered logistic regression (OLR) model shows that one-minute increase of lining up time for water collection tends to reduce water consumption intensity. On the other hand, as per OLS regression results, for one-minute increase of lining up time, the water consumption decreases by around 8 liters. Considering access to Deep Tube Well (DTW) as a reference dummy, in OLR, the household under Pond Sand Filter (PSF), Shallow Tube Well (STW), Reverse Osmosis (RO) and Rainwater Harvester System (RWHS) are respectively 37 percent, 29 percent, 61 percent and 27 percent less likely to ensure year round access of water consumption. In line of health impact, different type of water born diseases like diarrhea, cholera, and typhoid are common among the coastal community caused by microbial impurities i.e., Bacteria, Protozoa. High turbidity and TDS in pond water caused by reduction of water depth, presence of suspended particle and inorganic salt stimulate the growth of bacteria, protozoa, and algae causes affecting health hazard. Meanwhile, excessive growth of Algae in pond water caused by excessive nitrate in drinking water adversely effects on child health. In lieu of ensuring access at SPHERE standard, we need to increase the number of water interventions at reasonable distance, preferably a half kilometer away from the dwelling place, ensuring community peoples involved with its installation process where collectively owned water intervention is found more effective than privately owned. In addition, a demand-responsive approach to supply of piped water should be adopted to allow consumer demand to guide investment in domestic water supply in future.Keywords: access, impact, safe drinking water, Sphere standard, water interventions
Procedia PDF Downloads 2193814 Research on the Spatio-Temporal Evolution Pattern of Traffic Dominance in Shaanxi Province
Authors: Leng Jian-Wei, Wang Lai-Jun, Li Ye
Abstract:
In order to measure and analyze the transportation situation within the counties of Shaanxi province over a certain period of time and to promote the province's future transportation planning and development, this paper proposes a reasonable layout plan and compares model rationality. The study uses entropy weight method to measure the transportation advantages of 107 counties in Shaanxi province from three dimensions: road network density, trunk line influence and location advantage in 2013 and 2021, and applies spatial autocorrelation analysis method to analyze the spatial layout and development trend of county-level transportation, and conducts ordinary least square (OLS)regression on transportation impact factors and other influencing factors. The paper also compares the regression fitting degree of the Geographically weighted regression(GWR) model and the OLS model. The results show that spatially, the transportation advantages of Shaanxi province generally show a decreasing trend from the Weihe Plain to the surrounding areas and mainly exhibit high-high clustering phenomenon. Temporally, transportation advantages show an overall upward trend, and the phenomenon of spatial imbalance gradually decreases. People's travel demands have changed to some extent, and the demand for rapid transportation has increased overall. The GWR model regression fitting degree of transportation advantages is 0.74, which is higher than the OLS regression model's fitting degree of 0.64. Based on the evolution of transportation advantages, it is predicted that this trend will continue for a period of time in the future. To improve the transportation advantages of Shaanxi province increasing the layout of rapid transportation can effectively enhance the transportation advantages of Shaanxi province. When analyzing spatial heterogeneity, geographic factors should be considered to establish a more reliable modelKeywords: traffic dominance, GWR model, spatial autocorrelation analysis, temporal and spatial evolution
Procedia PDF Downloads 893813 Seismic Vulnerability Assessment of Masonry Buildings in Seismic Prone Regions: The Case of Annaba City, Algeria
Authors: Allaeddine Athmani, Abdelhacine Gouasmia, Tiago Ferreira, Romeu Vicente
Abstract:
Seismic vulnerability assessment of masonry buildings is a fundamental issue even for moderate to low seismic hazard regions. This fact is even more important when dealing with old structures such as those located in Annaba city (Algeria), which the majority of dates back to the French colonial era from 1830. This category of buildings is in high risk due to their highly degradation state, heterogeneous materials and intrusive modifications to structural and non-structural elements. Furthermore, they are usually shelter a dense population, which is exposed to such risk. In order to undertake a suitable seismic risk mitigation strategies and reinforcement process for such structures, it is essential to estimate their seismic resistance capacity at a large scale. In this sense, two seismic vulnerability index methods and damage estimation have been adapted and applied to a pilot-scale building area located in the moderate seismic hazard region of Annaba city: The first one based on the EMS-98 building typologies, and the second one derived from the Italian GNDT approach. To perform this task, the authors took the advantage of an existing data survey previously performed for other purposes. The results obtained from the application of the two methods were integrated and compared using a geographic information system tool (GIS), with the ultimate goal of supporting the city council of Annaba for the implementation of risk mitigation and emergency planning strategies.Keywords: Annaba city, EMS98 concept, GNDT method, old city center, seismic vulnerability index, unreinforced masonry buildings
Procedia PDF Downloads 6183812 Modeling Geogenic Groundwater Contamination Risk with the Groundwater Assessment Platform (GAP)
Authors: Joel Podgorski, Manouchehr Amini, Annette Johnson, Michael Berg
Abstract:
One-third of the world’s population relies on groundwater for its drinking water. Natural geogenic arsenic and fluoride contaminate ~10% of wells. Prolonged exposure to high levels of arsenic can result in various internal cancers, while high levels of fluoride are responsible for the development of dental and crippling skeletal fluorosis. In poor urban and rural settings, the provision of drinking water free of geogenic contamination can be a major challenge. In order to efficiently apply limited resources in the testing of wells, water resource managers need to know where geogenically contaminated groundwater is likely to occur. The Groundwater Assessment Platform (GAP) fulfills this need by providing state-of-the-art global arsenic and fluoride contamination hazard maps as well as enabling users to create their own groundwater quality models. The global risk models were produced by logistic regression of arsenic and fluoride measurements using predictor variables of various soil, geological and climate parameters. The maps display the probability of encountering concentrations of arsenic or fluoride exceeding the World Health Organization’s (WHO) stipulated concentration limits of 10 µg/L or 1.5 mg/L, respectively. In addition to a reconsideration of the relevant geochemical settings, these second-generation maps represent a great improvement over the previous risk maps due to a significant increase in data quantity and resolution. For example, there is a 10-fold increase in the number of measured data points, and the resolution of predictor variables is generally 60 times greater. These same predictor variable datasets are available on the GAP platform for visualization as well as for use with a modeling tool. The latter requires that users upload their own concentration measurements and select the predictor variables that they wish to incorporate in their models. In addition, users can upload additional predictor variable datasets either as features or coverages. Such models can represent an improvement over the global models already supplied, since (a) users may be able to use their own, more detailed datasets of measured concentrations and (b) the various processes leading to arsenic and fluoride groundwater contamination can be isolated more effectively on a smaller scale, thereby resulting in a more accurate model. All maps, including user-created risk models, can be downloaded as PDFs. There is also the option to share data in a secure environment as well as the possibility to collaborate in a secure environment through the creation of communities. In summary, GAP provides users with the means to reliably and efficiently produce models specific to their region of interest by making available the latest datasets of predictor variables along with the necessary modeling infrastructure.Keywords: arsenic, fluoride, groundwater contamination, logistic regression
Procedia PDF Downloads 3483811 Effect of Drying on the Concrete Structures
Authors: A. Brahma
Abstract:
The drying of hydraulics materials is unavoidable and conducted to important spontaneous deformations. In this study, we show that it is possible to describe the drying shrinkage of the high-performance concrete by a simple expression. A multiple regression model was developed for the prediction of the drying shrinkage of the high-performance concrete. The assessment of the proposed model has been done by a set of statistical tests. The model developed takes in consideration the main parameters of confection and conservation. There was a very good agreement between drying shrinkage predicted by the multiple regression model and experimental results. The developed model adjusts easily to all hydraulic concrete types.Keywords: hydraulic concretes, drying, shrinkage, prediction, modeling
Procedia PDF Downloads 3683810 Study and Evaluation of Occupational Health and Safety in Power Plant in Pakistan
Authors: Saira Iqbal
Abstract:
Occupational Health and Safety issues nowadays have become an important esteem in the context of Industrial Production. This study is designed to measure the workplace hazards at Kohinoor Energy Limited. Mainly focused hazards were Heat Stress, Noise Level, Light Level and Ergonomics. Measurements for parameters like Wet, Dry, Globe, WBGTi and RH% were taken directly by visiting the Study Area. The temperature in Degrees was recoded at Control Room and Engine Hall. Highest Temperature was recoded in Engine Hall which was about 380C. Efforts were made to record emissions of Noise Levels from the main area of concern like Engines in Engine hall, parking area, and mechanical workshop. Permissible level for measuring Noise is 85 and its Unit of Measurement is dB (A). In Engine Hall Noise was very high which was about 109.6 dB (A) and that level was exceeding the limits. Illumination Level was also recorded at different areas of Power Plant. The light level was though under permissible limits but in some areas like Engine Hall and Boiler Room, level of light was very low especially in Engine Hall where the level was 29 lx. Practices were performed for measuring hazards in context of ergonomics like extended reaching, deviated body postures, mechanical stress, and vibration exposures of the worker at different units of plants by just observing workers during working hours. Since KEL is ISO 8000 and 14000 certified, the researcher found no serious problems in the parameter Ergonomics however it was a common scenario that workers were reluctant to apply PPEs.Keywords: workplace hazards, heat hazard, noise hazard, illumination, ergonomics
Procedia PDF Downloads 320