Search results for: autoregressive distributed lag
1733 The Potential of Hybrid Microgrids for Mitigating Power Outage in Lebanon
Abstract:
Lebanon electricity crisis continues to escalate. Rationing hours still apply across the country but with different rates. The capital Beirut is subjected to 3 hours cut while other cities, town and villages may endure 9 to 14 hours of power shortage. To mitigate this situation, private diesel generators distributed illegally all over the country are being used to bridge the gap in power supply. Almost each building in large cities has its own generator and individual villages may have more than one generator supplying their loads. These generators together with their private networks form incomplete and ill-designed and managed microgrids (MG) but can be further developed to become renewable energy-based MG operating in island- or grid-connected modes. This paper will analyze the potential of introducing MG to help resolve the energy crisis in Lebanon. It will investigate the usefulness of developing MG under the prevailing situation of existing private power supply service providers and in light of the developed national energy policy that supports renewable energy development. A case study on a distribution feeder in a rural area will be analyzed using HOMER software to demonstrate the usefulness of introducing photovoltaic (PV) arrays along the existing diesel generators for all the stakeholders; namely, the developers, the customers, the utility and the community at large. Policy recommendations regarding MG development in Lebanon will be presented on the basis of the accumulated experience in private generation and the privatization and public-private partnership laws.Keywords: decentralized systems, distributed generation, microgrids, renewable energy
Procedia PDF Downloads 1341732 Fault Tolerant (n,k)-star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems
Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj K. Biswas, Frank Ferrese
Abstract:
This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.Keywords: (n, k)-star topology, fault tolerance, conditional diagnosability, multi-agent system, automated power system
Procedia PDF Downloads 5121731 Fault Tolerant (n, k)-Star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems
Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj Biswas, Frank Ferrese
Abstract:
This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.Keywords: (n, k)-star topology, fault tolerance, conditional diagnosability, multi-agent system, automated power system
Procedia PDF Downloads 4651730 The Effects of Interest Rates on Islamic Banks in a Dual Banking System: Empirical Evidence from Saudi Arabia
Authors: Mouldi Djelassi, Jamel Boukhatem
Abstract:
Background: A relation has been established between Islamic banks' activities and interest rates. The aim of this study was to explore the impact of interest rates on the deposits and loans held by Islamic and conventional banks in Saudi Arabia. Methods: A time series data was performed over the period 2008Q1-2020Q2 on eight conventional banks and four Islamic banks. The impacts of interest rate shocks on deposits and loans were identified through panel vector autoregressive models. Results: Impulse response function analysis showed that increasing interest rates reduce loans and conventional deposits. For Islamic banks, deposits are more affected by interest rates than lending. Variance decomposition analysis revealed that deposits contribute to 61% of the Islamic financing variation and only 25% of the conventional loans. Conclusion: Interest rates impacted Islamic banks especially through deposits, which is inconsistent with the theoretical framework. Islamic deposits played an important role in Islamic financing variation and may provide to be a channel for the transmission of the monetary policy in a dual banking system. Monetary policy in Saudi Arabia works in part through “credits” (conventional bank credits) as well as through “money” (conventional and Islamic bank deposits).Keywords: Islamic banking, interest rates, monetary policy transmission, panel VAR
Procedia PDF Downloads 1111729 Advanced Numerical and Analytical Methods for Assessing Concrete Sewers and Their Remaining Service Life
Authors: Amir Alani, Mojtaba Mahmoodian, Anna Romanova, Asaad Faramarzi
Abstract:
Pipelines are extensively used engineering structures which convey fluid from one place to another. Most of the time, pipelines are placed underground and are encumbered by soil weight and traffic loads. Corrosion of pipe material is the most common form of pipeline deterioration and should be considered in both the strength and serviceability analysis of pipes. The study in this research focuses on concrete pipes in sewage systems (concrete sewers). This research firstly investigates how to involve the effect of corrosion as a time dependent process of deterioration in the structural and failure analysis of this type of pipe. Then three probabilistic time dependent reliability analysis methods including the first passage probability theory, the gamma distributed degradation model and the Monte Carlo simulation technique are discussed and developed. Sensitivity analysis indexes which can be used to identify the most important parameters that affect pipe failure are also discussed. The reliability analysis methods developed in this paper contribute as rational tools for decision makers with regard to the strengthening and rehabilitation of existing pipelines. The results can be used to obtain a cost-effective strategy for the management of the sewer system.Keywords: reliability analysis, service life prediction, Monte Carlo simulation method, first passage probability theory, gamma distributed degradation model
Procedia PDF Downloads 4571728 Exploring the Influence of Wind on Wildfire Behavior in China: A Data-Driven Study Using Machine Learning and Remote Sensing
Authors: Rida Kanwal, Wang Yuhui, Song Weiguo
Abstract:
Wildfires are one of the most prominent threats to ecosystems, human health, and economic activities, with wind acting as a critical driving factor. This study combines machine learning (ML) and remote sensing (RS) to assess the effects of wind on wildfires in Chongqing Province from August 16-23, 2022. Landsat 8 satellite images were used to estimate the difference normalized burn ratio (dNBR), representing prefire and postfire vegetation conditions. Wind data was analyzed through geographic information system (GIS) mapping. Correlation analysis between wind speed and fire radiative power (FRP) revealed a significant relationship. An autoregressive integrated moving average (ARIMA) model was developed for wind forecasting, and linear regression was applied to determine the effect of wind speed on FRP. The results identified high wind speed as a key factor contributing to the surge in FRP. Wind-rose plots showed winds blowing to the northwest (NW), aligning with the wildfire spread. This model was further validated with data from other provinces across China. This study integrated ML, RS, and GIS to analyze wildfire behavior, providing effective strategies for prediction and management.Keywords: wildfires, machine learning, remote sensing, wind speed, GIS, wildfire behavior
Procedia PDF Downloads 201727 Evaluation of Modulus of Elasticity by Non-Destructive Method of Hybrid Fiber Reinforced Concrete
Authors: Erjola Reufi, Thomas Beer
Abstract:
Plain, unreinforced concrete is a brittle material, with a low tensile strength, limited ductility and little resistance to cracking. In order to improve the inherent tensile strength of concrete there is a need of multi directional and closely spaced reinforcement, which can be provided in the form of randomly distributed fibers. Fiber reinforced concrete (FRC) is a composite material consisting of cement, sand, coarse aggregate, water and fibers. In this composite material, short discrete fibers are randomly distributed throughout the concrete mass. The behavioral efficiency of this composite material is far superior to that of plain concrete and many other construction materials of equal cost. The present experimental study considers the effect of steel fibers and polypropylene fiber on the modulus of elasticity of concrete. Hook end steel fibers of length 5 cm and 3 cm at volume fraction of 0.25%, 0.5% and 1.% were used. Also polypropylene fiber of length 12, 6, 3 mm at volume fraction 0.1, 0.25, and 0.4 % were used. Fifteen mixtures has been prepared to evaluate the effect of fiber on modulus of elasticity of concrete. Ultrasonic pulse velocity (UPV) and resonant frequency methods which are two non-destructive testing techniques have been used to measure the elastic properties of fiber reinforced concrete. This study found that ultrasonic wave propagation is the most reliable, easy and cost effective testing technique to use in the determination of the elastic properties of the FRC mix used in this study.Keywords: fiber reinforced concrete(FRC), polypropylene fiber, resonance, ultrasonic pulse velocity, steel fiber
Procedia PDF Downloads 3021726 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems
Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano
Abstract:
The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.Keywords: environmental internet of things, EIoT, machine learning, anomaly detection, environment monitoring
Procedia PDF Downloads 1511725 The impact of Climate Change and Land use/land Cover Change (LUCC) on Carbon Storage in Arid and Semi-Arid Regions of China
Authors: Xia Fang
Abstract:
Arid and semiarid areas of China (ASAC) have experienced significant land-use/cover changes (LUCC), along with intensified climate change. However, LUCC and climate changes and their individual and interactive effects on carbon stocks have not yet been fully understood in the ASAC. This study analyses the carbon stocks in the ASAC during 1980 - 2020 using the specific arid ecosystem model (AEM), and investigates the effects of LUCC and climate change on carbon stock trends. The results indicate that in the past 41 years, the ASAC carbon pool experienced an overall growth trend, with an increase of 182.03 g C/m2. Climatic factors (+291.99 g C/m2), especially the increase in precipitation, were the main drivers of the carbon pool increase. LUCC decreased the carbon pool (-112.27 g C/m2), mainly due to the decrease in grassland area (-2.77%). The climate-induced carbon sinks were distributed in northern Xinjiang, on the Ordos Plateau, and in Northeast China, while the LUCC-induced carbon sinks mainly occurred on the Ordos Plateau and the North China Plain, resulting in a net decrease in carbon sequestration in these regions according to carbon pool measurements. The study revealed that the combination of climate variability, LUCC, and increasing atmospheric CO2 concentration resulted in an increase of approximately 182.03 g C/m2, which was mainly distributed in eastern Inner Mongolia and the western Qinghai-Tibet Plateau. Our findings are essential for improving theoretical guidance to protect the ecological environment, rationally plan land use, and understand the sustainable development of arid and semiarid zones.Keywords: AEM, climate change, LUCC, carbon stocks
Procedia PDF Downloads 811724 Time and Cost Prediction Models for Language Classification Over a Large Corpus on Spark
Authors: Jairson Barbosa Rodrigues, Paulo Romero Martins Maciel, Germano Crispim Vasconcelos
Abstract:
This paper presents an investigation of the performance impacts regarding the variation of five factors (input data size, node number, cores, memory, and disks) when applying a distributed implementation of Naïve Bayes for text classification of a large Corpus on the Spark big data processing framework. Problem: The algorithm's performance depends on multiple factors, and knowing before-hand the effects of each factor becomes especially critical as hardware is priced by time slice in cloud environments. Objectives: To explain the functional relationship between factors and performance and to develop linear predictor models for time and cost. Methods: the solid statistical principles of Design of Experiments (DoE), particularly the randomized two-level fractional factorial design with replications. This research involved 48 real clusters with different hardware arrangements. The metrics were analyzed using linear models for screening, ranking, and measurement of each factor's impact. Results: Our findings include prediction models and show some non-intuitive results about the small influence of cores and the neutrality of memory and disks on total execution time, and the non-significant impact of data input scale on costs, although notably impacts the execution time.Keywords: big data, design of experiments, distributed machine learning, natural language processing, spark
Procedia PDF Downloads 1201723 Optimal Wind Based DG Placement Considering Monthly Changes Modeling in Wind Speed
Authors: Belal Mohamadi Kalesar, Raouf Hasanpour
Abstract:
Proper placement of Distributed Generation (DG) units such as wind turbine generators in distribution system are still very challenging issue for obtaining their maximum potential benefits because inappropriate placement may increase the system losses. This paper proposes Particle Swarm Optimization (PSO) technique for optimal placement of wind based DG (WDG) in the primary distribution system to reduce energy losses and voltage profile improvement with four different wind levels modeling in year duration. Also, wind turbine is modeled as a DFIG that will be operated at unity power factor and only one wind turbine tower will be considered to install at each bus of network. Finally, proposed method will be implemented on widely used 69 bus power distribution system in MATLAB software environment under four scenario (without, one, two and three WDG units) and for capability test of implemented program it is supposed that all buses of standard system can be candidate for WDG installing (large search space), though this program can consider predetermined number of candidate location in WDG placement to model financial limitation of project. Obtained results illustrate that wind speed increasing in some months will increase output power generated but this can increase / decrease power loss in some wind level, also results show that it is required about 3MW WDG capacity to install in different buses but when this is distributed in overall network (more number of WDG) it can cause better solution from point of view of power loss and voltage profile.Keywords: wind turbine, DG placement, wind levels effect, PSO algorithm
Procedia PDF Downloads 4481722 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection
Authors: S. Shankar Bharathi
Abstract:
Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision
Procedia PDF Downloads 4281721 Genome-Wide Analysis of Long Terminal Repeat (LTR) Retrotransposons in Rabbit (Oryctolagus cuniculus)
Authors: Zeeshan Khan, Faisal Nouroz, Shumaila Noureen
Abstract:
European or common rabbit (Oryctolagus cuniculus) belongs to class Mammalia, order Lagomorpha of family Leporidae. They are distributed worldwide and are native to Europe (France, Spain and Portugal) and Africa (Morocco and Algeria). LTR retrotransposons are major Class I mobile genetic elements of eukaryotic genomes and play a crucial role in genome expansion, evolution and diversification. They were mostly annotated in various genomes by conventional approaches of homology searches, which restricted the annotation of novel elements. Present work involved de novo identification of LTR retrotransposons by LTR_FINDER in haploid genome of rabbit (2247.74 Mb) distributed in 22 chromosomes, of which 7,933 putative full-length or partial copies were identified containing 69.38 Mb of elements, accounting 3.08% of the genome. Highest copy numbers (731) were found on chromosome 7, followed by chromosome 12 (705), while the lowest copy numbers (27) were detected in chromosome 19 with no elements identified from chromosome 21 due to partially sequenced chromosome, unidentified nucleotides (N) and repeated simple sequence repeats (SSRs). The identified elements ranged in sizes from 1.2 - 25.8 Kb with average sizes between 2-10 Kb. Highest percentage (4.77%) of elements was found in chromosome 15, while lowest (0.55%) in chromosome 19. The most frequent tRNA type was Arginine present in majority of the elements. Based on gained results, it was estimated that rabbit exhibits 15,866 copies having 137.73 Mb of elements accounting 6.16% of diploid genome (44 chromosomes). Further molecular analyses will be helpful in chromosomal localization and distribution of these elements on chromosomes.Keywords: rabbit, LTR retrotransposons, genome, chromosome
Procedia PDF Downloads 1491720 Reimagine and Redesign: Augmented Reality Digital Technologies and 21st Century Education
Authors: Jasmin Cowin
Abstract:
Augmented reality digital technologies, big data, and the need for a teacher workforce able to meet the demands of a knowledge-based society are poised to lead to major changes in the field of education. This paper explores applications and educational use cases of augmented reality digital technologies for educational organizations during the Fourth Industrial Revolution. The Fourth Industrial Revolution requires vision, flexibility, and innovative educational conduits by governments and educational institutions to remain competitive in a global economy. Educational organizations will need to focus on teaching in and for a digital age to continue offering academic knowledge relevant to 21st-century markets and changing labor force needs. Implementation of contemporary disciplines will need to be embodied through learners’ active knowledge-making experiences while embracing ubiquitous accessibility. The power of distributed ledger technology promises major streamlining for educational record-keeping, degree conferrals, and authenticity guarantees. Augmented reality digital technologies hold the potential to restructure educational philosophies and their underpinning pedagogies thereby transforming modes of delivery. Structural changes in education and governmental planning are already increasing through intelligent systems and big data. Reimagining and redesigning education on a broad scale is required to plan and implement governmental and institutional changes to harness innovative technologies while moving away from the big schooling machine.Keywords: fourth industrial revolution, artificial intelligence, big data, education, augmented reality digital technologies, distributed ledger technology
Procedia PDF Downloads 2771719 Blockchain: Institutional and Technological Disruptions in the Public Sector
Authors: Maria Florencia Ferrer, Saulo Fabiano Amancio-Vieira
Abstract:
The use of the blockchain in the public sector is present today and no longer the future of disruptive institutional and technological models. There are still some cultural barriers and resistance to the proper use of its potential. This research aims to present the strengths and weaknesses of using a public-permitted and distributed network in the context of the public sector. Therefore, bibliographical/documentary research was conducted to raise the main aspects of the studied platform, focused on the use of the main demands of the public sector. The platform analyzed was LACChain, which is a global alliance composed of different actors in the blockchain environment, led by the Innovation Laboratory of the Inter-American Development Bank Group (IDB Lab) for the development of the blockchain ecosystem in Latin America and the Caribbean. LACChain provides blockchain infrastructure, which is a distributed ratio technology (DLT). The platform focuses on two main pillars: community and infrastructure. It is organized as a consortium for the management and administration of an infrastructure classified as public, following the ISO typologies (ISO / TC 307). It is, therefore, a network open to any participant who agrees with the established rules, which are limited to being identified and complying with the regulations. As benefits can be listed: public network (open to all), decentralized, low transaction cost, greater publicity of transactions, reduction of corruption in contracts / public acts, in addition to improving transparency for the population in general. It is also noteworthy that the platform is not based on cryptocurrency and is not anonymous; that is, it is possible to be regulated. It is concluded that the use of record platforms, such as LACChain, can contribute to greater security on the part of the public agent in the migration process of their informational applications.Keywords: blockchain, LACChain, public sector, technological disruptions
Procedia PDF Downloads 1721718 SIP Flooding Attacks Detection and Prevention Using Shannon, Renyi and Tsallis Entropy
Authors: Neda Seyyedi, Reza Berangi
Abstract:
Voice over IP (VOIP) network, also known as Internet telephony, is growing increasingly having occupied a large part of the communications market. With the growth of each technology, the related security issues become of particular importance. Taking advantage of this technology in different environments with numerous features put at our disposal, there arises an increasing need to address the security threats. Being IP-based and playing a signaling role in VOIP networks, Session Initiation Protocol (SIP) lets the invaders use weaknesses of the protocol to disable VOIP service. One of the most important threats is denial of service attack, a branch of which in this article we have discussed as flooding attacks. These attacks make server resources wasted and deprive it from delivering service to authorized users. Distributed denial of service attacks and attacks with a low rate can mislead many attack detection mechanisms. In this paper, we introduce a mechanism which not only detects distributed denial of service attacks and low rate attacks, but can also identify the attackers accurately. We detect and prevent flooding attacks in SIP protocol using Shannon (FDP-S), Renyi (FDP-R) and Tsallis (FDP-T) entropy. We conducted an experiment to compare the percentage of detection and rate of false alarm messages using any of the Shannon, Renyi and Tsallis entropy as a measure of disorder. Implementation results show that, according to the parametric nature of the Renyi and Tsallis entropy, by changing the parameters, different detection percentages and false alarm rates will be gained with the possibility to adjust the sensitivity of the detection mechanism.Keywords: VOIP networks, flooding attacks, entropy, computer networks
Procedia PDF Downloads 4051717 Statistical Modeling of Local Area Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes
Authors: Jihad Daba, Jean-Pierre Dubois
Abstract:
Multi path fading noise degrades the performance of cellular communication, most notably in femto- and pico-cells in 3G and 4G systems. When the wireless channel consists of a small number of scattering paths, the statistics of fading noise is not analytically tractable and poses a serious challenge to developing closed canonical forms that can be analysed and used in the design of efficient and optimal receivers. In this context, noise is multiplicative and is referred to as stochastically local fading. In many analytical investigation of multiplicative noise, the exponential or Gamma statistics are invoked. More recent advances by the author of this paper have utilized a Poisson modulated and weighted generalized Laguerre polynomials with controlling parameters and uncorrelated noise assumptions. In this paper, we investigate the statistics of multi-diversity stochastically local area fading channel when the channel consists of randomly distributed Rayleigh and Rician scattering centers with a coherent specular Nakagami-distributed line of sight component and an underlying doubly stochastic Poisson process driven by a lognormal intensity. These combined statistics form a unifying triply stochastic filtered marked Poisson point process model.Keywords: cellular communication, femto and pico-cells, stochastically local area fading channel, triply stochastic filtered marked Poisson point process
Procedia PDF Downloads 4481716 A Distributed Smart Battery Management System – sBMS, for Stationary Energy Storage Applications
Authors: António J. Gano, Carmen Rangel
Abstract:
Currently, electric energy storage systems for stationary applications have known an increasing interest, namely with the integration of local renewable energy power sources into energy communities. Li-ion batteries are considered the leading electric storage devices to achieve this integration, and Battery Management Systems (BMS) are decisive for their control and optimum performance. In this work, the advancement of a smart BMS (sBMS) prototype with a modular distributed topology is described. The system, still under development, has a distributed architecture with modular characteristics to operate with different battery pack topologies and charge capacities, integrating adaptive algorithms for functional state real-time monitoring and management of multicellular Li-ion batteries, and is intended for application in the context of a local energy community fed by renewable energy sources. This sBMS system includes different developed hardware units: (1) Cell monitoring units (CMUs) for interfacing with each individual cell or module monitoring within the battery pack; (2) Battery monitoring and switching unit (BMU) for global battery pack monitoring, thermal control and functional operating state switching; (3) Main management and local control unit (MCU) for local sBMS’s management and control, also serving as a communications gateway to external systems and devices. This architecture is fully expandable to battery packs with a large number of cells, or modules, interconnected in series, as the several units have local data acquisition and processing capabilities, communicating over a standard CAN bus and will be able to operate almost autonomously. The CMU units are intended to be used with Li-ion cells but can be used with other cell chemistries, with output voltages within the 2.5 to 5 V range. The different unit’s characteristics and specifications are described, including the different implemented hardware solutions. The developed hardware supports both passive and active methods for charge equalization, considered fundamental functionalities for optimizing the performance and the useful lifetime of a Li-ion battery package. The functional characteristics of the different units of this sBMS system, including different process variables data acquisition using a flexible set of sensors, can support the development of custom algorithms for estimating the parameters defining the functional states of the battery pack (State-of-Charge, State-of-Health, etc.) as well as different charge equalizing strategies and algorithms. This sBMS system is intended to interface with other systems and devices using standard communication protocols, like those used by the Internet of Things. In the future, this sBMS architecture can evolve to a fully decentralized topology, with all the units using Wi-Fi protocols and integrating a mesh network, making unnecessary the MCU unit. The status of the work in progress is reported, leading to conclusions on the system already executed, considering the implemented hardware solution, not only as fully functional advanced and configurable battery management system but also as a platform for developing custom algorithms and optimizing strategies to achieve better performance of electric energy stationary storage devices.Keywords: Li-ion battery, smart BMS, stationary electric storage, distributed BMS
Procedia PDF Downloads 1011715 Global Historical Distribution Range of Brown Bear (Ursus Arctos)
Authors: Tariq Mahmood, Faiza Lehrasab, Faraz Akrim, Muhammad Sajid nadeem, Muhammad Mushtaq, Unza waqar, Ayesha Sheraz, Shaista Andleeb
Abstract:
Brown bear (Ursus arctos), a member of the family Ursidae, is distributed in a wide range of habitats in North America, Europe and Asia. Suspectedly, the global distribution range of brown bears is decreasing at the moment due to various factors. The carnivore species is categorized as ‘Least Concern’ globally by the IUCN Red List of Threatened Species. However, there are some fragmented, small populations that are on the verge of extinction, as is in Pakistan, where the species is listed as ‘Critically Endangered’, with a declining population trend. Importantly, the global historical distribution range of brown bears is undocumented. Therefore, in the current study, we reconstructed and estimated the historical distribution range of brown bears using QGIS software and also analyzed the network of protected areas in the past and current ranges of the species. Results showed that brown bear was more widely distributed in historic times, encompassing 52.6 million km² area as compared to their current distribution of 38.8 million km², resulting in a total range contraction of up to approximately 28 %. In the past, a total of N = 62,234 protected Areas, covering approximately 3.89 million km² were present in the distribution range of the species, while now a total of N= 33,313 Protected Areas, covering approximately 2.75 million km² area, are present in the current distribution range of the brown bear. The brown bear distribution range in the protected areas has also contracted by 1.15 million km² and the total percentage reduction of PAs is 29%.Keywords: brown bear, historic distribution, range contraction, protected areas
Procedia PDF Downloads 601714 Acacia mearnsii De Wild-A New Scourge on Cork Oak Forests of El Kala National Park (North-Eastern Algeria)
Authors: Samir Chekchaki, ArifaBeddiar
Abstract:
Nowadays, more and more species are introduced outside their natural range. If most of them remain difficult, some may adopt a much more dynamic behavior. Indeed, we have witnessed in recent decades, the development of high forests of Acacia mearnsii in El Kala National Park. Introduced indefinitely, this leguminous intended to make money (nitrogen supply for industrial plantations of Eucalyptus), became one of the most invasive and more costly in terms of forest management. It has crossed all barriers: it has acclimatized, naturalized and then expanded through diverse landscapes; entry into competition with native species such as cork oak and altered ecosystem functioning. Therefore, it is interesting to analyze this new threat by relying on plants as bio-indicator for assessing biodiversity at different scales. We have identified the species present in several plots distributed in a range of vegetation types subjected to different degrees of disturbance by using the braun-blanquet method. Fifty-six species have been recorded. They are distributed in 48 genera and 29 families. The analysis of the relative frequency of species correlated with relative abundance clearly shows that the Acacia mearnsii feels marginalized. The ecological analysis of this biological invasion shows that disruption of either natural or anthropogenic origin (fire, prolonged drought, cut) represent the factors that exacerbate invasion by opening invasion windows. The lifting of seeds of Acacia mearnsii lasting physical dormancy (and variable) is ensured by the thermal shock in relation to its heliophilous character.Keywords: Acacia mearnsii De Wild, El Kala National park, fire, invasive, vegetation
Procedia PDF Downloads 3571713 Efficient DNN Training on Heterogeneous Clusters with Pipeline Parallelism
Abstract:
Pipeline parallelism has been widely used to accelerate distributed deep learning to alleviate GPU memory bottlenecks and to ensure that models can be trained and deployed smoothly under limited graphics memory conditions. However, in highly heterogeneous distributed clusters, traditional model partitioning methods are not able to achieve load balancing. The overlap of communication and computation is also a big challenge. In this paper, HePipe is proposed, an efficient pipeline parallel training method for highly heterogeneous clusters. According to the characteristics of the neural network model pipeline training task, oriented to the 2-level heterogeneous cluster computing topology, a training method based on the 2-level stage division of neural network modeling and partitioning is designed to improve the parallelism. Additionally, a multi-forward 1F1B scheduling strategy is designed to accelerate the training time of each stage by executing the computation units in advance to maximize the overlap between the forward propagation communication and backward propagation computation. Finally, a dynamic recomputation strategy based on task memory requirement prediction is proposed to improve the fitness ratio of task and memory, which improves the throughput of the cluster and solves the memory shortfall problem caused by memory differences in heterogeneous clusters. The empirical results show that HePipe improves the training speed by 1.6×−2.2× over the existing asynchronous pipeline baselines.Keywords: pipeline parallelism, heterogeneous cluster, model training, 2-level stage partitioning
Procedia PDF Downloads 191712 Load Balancing Technique for Energy - Efficiency in Cloud Computing
Authors: Rani Danavath, V. B. Narsimha
Abstract:
Cloud computing is emerging as a new paradigm of large scale distributed computing. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., three service models, and four deployment networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model is composed of five essential characteristics models. Load balancing is one of the main challenges in cloud computing, which is required to distribute the dynamic workload across multiple nodes, to ensure that no single node is overloaded. It helps in optimal utilization of resources, enhancing the performance of the system. The goal of the load balancing is to minimize the resource consumption and carbon emission rate, that is the direct need of cloud computing. This determined the need of new metrics energy consumption and carbon emission for energy-efficiency load balancing techniques in cloud computing. Existing load balancing techniques mainly focuses on reducing overhead, services, response time and improving performance etc. In this paper we introduced a Technique for energy-efficiency, but none of the techniques have considered the energy consumption and carbon emission. Therefore, our proposed work will go towards energy – efficiency. So this energy-efficiency load balancing technique can be used to improve the performance of cloud computing by balancing the workload across all the nodes in the cloud with the minimum resource utilization, in turn, reducing energy consumption, and carbon emission to an extent, which will help to achieve green computing.Keywords: cloud computing, distributed computing, energy efficiency, green computing, load balancing, energy consumption, carbon emission
Procedia PDF Downloads 4491711 Reservoir Inflow Prediction for Pump Station Using Upstream Sewer Depth Data
Authors: Osung Im, Neha Yadav, Eui Hoon Lee, Joong Hoon Kim
Abstract:
Artificial Neural Network (ANN) approach is commonly used in lots of fields for forecasting. In water resources engineering, forecast of water level or inflow of reservoir is useful for various kind of purposes. Due to advantages of ANN, many papers were written for inflow prediction in river networks, but in this study, ANN is used in urban sewer networks. The growth of severe rain storm in Korea has increased flood damage severely, and the precipitation distribution is getting more erratic. Therefore, effective pump operation in pump station is an essential task for the reduction in urban area. If real time inflow of pump station reservoir can be predicted, it is possible to operate pump effectively for reducing the flood damage. This study used ANN model for pump station reservoir inflow prediction using upstream sewer depth data. For this study, rainfall events, sewer depth, and inflow into Banpo pump station reservoir between years of 2013-2014 were considered. Feed – Forward Back Propagation (FFBF), Cascade – Forward Back Propagation (CFBP), Elman Back Propagation (EBP) and Nonlinear Autoregressive Exogenous (NARX) were used as ANN model for prediction. A comparison of results with ANN model suggests that ANN is a powerful tool for inflow prediction using the sewer depth data.Keywords: artificial neural network, forecasting, reservoir inflow, sewer depth
Procedia PDF Downloads 3171710 Dynamic Modeling of the Exchange Rate in Tunisia: Theoretical and Empirical Study
Authors: Chokri Slim
Abstract:
The relative failure of simultaneous equation models in the seventies has led researchers to turn to other approaches that take into account the dynamics of economic and financial systems. In this paper, we use an approach based on vector autoregressive model that is widely used in recent years. Their popularity is due to their flexible nature and ease of use to produce models with useful descriptive characteristics. It is also easy to use them to test economic hypotheses. The standard econometric techniques assume that the series studied are stable over time (stationary hypothesis). Most economic series do not verify this hypothesis, which assumes, when one wishes to study the relationships that bind them to implement specific techniques. This is cointegration which characterizes non-stationary series (integrated) with a linear combination is stationary, will also be presented in this paper. Since the work of Johansen, this approach is generally presented as part of a multivariate analysis and to specify long-term stable relationships while at the same time analyzing the short-term dynamics of the variables considered. In the empirical part, we have applied these concepts to study the dynamics of of the exchange rate in Tunisia, which is one of the most important economic policy of a country open to the outside. According to the results of the empirical study by the cointegration method, there is a cointegration relationship between the exchange rate and its determinants. This relationship shows that the variables have a significant influence in determining the exchange rate in Tunisia.Keywords: stationarity, cointegration, dynamic models, causality, VECM models
Procedia PDF Downloads 3641709 Bayesian Inference for High Dimensional Dynamic Spatio-Temporal Models
Authors: Sofia M. Karadimitriou, Kostas Triantafyllopoulos, Timothy Heaton
Abstract:
Reduced dimension Dynamic Spatio-Temporal Models (DSTMs) jointly describe the spatial and temporal evolution of a function observed subject to noise. A basic state space model is adopted for the discrete temporal variation, while a continuous autoregressive structure describes the continuous spatial evolution. Application of such a DSTM relies upon the pre-selection of a suitable reduced set of basic functions and this can present a challenge in practice. In this talk, we propose an online estimation method for high dimensional spatio-temporal data based upon DSTM and we attempt to resolve this issue by allowing the basis to adapt to the observed data. Specifically, we present a wavelet decomposition in order to obtain a parsimonious approximation of the spatial continuous process. This parsimony can be achieved by placing a Laplace prior distribution on the wavelet coefficients. The aim of using the Laplace prior, is to filter wavelet coefficients with low contribution, and thus achieve the dimension reduction with significant computation savings. We then propose a Hierarchical Bayesian State Space model, for the estimation of which we offer an appropriate particle filter algorithm. The proposed methodology is illustrated using real environmental data.Keywords: multidimensional Laplace prior, particle filtering, spatio-temporal modelling, wavelets
Procedia PDF Downloads 4281708 Antibacterial Wound Dressing Based on Metal Nanoparticles Containing Cellulose Nanofibers
Authors: Mohamed Gouda
Abstract:
Antibacterial wound dressings based on cellulose nanofibers containing different metal nanoparticles (CMC-MNPs) were synthesized using an electrospinning technique. First, the composite of carboxymethyl cellulose containing different metal nanoparticles (CMC/MNPs), such as copper nanoparticles (CuNPs), iron nanoparticles (FeNPs), zinc nanoparticles (ZnNPs), cadmium nanoparticles (CdNPs) and cobalt nanoparticles (CoNPs) were synthesized, and finally, these composites were transferred to the electrospinning process. Synthesized CMC-MNPs were characterized using scanning electron microscopy (SEM) coupled with high-energy dispersive X-ray (EDX) and UV-visible spectroscopy used to confirm nanoparticle formation. The SEM images clearly showed regular flat shapes with semi-porous surfaces. All MNPs were well distributed inside the backbone of the cellulose without aggregation. The average particle diameters were 29-39 nm for ZnNPs, 29-33 nm for CdNPs, 25-33 nm for CoNPs, 23-27 nm for CuNPs and 22-26 nm for FeNPs. Surface morphology, water uptake and release of MNPs from the nanofibers in water and antimicrobial efficacy were studied. SEM images revealed that electrospun CMC-MNPs nanofibers are smooth and uniformly distributed without bead formation with average fiber diameters in the range of 300 to 450 nm. Fiber diameters were not affected by the presence of MNPs. TEM images showed that MNPs are present in/on the electrospun CMC-MNPs nanofibers. The diameter of the electrospun nanofibers containing MNPs was in the range of 300–450 nm. The MNPs were observed to be spherical in shape. The CMC-MNPs nanofibers showed good hydrophilic properties and had excellent antibacterial activity against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus.Keywords: electrospinning technique, metal nanoparticles, cellulosic nanofibers, wound dressing
Procedia PDF Downloads 3291707 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights
Authors: Julian Wise
Abstract:
Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.Keywords: mineral technology, big data, machine learning operations, data lake
Procedia PDF Downloads 1121706 Functional Aspects of Carbonic Anhydrase
Authors: Bashistha Kumar Kanth, Seung Pil Pack
Abstract:
Carbonic anhydrase is ubiquitously distributed in organisms, and is fundamental to many eukaryotic biological processes such as photosynthesis, respiration, CO2 and ion transport, calcification and acid–base balance. However, CA occurs across the spectrum of prokaryotic metabolism in both the archaea and bacteria domains and many individual species contain more than one class. In this review, various roles of CA involved in cellular mechanism are presented to find out the CA functions applicable for industrial use.Keywords: carbonic anhydrase, mechanism, CO2 sequestration, respiration
Procedia PDF Downloads 4921705 Political Deprivations, Political Risk and the Extent of Skilled Labor Migration from Pakistan: Finding of a Time-Series Analysis
Authors: Syed Toqueer Akhter, Hussain Hamid
Abstract:
Over the last few decades an upward trend has been observed in the case of labor migration from Pakistan. The emigrants are not just economically motivated and in search of a safe living environment towards more developed countries in Europe, North America and Middle East. The opportunity cost of migration comes in the form of brain drain that is the loss of qualified and skilled human capital. Throughout the history of Pakistan, situations of political instability have emerged ranging from violation of political rights, political disappearances to political assassinations. Providing security to the citizens is a major issue faced in Pakistan due to increase in crime and terrorist activities. The aim of the study is to test the impact of political instability, appearing in the form of political terror, violation of political rights and civil liberty on skilled migration of labor. Three proxies are used to measure the political instability; political terror scale (based on a scale of 1-5, the political terror and violence that a country encounters in a particular year), political rights (a rating of 1-7, that describes political rights as the ability for the people to participate without restraint in political process) and civil liberty (a rating of 1-7, civil liberty is defined as the freedom of expression and rights without government intervention). Using time series data from 1980-2011, the distributed lag models were used for estimation because migration is not a onetime process, previous events and migration can lead to more migration. Our research clearly shows that political instability appearing in the form of political terror, political rights and civil liberty all appeared significant in explaining the extent of skilled migration of Pakistan.Keywords: skilled labor migration, political terror, political rights, civil liberty, distributed lag model
Procedia PDF Downloads 10291704 Data-Driven Simulations Tools for Der and Battery Rich Power Grids
Authors: Ali Moradiamani, Samaneh Sadat Sajjadi, Mahdi Jalili
Abstract:
Power system analysis has been a major research topic in the generation and distribution sections, in both industry and academia, for a long time. Several load flow and fault analysis scenarios have been normally performed to study the performance of different parts of the grid in the context of, for example, voltage and frequency control. Software tools, such as PSCAD, PSSE, and PowerFactory DIgSILENT, have been developed to perform these analyses accurately. Distribution grid had been the passive part of the grid and had been known as the grid of consumers. However, a significant paradigm shift has happened with the emergence of Distributed Energy Resources (DERs) in the distribution level. It means that the concept of power system analysis needs to be extended to the distribution grid, especially considering self sufficient technologies such as microgrids. Compared to the generation and transmission levels, the distribution level includes significantly more generation/consumption nodes thanks to PV rooftop solar generation and battery energy storage systems. In addition, different consumption profile is expected from household residents resulting in a diverse set of scenarios. Emergence of electric vehicles will absolutely make the environment more complicated considering their charging (and possibly discharging) requirements. These complexities, as well as the large size of distribution grids, create challenges for the available power system analysis software. In this paper, we study the requirements of simulation tools in the distribution grid and how data-driven algorithms are required to increase the accuracy of the simulation results.Keywords: smart grids, distributed energy resources, electric vehicles, battery storage systsms, simulation tools
Procedia PDF Downloads 104