Search results for: control and optimization techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19066

Search results for: control and optimization techniques

18676 A Conjugate Gradient Method for Large Scale Unconstrained Optimization

Authors: Mohammed Belloufi, Rachid Benzine, Badreddine Sellami

Abstract:

Conjugate gradient methods is useful for solving large scale optimization problems in scientific and engineering computation, characterized by the simplicity of their iteration and their low memory requirements. It is well known that the search direction plays a main role in the line search method. In this paper, we propose a search direction with the Wolfe line search technique for solving unconstrained optimization problems. Under the above line searches and some assumptions, the global convergence properties of the given methods are discussed. Numerical results and comparisons with other CG methods are given.

Keywords: unconstrained optimization, conjugate gradient method, strong Wolfe line search, global convergence

Procedia PDF Downloads 421
18675 Optimization in the Compressive Strength of Iron Slag Self-Compacting Concrete

Authors: Luis E. Zapata, Sergio Ruiz, María F. Mantilla, Jhon A. Villamizar

Abstract:

Sand as fine aggregate for concrete production needs a feasible substitute due to several environmental issues. In this work, a study of the behavior of self-compacting concrete mixtures under replacement of sand by iron slag from 0.0% to 50.0% of weight and variations of water/cementitious material ratio between 0.3 and 0.5 is presented. Control fresh state tests of Slump flow, T500, J-ring and L-box were determined. In the hardened state, compressive strength was determined and optimization from response surface analysis was performed. The study of the variables in the hardened state was developed based on inferential statistical analyses using central composite design methodology and posterior analyses of variance (ANOVA). An increase in the compressive strength up to 50% higher than control mixtures at 7, 14, and 28 days of maturity was the most relevant result regarding the presence of iron slag as replacement of natural sand. Considering the obtained result, it is possible to infer that iron slag is an acceptable alternative replacement material of the natural fine aggregate to be used in structural concrete.

Keywords: ANOVA, iron slag, response surface analysis, self-compacting concrete

Procedia PDF Downloads 144
18674 A Problem with IFOC and a New PWM Based 180 Degree Conduction Mode

Authors: Usman Nasir, Minxiao Han, S. M. R. Kazmi

Abstract:

Three phase inverters being used today are based on field orientation control (FOC) and sine wave PWM (SPWM) techniques because 120 degree or 180 degree conduction methods produce high value of THD (total harmonic distortion) in the power system. The indirect field orientation control (IFOC) method is difficult to implement in real systems due to speed sensor accuracy issue. This paper discusses the problem with IFOC and a PWM based 180 degree conduction mode for the three phase inverter. The modified control method improves THD and this paper also compares the results obtained using modified control method with the conventional 180 degree conduction mode.

Keywords: three phase inverters, IFOC, THD, sine wave PWM (SPWM)

Procedia PDF Downloads 426
18673 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach

Procedia PDF Downloads 97
18672 Optimization of the Transfer Molding Process by Implementation of Online Monitoring Techniques for Electronic Packages

Authors: Burcu Kaya, Jan-Martin Kaiser, Karl-Friedrich Becker, Tanja Braun, Klaus-Dieter Lang

Abstract:

Quality of the molded packages is strongly influenced by the process parameters of the transfer molding. To achieve a better package quality and a stable transfer molding process, it is necessary to understand the influence of the process parameters on the package quality. This work aims to comprehend the relationship between the process parameters, and to identify the optimum process parameters for the transfer molding process in order to achieve less voids and wire sweep. To achieve this, a DoE is executed for process optimization and a regression analysis is carried out. A systematic approach is represented to generate models which enable an estimation of the number of voids and wire sweep. Validation experiments are conducted to verify the model and the results are presented.

Keywords: dielectric analysis, electronic packages, epoxy molding compounds, transfer molding process

Procedia PDF Downloads 382
18671 Analyzing the Effectiveness of Different Testing Techniques in Ensuring Software Quality

Authors: R. M. P. C. Bandara, M. L. L. Weerasinghe, K. T. C. R. Kumari, A. G. D. R. Hansika, D. I. De Silva, D. M. T. H. Dias

Abstract:

Software testing is an essential process in software development that aims to identify defects and ensure that software is functioning as intended. Various testing techniques are employed to achieve this goal, but the effectiveness of these techniques varies. This research paper analyzes the effectiveness of different testing techniques in ensuring software quality. The paper explores different testing techniques, including manual and automated testing, and evaluates their effectiveness in terms of identifying defects, reducing the number of defects in software, and ensuring that software meets its functional and non-functional requirements. Moreover, the paper will also investigate the impact of factors such as testing time, test coverage, and testing environment on the effectiveness of these techniques. This research aims to provide valuable insights into the effectiveness of different testing techniques, enabling software development teams to make informed decisions about the testing approach that is best suited to their needs. By improving testing techniques, the number of defects in software can be reduced, enhancing the quality of software and ultimately providing better software for users.

Keywords: software testing life cycle, software testing techniques, software testing strategies, effectiveness, software quality

Procedia PDF Downloads 84
18670 A Review of the Run to Run (R to R) Control in the Manufacturing Processes

Authors: Khalil Aghapouramin, Mostafa Ranjbar

Abstract:

Run- to- Run (R2 R) control was developed in order to monitor and control different semiconductor manufacturing processes based upon the fundamental engineering frameworks. This technology allows rectification in the optimum direction. This control always had a significant potency in which was appeared in a variety of processes. The term run to run refers to the case where the act of control would take with the aim of getting batches of silicon wafers which produced in a manufacturing process. In the present work, a brief review about run-to-run control investigated which mainly is effective in the manufacturing process.

Keywords: Run-to-Run (R2R) control, manufacturing, process in engineering, manufacturing controls

Procedia PDF Downloads 493
18669 Comparative Study of Learning Achievement via Jigsaw I and IV Techniques

Authors: Phongkon Weerpiput

Abstract:

This research study aimed to compare learning achievement between Jigsaw I and jigsaw IV techniques. The target group was 70 Thai major sophomores enrolled in a course entitled Foreign Language in Thai at the Faculty of Education, Suan Sunandha Rajabhat University. The research methodology was quasi-experimental design. A control group was given the Jigsaw I technique while an experimental group experienced the Jigsaw IV technique. The treatment content focused on Khmer loanwords in Thai language executed for a period of 3 hours per week for total of 3 weeks. The instruments included learning management plans and multiple-choice test items. The result yields no significant difference at level .05 between learning achievement of both techniques.

Keywords: Jigsaw I technique, Jigsaw IV technique, learning achievement, major sophomores

Procedia PDF Downloads 287
18668 Modeling and Optimization of Nanogenerator for Energy Harvesting

Authors: Fawzi Srairi, Abderrahmane Dib

Abstract:

Recently, the desire for a self-powered micro and nanodevices has attracted a great interest of using sustainable energy sources. Further, the ultimate goal of nanogenerator is to harvest energy from the ambient environment in which a self-powered device based on these generators is needed. With the development of nanogenerator-based circuits design and optimization, the building of new device simulator is necessary for the study and the synthesis of electromechanical parameters of this type of models. In the present article, both numerical modeling and optimization of piezoelectric nanogenerator based on zinc oxide have been carried out. They aim to improve the electromechanical performances, robustness, and synthesis process for nanogenerator. The proposed model has been developed for a systematic study of the nanowire morphology parameters in stretching mode. In addition, heuristic optimization technique, namely, particle swarm optimization has been implemented for an analytic modeling and an optimization of nanogenerator-based process in stretching mode. Moreover, the obtained results have been tested and compared with conventional model where a good agreement has been obtained for excitation mode. The developed nanogenerator model can be generalized, extended and integrated into simulators devices to study nanogenerator-based circuits.

Keywords: electrical potential, heuristic algorithms, numerical modeling, nanogenerator

Procedia PDF Downloads 308
18667 Long-Term Results of Coronary Bifurcation Stenting with Drug Eluting Stents

Authors: Piotr Muzyk, Beata Morawiec, Mariusz Opara, Andrzej Tomasik, Brygida Przywara-Chowaniec, Wojciech Jachec, Ewa Nowalany-Kozielska, Damian Kawecki

Abstract:

Background: Coronary bifurcation is one of the most complex lesion in patients with coronary ar-tery disease. Provisional T-stenting is currently one of the recommended techniques. The aim was to assess optimal methods of treatment in the era of drug-eluting stents (DES). Methods: The regis-try consisted of data from 1916 patients treated with coronary percutaneous interventions (PCI) using either first- or second-generation DES. Patients with bifurcation lesion entered the analysis. Major adverse cardiac and cardiovascular events (MACCE) were assessed at one year of follow-up and comprised of death, acute myocardial infarction (AMI), repeated PCI (re-PCI) of target ves-sel and stroke. Results: Of 1916 registry patients, 204 patients (11%) were diagnosed with bifurcation lesion >50% and entered the analysis. The most commonly used technique was provi-sional T-stenting (141 patients, 69%). Optimization with kissing-balloons technique was performed in 45 patients (22%). In 59 patients (29%) second-generation DES was implanted, while in 112 pa-tients (55%), first-generation DES was used. In 33 patients (16%) both types of DES were used. The procedure success rate (TIMI 3 flow) was achieved in 98% of patients. In one-year follow-up, there were 39 MACCE (19%) (9 deaths, 17 AMI, 16 re-PCI and 5 strokes). Provisional T-stenting resulted in similar rate of MACCE to other techniques (16% vs. 5%, p=0.27) and similar occurrence of re-PCI (6% vs. 2%, p=0.78). The results of post-PCI kissing-balloon technique gave equal out-comes with 3% vs. 16% of MACCE in patients in whom no optimization technique was used (p=0.39). The type of implanted DES (second- vs. first-generation) had no influence on MACCE (4% vs 14%, respectively, p=0.12) and re-PCI (1.7% vs. 51% patients, respectively, p=0.28). Con-clusions: The treatment of bifurcation lesions with PCI represent high-risk procedures with high rate of MACCE. Stenting technique, optimization of PCI and the generation of implanted stent should be personalized for each case to balance risk of the procedure. In this setting, the operator experience might be the factor of better outcome, which should be further investigated.

Keywords: coronary bifurcation, drug eluting stents, long-term follow-up, percutaneous coronary interventions

Procedia PDF Downloads 204
18666 Fault-Tolerant Control Study and Classification: Case Study of a Hydraulic-Press Model Simulated in Real-Time

Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Iker Elorza, Ana Maria Macarulla

Abstract:

Society demands more reliable manufacturing processes capable of producing high quality products in shorter production cycles. New control algorithms have been studied to satisfy this paradigm, in which Fault-Tolerant Control (FTC) plays a significant role. It is suitable to detect, isolate and adapt a system when a harmful or faulty situation appears. In this paper, a general overview about FTC characteristics are exposed; highlighting the properties a system must ensure to be considered faultless. In addition, a research to identify which are the main FTC techniques and a classification based on their characteristics is presented in two main groups: Active Fault-Tolerant Controllers (AFTCs) and Passive Fault-Tolerant Controllers (PFTCs). AFTC encompasses the techniques capable of re-configuring the process control algorithm after the fault has been detected, while PFTC comprehends the algorithms robust enough to bypass the fault without further modifications. The mentioned re-configuration requires two stages, one focused on detection, isolation and identification of the fault source and the other one in charge of re-designing the control algorithm by two approaches: fault accommodation and control re-design. From the algorithms studied, one has been selected and applied to a case study based on an industrial hydraulic-press. The developed model has been embedded under a real-time validation platform, which allows testing the FTC algorithms and analyse how the system will respond when a fault arises in similar conditions as a machine will have on factory. One AFTC approach has been picked up as the methodology the system will follow in the fault recovery process. In a first instance, the fault will be detected, isolated and identified by means of a neural network. In a second instance, the control algorithm will be re-configured to overcome the fault and continue working without human interaction.

Keywords: fault-tolerant control, electro-hydraulic actuator, fault detection and isolation, control re-design, real-time

Procedia PDF Downloads 177
18665 An Ant Colony Optimization Approach for the Pollution Routing Problem

Authors: P. Parthiban, Sonu Rajak, N. Kannan, R. Dhanalakshmi

Abstract:

This paper deals with the Vehicle Routing Problem (VRP) with environmental considerations which is called Pollution Routing Problem (PRP). The objective is to minimize the operational and environmental costs. It consists of routing a number of vehicles to serve a set of customers, and determining fuel consumption, driver wages and their speed on each route segment, while respecting the capacity constraints and time windows. In this context, we presented an Ant Colony Optimization (ACO) approach, combined with a Speed Optimization Algorithm (SOA) to solve the PRP. The proposed solution method consists of two stages. Stage one is to solve a Vehicle Routing Problem with Time Window (VRPTW) using ACO and in the second stage a SOA is run on the resulting VRPTW solutions. Given a vehicle route, the SOA consists of finding the optimal speed on each arc of the route in order to minimize an objective function comprising fuel consumption costs and driver wages. The proposed algorithm tested on benchmark problem, the preliminary results show that the proposed algorithm is able to provide good solutions.

Keywords: ant colony optimization, CO2 emissions, combinatorial optimization, speed optimization, vehicle routing

Procedia PDF Downloads 322
18664 A Holistic Approach for Technical Product Optimization

Authors: Harald Lang, Michael Bader, A. Buchroithner

Abstract:

Holistic methods covering the development process as a whole – e.g. systems engineering – have established themselves in product design. However, technical product optimization, representing improvements in efficiency and/or minimization of loss, usually applies to single components of a system. A holistic approach is being defined based on a hierarchical point of view of systems engineering. This is subsequently presented using the example of an electromechanical flywheel energy storage system for automotive applications.

Keywords: design, product development, product optimization, systems engineering

Procedia PDF Downloads 624
18663 Markowitz and Implementation of a Multi-Objective Evolutionary Technique Applied to the Colombia Stock Exchange (2009-2015)

Authors: Feijoo E. Colomine Duran, Carlos E. Peñaloza Corredor

Abstract:

There modeling component selection financial investment (Portfolio) a variety of problems that can be addressed with optimization techniques under evolutionary schemes. For his feature, the problem of selection of investment components of a dichotomous relationship between two elements that are opposed: The Portfolio Performance and Risk presented by choosing it. This relationship was modeled by Markowitz through a media problem (Performance) - variance (risk), ie must Maximize Performance and Minimize Risk. This research included the study and implementation of multi-objective evolutionary techniques to solve these problems, taking as experimental framework financial market equities Colombia Stock Exchange between 2009-2015. Comparisons three multiobjective evolutionary algorithms, namely the Nondominated Sorting Genetic Algorithm II (NSGA-II), the Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Indicator-Based Selection in Multiobjective Search (IBEA) were performed using two measures well known performance: The Hypervolume indicator and R_2 indicator, also it became a nonparametric statistical analysis and the Wilcoxon rank-sum test. The comparative analysis also includes an evaluation of the financial efficiency of the investment portfolio chosen by the implementation of various algorithms through the Sharpe ratio. It is shown that the portfolio provided by the implementation of the algorithms mentioned above is very well located between the different stock indices provided by the Colombia Stock Exchange.

Keywords: finance, optimization, portfolio, Markowitz, evolutionary algorithms

Procedia PDF Downloads 302
18662 Study on Control Techniques for Adaptive Impact Mitigation

Authors: Rami Faraj, Cezary Graczykowski, Błażej Popławski, Grzegorz Mikułowski, Rafał Wiszowaty

Abstract:

Progress in the field of sensors, electronics and computing results in more and more often applications of adaptive techniques for dynamic response mitigation. When it comes to systems excited with mechanical impacts, the control system has to take into account the significant limitations of actuators responsible for system adaptation. The paper provides a comprehensive discussion of the problem of appropriate design and implementation of adaptation techniques and mechanisms. Two case studies are presented in order to compare completely different adaptation schemes. The first example concerns a double-chamber pneumatic shock absorber with a fast piezo-electric valve and parameters corresponding to the suspension of a small unmanned aerial vehicle, whereas the second considered system is a safety air cushion applied for evacuation of people from heights during a fire. For both systems, it is possible to ensure adaptive performance, but a realization of the system’s adaptation is completely different. The reason for this is technical limitations corresponding to specific types of shock-absorbing devices and their parameters. Impact mitigation using a pneumatic shock absorber corresponds to much higher pressures and small mass flow rates, which can be achieved with minimal change of valve opening. In turn, mass flow rates in safety air cushions relate to gas release areas counted in thousands of sq. cm. Because of these facts, both shock-absorbing systems are controlled based on completely different approaches. Pneumatic shock-absorber takes advantage of real-time control with valve opening recalculated at least every millisecond. In contrast, safety air cushion is controlled using the semi-passive technique, where adaptation is provided using prediction of the entire impact mitigation process. Similarities of both approaches, including applied models, algorithms and equipment, are discussed. The entire study is supported by numerical simulations and experimental tests, which prove the effectiveness of both adaptive impact mitigation techniques.

Keywords: adaptive control, adaptive system, impact mitigation, pneumatic system, shock-absorber

Procedia PDF Downloads 90
18661 Use of Transportation Networks to Optimize The Profit Dynamics of the Product Distribution

Authors: S. Jayasinghe, R. B. N. Dissanayake

Abstract:

Optimization modelling together with the Network models and Linear Programming techniques is a powerful tool in problem solving and decision making in real world applications. This study developed a mathematical model to optimize the net profit by minimizing the transportation cost. This model focuses the transportation among decentralized production plants to a centralized distribution centre and then the distribution among island wide agencies considering the customer satisfaction as a requirement. This company produces basically 9 types of food items with 82 different varieties and 4 types of non-food items with 34 different varieties. Among 6 production plants, 4 were located near the city of Mawanella and the other 2 were located in Galewala and Anuradhapura cities which are 80 km and 150 km away from Mawanella respectively. The warehouse located in the Mawanella was the main production plant and also the only distribution plant. This plant distributes manufactured products to 39 agencies island-wide. The average values and average amount of the goods for 6 consecutive months from May 2013 to October 2013 were collected and then average demand values were calculated. The following constraints are used as the necessary requirement to satisfy the optimum condition of the model; there was one source, 39 destinations and supply and demand for all the agencies are equal. Using transport cost for a kilometer, total transport cost was calculated. Then the model was formulated using distance and flow of the distribution. Network optimization and linear programming techniques were used to originate the model while excel solver is used in solving. Results showed that company requires total transport cost of Rs. 146, 943, 034.50 to fulfil the customers’ requirement for a month. This is very much less when compared with data without using the model. Model also proved that company can reduce their transportation cost by 6% when distributing to island-wide customers. Company generally satisfies their customers’ requirements by 85%. This satisfaction can be increased up to 97% by using this model. Therefore this model can be used by other similar companies in order to reduce the transportation cost.

Keywords: mathematical model, network optimization, linear programming

Procedia PDF Downloads 346
18660 The Effects of Key Factors in Traffic-Oriented Road Alignment Adjustment for Low Emissions Profile: A Case Study in Norway

Authors: Gaylord K. Booto, Marinelli Giuseppe, Helge Brattebø, Rolf A. Bohne

Abstract:

Emissions reduction has emerged among the principal targets in the process of planning and designing road alignments today. Intelligent road design methods that can result in optimized alignment constitute concrete and innovative responses towards better alternatives and more sustainable road infrastructures. As the largest amount of emissions of road infrastructures occur in the operation stage, it becomes very important to consider traffic weight and distribution in alignment design process. This study analyzes the effects of four traffic factors (i.e. operating speed, vehicle category, technology and fuel type) on adjusting the vertical alignment of a given road, using optimization techniques. Further, factors’ effects are assessed qualitatively and quantitatively, and the emission profiles of resulting alignment alternatives are compared.

Keywords: alignment adjustment, emissions reduction, optimization, traffic-oriented

Procedia PDF Downloads 370
18659 A Review of Soil Stabilization Techniques

Authors: Amin Chegenizadeh, Mahdi Keramatikerman

Abstract:

Soil stabilization is a crucial issue that helps to remove of risks associated with the soil failure. As soil has applications in different industries such as construction, pavement and railways, the means of stabilizing soil are varied. This paper will focus on the techniques of stabilizing soils. It will do so by gathering useful information on the state of the art in the field of soil stabilization, investigating both traditional and advanced methods. To inquire into the current knowledge, the existing literature will be divided into categories addressing the different techniques.

Keywords: review, soil, stabilization, techniques

Procedia PDF Downloads 545
18658 Increasing Performance of Autopilot Guided Small Unmanned Helicopter

Authors: Tugrul Oktay, Mehmet Konar, Mustafa Soylak, Firat Sal, Murat Onay, Orhan Kizilkaya

Abstract:

In this paper, autonomous performance of a small manufactured unmanned helicopter is tried to be increased. For this purpose, a small unmanned helicopter is manufactured in Erciyes University, Faculty of Aeronautics and Astronautics. It is called as ZANKA-Heli-I. For performance maximization, autopilot parameters are determined via minimizing a cost function consisting of flight performance parameters such as settling time, rise time, overshoot during trajectory tracking. For this purpose, a stochastic optimization method named as simultaneous perturbation stochastic approximation is benefited. Using this approach, considerable autonomous performance increase (around %23) is obtained.

Keywords: small helicopters, hierarchical control, stochastic optimization, autonomous performance maximization, autopilots

Procedia PDF Downloads 582
18657 Fuzzy Control and Pertinence Functions

Authors: Luiz F. J. Maia

Abstract:

This paper presents an approach to fuzzy control, with the use of new pertinence functions, applied in the case of an inverted pendulum. Appropriate definitions of pertinence functions to fuzzy sets make possible the implementation of the controller with only one control rule, resulting in a smooth control surface. The fuzzy control system can be implemented with analog devices, affording a true real-time performance.

Keywords: control surface, fuzzy control, Inverted pendulum, pertinence functions

Procedia PDF Downloads 449
18656 Optimization of Proton Exchange Membrane Fuel Cell Parameters Based on Modified Particle Swarm Algorithms

Authors: M. Dezvarei, S. Morovati

Abstract:

In recent years, increasing usage of electrical energy provides a widespread field for investigating new methods to produce clean electricity with high reliability and cost management. Fuel cells are new clean generations to make electricity and thermal energy together with high performance and no environmental pollution. According to the expansion of fuel cell usage in different industrial networks, the identification and optimization of its parameters is really significant. This paper presents optimization of a proton exchange membrane fuel cell (PEMFC) parameters based on modified particle swarm optimization with real valued mutation (RVM) and clonal algorithms. Mathematical equations of this type of fuel cell are presented as the main model structure in the optimization process. Optimized parameters based on clonal and RVM algorithms are compared with the desired values in the presence and absence of measurement noise. This paper shows that these methods can improve the performance of traditional optimization methods. Simulation results are employed to analyze and compare the performance of these methodologies in order to optimize the proton exchange membrane fuel cell parameters.

Keywords: clonal algorithm, proton exchange membrane fuel cell (PEMFC), particle swarm optimization (PSO), real-valued mutation (RVM)

Procedia PDF Downloads 351
18655 Hybridized Simulated Annealing with Chemical Reaction Optimization for Solving to Sequence Alignment Problem

Authors: Ernesto Linan, Linda Cruz, Lucero Becerra

Abstract:

In this paper, a new hybridized algorithm based on Chemical Reaction Optimization and Simulated Annealing is proposed to solve the alignment sequence Problem. The Chemical Reaction Optimization is a population-based meta-heuristic algorithm based on the principles of a chemical reaction. Simulated Annealing is applied to solve a large number of combinatorial optimization problems of general-purpose. In this paper, we propose hybridization between Chemical Reaction Optimization algorithm and Simulated Annealing in order to solve the Sequence Alignment Problem. An initial population of molecules is defined at beginning of the proposed algorithm, where each molecule represents a sequence alignment problem. In order to simulate inter-molecule collisions, the process of Chemical Reaction is placed inside the Metropolis Cycle at certain values of temperature. Inside this cycle, change of molecules is done due to collisions; some molecules are accepted by applying Boltzmann probability. The results with the hybrid scheme are better than the results obtained separately.

Keywords: chemical reaction optimization, sequence alignment problem, simulated annealing algorithm, metaheuristics

Procedia PDF Downloads 211
18654 Fault Location Identification in High Voltage Transmission Lines

Authors: Khaled M. El Naggar

Abstract:

This paper introduces a digital method for fault section identification in transmission lines. The method uses digital set of the measured short circuit current to locate faults in electrical power systems. The digitized current is used to construct a set of overdetermined system of equations. The problem is then constructed and solved using the proposed digital optimization technique to find the fault distance. The proposed optimization methodology is an application of simulated annealing optimization technique. The method is tested using practical case study to evaluate the proposed method. The accurate results obtained show that the algorithm can be used as a powerful tool in the area of power system protection.

Keywords: optimization, estimation, faults, measurement, high voltage, simulated annealing

Procedia PDF Downloads 392
18653 Optimization of Process Parameters for Rotary Electro Discharge Machining Using EN31 Tool Steel: Present and Future Scope

Authors: Goutam Dubey, Varun Dutta

Abstract:

In the present study, rotary-electro discharge machining of EN31 tool steel has been carried out using a pure copper electrode. Various response variables such as Material Removal Rate (MRR), Tool Wear Rate (TWR), and Machining Rate (MR) have been studied against the selected process variables. The selected process variables were peak current (I), voltage (V), duty cycle, and electrode rotation (N). EN31 Tool Steel is hardened, high carbon steel which increases its hardness and reduces its machinability. Reduced machinability means it not economical to use conventional methods to machine EN31 Tool Steel. So, non-conventional methods play an important role in machining of such materials.

Keywords: electric discharge machining, EDM, tool steel, tool wear rate, optimization techniques

Procedia PDF Downloads 202
18652 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System

Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko

Abstract:

Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.

Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic

Procedia PDF Downloads 61
18651 Circular Approximation by Trigonometric Bézier Curves

Authors: Maria Hussin, Malik Zawwar Hussain, Mubashrah Saddiqa

Abstract:

We present a trigonometric scheme to approximate a circular arc with its two end points and two end tangents/unit tangents. A rational cubic trigonometric Bézier curve is constructed whose end control points are defined by the end points of the circular arc. Weight functions and the remaining control points of the cubic trigonometric Bézier curve are estimated by variational approach to reproduce a circular arc. The radius error is calculated and found less than the existing techniques.

Keywords: control points, rational trigonometric Bézier curves, radius error, shape measure, weight functions

Procedia PDF Downloads 475
18650 Optimality Conditions for Weak Efficient Solutions Generated by a Set Q in Vector Spaces

Authors: Elham Kiyani, S. Mansour Vaezpour, Javad Tavakoli

Abstract:

In this paper, we first introduce a new distance function in a linear space not necessarily endowed with a topology. The algebraic concepts of interior and closure are useful to study optimization problems without topology. So, we define Q-weak efficient solutions generated by the algebraic interior of a set Q, where Q is not necessarily convex. Studying nonconvex vector optimization is valuable since, for a convex cone K in topological spaces, we have int(K)=cor(K), which means that topological interior of a convex cone K is equal to the algebraic interior of K. Moreover, we used the scalarization technique including the distance function generated by the vectorial closure of a set to characterize these Q-weak efficient solutions. Scalarization is a useful approach for solving vector optimization problems. This technique reduces the optimization problem to a scalar problem which tends to be an optimization problem with a real-valued objective function. For instance, Q-weak efficient solutions of vector optimization problems can be characterized and computed as solutions of appropriate scalar optimization problems. In the convex case, linear functionals can be used as objective functionals of the scalar problems. But in the nonconvex case, we should present a suitable objective function. It is the aim of this paper to present a new distance function that be useful to obtain sufficient and necessary conditions for Q-weak efficient solutions of general optimization problems via scalarization.

Keywords: weak efficient, algebraic interior, vector closure, linear space

Procedia PDF Downloads 228
18649 A Simulated Evaluation of Model Predictive Control

Authors: Ahmed AlNouss, Salim Ahmed

Abstract:

Process control refers to the techniques to control the variables in a process in order to maintain them at their desired values. Advanced process control (APC) is a broad term within the domain of control where it refers to different kinds of process control and control related tools, for example, model predictive control (MPC), statistical process control (SPC), fault detection and classification (FDC) and performance assessment. APC is often used for solving multivariable control problems and model predictive control (MPC) is one of only a few advanced control methods used successfully in industrial control applications. Advanced control is expected to bring many benefits to the plant operation; however, the extent of the benefits is plant specific and the application needs a large investment. This requires an analysis of the expected benefits before the implementation of the control. In a real plant simulation studies are carried out along with some experimentation to determine the improvement in the performance of the plant due to advanced control. In this research, such an exercise is undertaken to realize the needs of APC application. The main objectives of the paper are as follows: (1) To apply MPC to a number of simulations set up to realize the need of MPC by comparing its performance with that of proportional integral derivatives (PID) controllers. (2) To study the effect of controller parameters on control performance. (3) To develop appropriate performance index (PI) to compare the performance of different controller and develop novel idea to present tuning map of a controller. These objectives were achieved by applying PID controller and a special type of MPC which is dynamic matrix control (DMC) on the multi-tanks process simulated in loop-pro. Then the controller performance has been evaluated by changing the controller parameters. This performance was based on special indices related to the difference between set point and process variable in order to compare the both controllers. The same principle was applied for continuous stirred tank heater (CSTH) and continuous stirred tank reactor (CSTR) processes simulated in Matlab. However, in these processes some developed programs were written to evaluate the performance of the PID and MPC controllers. Finally these performance indices along with their controller parameters were plotted using special program called Sigmaplot. As a result, the improvement in the performance of the control loops was quantified using relevant indices to justify the need and importance of advanced process control. Also, it has been approved that, by using appropriate indices, predictive controller can improve the performance of the control loop significantly.

Keywords: advanced process control (APC), control loop, model predictive control (MPC), proportional integral derivatives (PID), performance indices (PI)

Procedia PDF Downloads 407
18648 Technical and Practical Aspects of Sizing a Autonomous PV System

Authors: Abdelhak Bouchakour, Mustafa Brahami, Layachi Zaghba

Abstract:

The use of photovoltaic energy offers an inexhaustible supply of energy but also a clean and non-polluting energy, which is a definite advantage. The geographical location of Algeria promotes the development of the use of this energy. Indeed, given the importance of the intensity of the radiation received and the duration of sunshine. For this reason, the objective of our work is to develop a data-processing tool (software) of calculation and optimization of dimensioning of the photovoltaic installations. Our approach of optimization is basing on mathematical models, which amongst other things describe the operation of each part of the installation, the energy production, the storage and the consumption of energy.

Keywords: solar panel, solar radiation, inverter, optimization

Procedia PDF Downloads 608
18647 A Query Optimization Strategy for Autonomous Distributed Database Systems

Authors: Dina K. Badawy, Dina M. Ibrahim, Alsayed A. Sallam

Abstract:

Distributed database is a collection of logically related databases that cooperate in a transparent manner. Query processing uses a communication network for transmitting data between sites. It refers to one of the challenges in the database world. The development of sophisticated query optimization technology is the reason for the commercial success of database systems, which complexity and cost increase with increasing number of relations in the query. Mariposa, query trading and query trading with processing task-trading strategies developed for autonomous distributed database systems, but they cause high optimization cost because of involvement of all nodes in generating an optimal plan. In this paper, we proposed a modification on the autonomous strategy K-QTPT that make the seller’s nodes with the lowest cost have gradually high priorities to reduce the optimization time. We implement our proposed strategy and present the results and analysis based on those results.

Keywords: autonomous strategies, distributed database systems, high priority, query optimization

Procedia PDF Downloads 523