Search results for: Radial Basis Functions (RBF) neural networks
9072 A Heart Arrhythmia Prediction Using Machine Learning’s Classification Approach and the Concept of Data Mining
Authors: Roshani S. Golhar, Neerajkumar S. Sathawane, Snehal Dongre
Abstract:
Background and objectives: As the, cardiovascular illnesses increasing and becoming cause of mortality worldwide, killing around lot of people each year. Arrhythmia is a type of cardiac illness characterized by a change in the linearity of the heartbeat. The goal of this study is to develop novel deep learning algorithms for successfully interpreting arrhythmia using a single second segment. Because the ECG signal indicates unique electrical heart activity across time, considerable changes between time intervals are detected. Such variances, as well as the limited number of learning data available for each arrhythmia, make standard learning methods difficult, and so impede its exaggeration. Conclusions: The proposed method was able to outperform several state-of-the-art methods. Also proposed technique is an effective and convenient approach to deep learning for heartbeat interpretation, that could be probably used in real-time healthcare monitoring systemsKeywords: electrocardiogram, ECG classification, neural networks, convolutional neural networks, portable document format
Procedia PDF Downloads 699071 Tomato-Weed Classification by RetinaNet One-Step Neural Network
Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri
Abstract:
The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.Keywords: deep learning, object detection, cnn, tomato, weeds
Procedia PDF Downloads 1039070 Intelligent Minimal Allocation of Capacitors in Distribution Networks Using Genetic Algorithm
Authors: S. Neelima, P. S. Subramanyam
Abstract:
A distribution system is an interface between the bulk power system and the consumers. Among these systems, radial distributions system is popular because of low cost and simple design. In distribution systems, the voltages at buses reduces when moved away from the substation, also the losses are high. The reason for a decrease in voltage and high losses is the insufficient amount of reactive power, which can be provided by the shunt capacitors. But the placement of the capacitor with an appropriate size is always a challenge. Thus, the optimal capacitor placement problem is to determine the location and size of capacitors to be placed in distribution networks in an efficient way to reduce the power losses and improve the voltage profile of the system. For this purpose, in this paper, two stage methodologies are used. In the first stage, the load flow of pre-compensated distribution system is carried out using ‘dimension reducing distribution load flow algorithm (DRDLFA)’. On the basis of this load flow the potential locations of compensation are computed. In the second stage, Genetic Algorithm (GA) technique is used to determine the optimal location and size of the capacitors such that the cost of the energy loss and capacitor cost to be a minimum. The above method is tested on IEEE 9 and 34 bus system and compared with other methods in the literature.Keywords: dimension reducing distribution load flow algorithm, DRDLFA, genetic algorithm, electrical distribution network, optimal capacitors placement, voltage profile improvement, loss reduction
Procedia PDF Downloads 3909069 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks
Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam
Abstract:
In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion
Procedia PDF Downloads 1239068 Derivatives Formulas Involving I-Functions of Two Variables and Generalized M-Series
Authors: Gebreegziabher Hailu Gebrecherkos
Abstract:
This study explores the derivatives of functions defined by I-functions of two variables and their connections to generalized M-series. We begin by defining I-functions, which are generalized functions that encompass various special functions, and analyze their properties. By employing advanced calculus techniques, we derive new formulas for the first and higher-order derivatives of I-functions with respect to their variables; we establish some derivative formulae of the I-function of two variables involving generalized M-series. The special cases of our derivatives yield interesting results.Keywords: I-function, Mellin-Barners control integral, generalized M-series, higher order derivative
Procedia PDF Downloads 159067 A Context-Centric Chatbot for Cryptocurrency Using the Bidirectional Encoder Representations from Transformers Neural Networks
Authors: Qitao Xie, Qingquan Zhang, Xiaofei Zhang, Di Tian, Ruixuan Wen, Ting Zhu, Ping Yi, Xin Li
Abstract:
Inspired by the recent movement of digital currency, we are building a question answering system concerning the subject of cryptocurrency using Bidirectional Encoder Representations from Transformers (BERT). The motivation behind this work is to properly assist digital currency investors by directing them to the corresponding knowledge bases that can offer them help and increase the querying speed. BERT, one of newest language models in natural language processing, was investigated to improve the quality of generated responses. We studied different combinations of hyperparameters of the BERT model to obtain the best fit responses. Further, we created an intelligent chatbot for cryptocurrency using BERT. A chatbot using BERT shows great potential for the further advancement of a cryptocurrency market tool. We show that the BERT neural networks generalize well to other tasks by applying it successfully to cryptocurrency.Keywords: bidirectional encoder representations from transformers, BERT, chatbot, cryptocurrency, deep learning
Procedia PDF Downloads 1479066 Morphological Features Fusion for Identifying INBREAST-Database Masses Using Neural Networks and Support Vector Machines
Authors: Nadia el Atlas, Mohammed el Aroussi, Mohammed Wahbi
Abstract:
In this paper a novel technique of mass characterization based on robust features-fusion is presented. The proposed method consists of mainly four stages: (a) the first phase involves segmenting the masses using edge information’s. (b) The second phase is to calculate and fuse the most relevant morphological features. (c) The last phase is the classification step which allows us to classify the images into benign and malignant masses. In this step we have implemented Support Vectors Machines (SVM) and Artificial Neural Networks (ANN), which were evaluated with the following performance criteria: confusion matrix, accuracy, sensitivity, specificity, receiver operating characteristic ROC, and error histogram. The effectiveness of this new approach was evaluated by a recently developed database: INBREAST database. The fusion of the most appropriate morphological features provided very good results. The SVM gives accuracy to within 64.3%. Whereas the ANN classifier gives better results with an accuracy of 97.5%.Keywords: breast cancer, mammography, CAD system, features, fusion
Procedia PDF Downloads 5999065 Seismic Hazard Prediction Using Seismic Bumps: Artificial Neural Network Technique
Authors: Belkacem Selma, Boumediene Selma, Tourkia Guerzou, Abbes Labdelli
Abstract:
Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. The Earthquakes prediction to prevent the loss of human lives and even property damage is an important factor; that is why it is crucial to develop techniques for predicting this natural disaster. This present study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 10^4J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines has been analyzed. The results obtained show that the ANN with high accuracy was able to predict earthquake parameters; the classification accuracy through neural networks is more than 94%, and that the models developed are efficient and robust and depend only weakly on the initial database.Keywords: earthquake prediction, ANN, seismic bumps
Procedia PDF Downloads 1269064 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification
Authors: Oumaima Khlifati, Khadija Baba
Abstract:
Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.Keywords: distress pavement, hyperparameters, automatic classification, deep learning
Procedia PDF Downloads 939063 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram
Authors: Mehwish Asghar
Abstract:
Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence
Procedia PDF Downloads 2249062 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects
Authors: Hamed Zolfaghari, Mojtaba Kord
Abstract:
After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.Keywords: time estimation, machine learning, Artificial neural network, project design phase
Procedia PDF Downloads 979061 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations
Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha
Abstract:
This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation
Procedia PDF Downloads 1429060 Decentralized Control of Interconnected Systems with Non-Linear Unknown Interconnections
Authors: Haci Mehmet Guzey, Levent Acar
Abstract:
In this paper, a novel decentralized controller is developed for linear systems with nonlinear unknown interconnections. A model linear decoupled system is assigned for each system. By using the difference actual and model state dynamics, the problem is formulated as inverse problem. Then, the interconnected dynamics are approximated by using Galerkin’s expansion method for inverse problems. Two different sets of orthogonal basis functions are utilized to approximate the interconnected dynamics. Approximated interconnections are utilized in the controller to cancel the interconnections and decouple the systems. Subsequently, the interconnected systems behave as a collection of decoupled systems.Keywords: decentralized control, inverse problems, large scale systems, nonlinear interconnections, basis functions, system identification
Procedia PDF Downloads 5329059 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning
Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody
Abstract:
The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification
Procedia PDF Downloads 1079058 Analysis of Brain Signals Using Neural Networks Optimized by Co-Evolution Algorithms
Authors: Zahra Abdolkarimi, Naser Zourikalatehsamad,
Abstract:
Up to 40 years ago, after recognition of epilepsy, it was generally believed that these attacks occurred randomly and suddenly. However, thanks to the advance of mathematics and engineering, such attacks can be predicted within a few minutes or hours. In this way, various algorithms for long-term prediction of the time and frequency of the first attack are presented. In this paper, by considering the nonlinear nature of brain signals and dynamic recorded brain signals, ANFIS model is presented to predict the brain signals, since according to physiologic structure of the onset of attacks, more complex neural structures can better model the signal during attacks. Contribution of this work is the co-evolution algorithm for optimization of ANFIS network parameters. Our objective is to predict brain signals based on time series obtained from brain signals of the people suffering from epilepsy using ANFIS. Results reveal that compared to other methods, this method has less sensitivity to uncertainties such as presence of noise and interruption in recorded signals of the brain as well as more accuracy. Long-term prediction capacity of the model illustrates the usage of planted systems for warning medication and preventing brain signals.Keywords: co-evolution algorithms, brain signals, time series, neural networks, ANFIS model, physiologic structure, time prediction, epilepsy suffering, illustrates model
Procedia PDF Downloads 2829057 Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model
Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes
Abstract:
In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain.Keywords: mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity
Procedia PDF Downloads 3249056 Analytical Investigation of Viscous and Non-Viscous Fluid Particles in a Restricted Region Using Diffusion Magnetic Resonance Imaging Equation
Authors: Yusuf, S. I., Saba, A., Olaoye, D. O., Ibrahim J. A., Yahaya H. M., Jatto A. O
Abstract:
Nuclear Magnetic Resonance (NMR) technology has been applied in several ways to provide vital information about petro-physical properties of reservoirs. However, due to the need to study the molecular behaviours of particles of the fluids in different restricted media, diffusion magnetic resonance equation is hereby applied in spherical coordinates and solved analytically using the method of separation of variables and solution of Legendre equation by Frobenius method. The viscous fluid considered in this research work is unused oil while the non-viscous fluid is water. The results obtained show that water begins to manifest appreciable change at radial adjustment value of 10 and Magnetization of 2.31191995400015x1014 and relaxes finally at 2.30x1014 at radial adjustment value of 1. On the other hand, unused engine oil begins to manifest its changes at radial adjustment value of 40 and Magnetization of 1.466557018x1014and relaxes finally at 1.48x1014 at radial adjustment value of 5.Keywords: viscous and non-viscous fluid, restricted medium, relaxation times, coefficient of diffusion
Procedia PDF Downloads 839055 Drought Risk Analysis Using Neural Networks for Agri-Businesses and Projects in Lejweleputswa District Municipality, South Africa
Authors: Bernard Moeketsi Hlalele
Abstract:
Drought is a complicated natural phenomenon that creates significant economic, social, and environmental problems. An analysis of paleoclimatic data indicates that severe and extended droughts are inevitable part of natural climatic circle. This study characterised drought in Lejweleputswa using both Standardised Precipitation Index (SPI) and neural networks (NN) to quantify and predict respectively. Monthly 37-year long time series precipitation data were obtained from online NASA database. Prior to the final analysis, this dataset was checked for outliers using SPSS. Outliers were removed and replaced by Expectation Maximum algorithm from SPSS. This was followed by both homogeneity and stationarity tests to ensure non-spurious results. A non-parametric Mann Kendall's test was used to detect monotonic trends present in the dataset. Two temporal scales SPI-3 and SPI-12 corresponding to agricultural and hydrological drought events showed statistically decreasing trends with p-value = 0.0006 and 4.9 x 10⁻⁷, respectively. The study area has been plagued with severe drought events on SPI-3, while on SPI-12, it showed approximately a 20-year circle. The concluded the analyses with a seasonal analysis that showed no significant trend patterns, and as such NN was used to predict possible SPI-3 for the last season of 2018/2019 and four seasons for 2020. The predicted drought intensities ranged from mild to extreme drought events to come. It is therefore recommended that farmers, agri-business owners, and other relevant stakeholders' resort to drought resistant crops as means of adaption.Keywords: drought, risk, neural networks, agri-businesses, project, Lejweleputswa
Procedia PDF Downloads 1269054 Intelligent Prediction of Breast Cancer Severity
Authors: Wahab Ali, Oyebade K. Oyedotun, Adnan Khashman
Abstract:
Breast cancer remains a threat to the woman’s world in view of survival rates, it early diagnosis and mortality statistics. So far, research has shown that many survivors of breast cancer cases are in the ones with early diagnosis. Breast cancer is usually categorized into stages which indicates its severity and corresponding survival rates for patients. Investigations show that the farther into the stages before diagnosis the lesser the chance of survival; hence the early diagnosis of breast cancer becomes imperative, and consequently the application of novel technologies to achieving this. Over the year, mammograms have used in the diagnosis of breast cancer, but the inconclusive deductions made from such scans lead to either false negative cases where cancer patients may be left untreated or false positive where unnecessary biopsies are carried out. This paper presents the application of artificial neural networks in the prediction of severity of breast tumour (whether benign or malignant) using mammography reports and other factors that are related to breast cancer.Keywords: breast cancer, intelligent classification, neural networks, mammography
Procedia PDF Downloads 4879053 Some Inequalities Related with Starlike Log-Harmonic Mappings
Authors: Melike Aydoğan, Dürdane Öztürk
Abstract:
Let H(D) be the linear space of all analytic functions defined on the open unit disc. A log-harmonic mappings is a solution of the nonlinear elliptic partial differential equation where w(z) ∈ H(D) is second dilatation such that |w(z)| < 1 for all z ∈ D. The aim of this paper is to define some inequalities of starlike logharmonic functions of order α(0 ≤ α ≤ 1).Keywords: starlike log-harmonic functions, univalent functions, distortion theorem
Procedia PDF Downloads 5239052 Evolution under Length Constraints for Convolutional Neural Networks Architecture Design
Authors: Ousmane Youme, Jean Marie Dembele, Eugene Ezin, Christophe Cambier
Abstract:
In recent years, the convolutional neural networks (CNN) architectures designed by evolution algorithms have proven to be competitive with handcrafted architectures designed by experts. However, these algorithms need a lot of computational power, which is beyond the capabilities of most researchers and engineers. To overcome this problem, we propose an evolution architecture under length constraints. It consists of two algorithms: a search length strategy to find an optimal space and a search architecture strategy based on a genetic algorithm to find the best individual in the optimal space. Our algorithms drastically reduce resource costs and also keep good performance. On the Cifar-10 dataset, our framework presents outstanding performance with an error rate of 5.12% and only 4.6 GPU a day to converge to the optimal individual -22 GPU a day less than the lowest cost automatic evolutionary algorithm in the peer competition.Keywords: CNN architecture, genetic algorithm, evolution algorithm, length constraints
Procedia PDF Downloads 1289051 Analysis of Motor Nerve Conduction Velocity (MNCV) of Selected Nerves in Athletics
Authors: Jogbinder Singh Soodan, Ashok Kumar, Gobind Singh
Abstract:
Background: This study aims to describe the motor nerve conduction velocity of selected nerves of both the upper and lower extremities in athletes. Thirty high-level sprinters (100 mts and 200 mts) and thirty high level distance runners (3000 mts) were volunteered to participate in the study. Method: Motor nerve conduction velocities (MNCV) of radial and sural nerves were recorded with the help of computerized equipment, NEUROPERFECT (MEDICAID SYSTEMS, India), with standard techniques of supramaximal percutaneus stimulation. The anthropometric measurements taken were body height (cms), age (yrs) and body weight (kgs). The neurophysiological parameters taken were MNCV of radial nerve (upper extremity) and sural nerve (lower extremity) of both sides (i.e. dominant and non-dominant) of the body. The room temperature was maintained at 37 degree Celsius. Results: Significant differences in motor nerve conduction velocities were found between dominant and non-dominant limbs in each group. The MNCV of radial nerve was obtained was significantly higher in the sprinters than long distance runners. The MNCV of sural nerve recorded was significantly higher in sprinters as compared to distance runners. Conclusion: The motor nerve conduction velocity of radial nerve was found to be higher in sprinters as compared to the distance runners and also, the MNCV for sural nerve was found to be higher in sprinters as compared to distance runners. In case of sprinters, the MNCV of radial and sural nerves were higher in dominant limbs (i.e. arms and legs) of both sides of the body. But, in case of distance runners, the MNCV of radial and sural nerves is higher in non dominant limbs.Keywords: motor nerve conduction velocity, radial nerve, sural nerve, sprinters
Procedia PDF Downloads 5649050 A Neural Approach for Color-Textured Images Segmentation
Authors: Khalid Salhi, El Miloud Jaara, Mohammed Talibi Alaoui
Abstract:
In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method.Keywords: segmentation, color-texture, neural networks, fractal, watershed
Procedia PDF Downloads 3469049 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite
Abstract:
Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination
Procedia PDF Downloads 1249048 Comparative Study of Skeletonization and Radial Distance Methods for Automated Finger Enumeration
Authors: Mohammad Hossain Mohammadi, Saif Al Ameri, Sana Ziaei, Jinane Mounsef
Abstract:
Automated enumeration of the number of hand fingers is widely used in several motion gaming and distance control applications, and is discussed in several published papers as a starting block for hand recognition systems. The automated finger enumeration technique should not only be accurate, but also must have a fast response for a moving-picture input. The high performance of video in motion games or distance control will inhibit the program’s overall speed, for image processing software such as Matlab need to produce results at high computation speeds. Since an automated finger enumeration with minimum error and processing time is desired, a comparative study between two finger enumeration techniques is presented and analyzed in this paper. In the pre-processing stage, various image processing functions were applied on a real-time video input to obtain the final cleaned auto-cropped image of the hand to be used for the two techniques. The first technique uses the known morphological tool of skeletonization to count the number of skeleton’s endpoints for fingers. The second technique uses a radial distance method to enumerate the number of fingers in order to obtain a one dimensional hand representation. For both discussed methods, the different steps of the algorithms are explained. Then, a comparative study analyzes the accuracy and speed of both techniques. Through experimental testing in different background conditions, it was observed that the radial distance method was more accurate and responsive to a real-time video input compared to the skeletonization method. All test results were generated in Matlab and were based on displaying a human hand for three different orientations on top of a plain color background. Finally, the limitations surrounding the enumeration techniques are presented.Keywords: comparative study, hand recognition, fingertip detection, skeletonization, radial distance, Matlab
Procedia PDF Downloads 3829047 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxics Gases
Authors: Slimane Ouhmad, Abdellah Halimi
Abstract:
In this work, we have applied neural networks method MLP type to a database from an array of six sensors for the detection of three toxic gases. As the choice of the number of hidden layers and the weight values has a great influence on the convergence of the learning algorithm, we proposed, in this article, a mathematical formulation to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases on the one hand, and optimize the computation time on the other hand, the comparison to other results achieved in this case.Keywords: MLP Neural Network, back-propagation, number of neurons in the hidden layer, identification, computing time
Procedia PDF Downloads 3479046 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach
Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar
Abstract:
Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI
Procedia PDF Downloads 1539045 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks
Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle
Abstract:
Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3
Procedia PDF Downloads 649044 Advancing Our Understanding of Age-Related Changes in Executive Functions: Insights from Neuroimaging, Genetics and Cognitive Neurosciences
Authors: Yasaman Mohammadi
Abstract:
Executive functions are a critical component of goal-directed behavior, encompassing a diverse set of cognitive processes such as working memory, cognitive flexibility, and inhibitory control. These functions are known to decline with age, but the precise mechanisms underlying this decline remain unclear. This paper provides an in-depth review of recent research investigating age-related changes in executive functions, drawing on insights from neuroimaging, genetics, and cognitive neuroscience. Through an interdisciplinary approach, this paper offers a nuanced understanding of the complex interplay between neural mechanisms, genetic factors, and cognitive processes that contribute to executive function decline in aging. Here, we investigate how different neuroimaging methods, like functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), have helped scientists better understand the brain bases for age-related declines in executive function. Additionally, we discuss the role of genetic factors in mediating individual differences in executive functions across the lifespan, as well as the potential for cognitive interventions to mitigate age-related decline. Overall, this paper presents a comprehensive and integrative view of the current state of knowledge regarding age-related changes in executive functions. It underscores the need for continued interdisciplinary research to fully understand the complex and dynamic nature of executive function decline in aging, with the ultimate goal of developing effective interventions to promote healthy cognitive aging.Keywords: executive functions, aging, neuroimaging, cognitive neuroscience, working memory, cognitive training
Procedia PDF Downloads 679043 Optimization of Territorial Spatial Functional Partitioning in Coal Resource-based Cities Based on Ecosystem Service Clusters - The Case of Gujiao City in Shanxi Province
Authors: Gu Sihao
Abstract:
The coordinated development of "ecology-production-life" in cities has been highly concerned by the country, and the transformation development and sustainable development of resource-based cities have become a hot research topic at present. As an important part of China's resource-based cities, coal resource-based cities have the characteristics of large number and wide distribution. However, due to the adjustment of national energy structure and the gradual exhaustion of urban coal resources, the development vitality of coal resource-based cities is gradually reduced. In many studies, the deterioration of ecological environment in coal resource-based cities has become the main problem restricting their urban transformation and sustainable development due to the "emphasis on economy and neglect of ecology". Since the 18th National Congress of the Communist Party of China (CPC), the Central Government has been deepening territorial space planning and development. On the premise of optimizing territorial space development pattern, it has completed the demarcation of ecological protection red lines, carried out ecological zoning and ecosystem evaluation, which have become an important basis and scientific guarantee for ecological modernization and ecological civilization construction. Grasp the regional multiple ecosystem services is the precondition of the ecosystem management, and the relationship between the multiple ecosystem services study, ecosystem services cluster can identify the interactions between multiple ecosystem services, and on the basis of the characteristics of the clusters on regional ecological function zoning, to better Social-Ecological system management. Based on this cognition, this study optimizes the spatial function zoning of Gujiao, a coal resource-based city, in order to provide a new theoretical basis for its sustainable development. This study is based on the detailed analysis of characteristics and utilization of Gujiao city land space, using SOFM neural networks to identify local ecosystem service clusters, according to the cluster scope and function of ecological function zoning of space partition balance and coordination between different ecosystem services strength, establish a relationship between clusters and land use, and adjust the functions of territorial space within each zone. Then, according to the characteristics of coal resources city and national spatial function zoning characteristics, as the driving factors of land change, by cellular automata simulation program, such as simulation under different restoration strategy situation of urban future development trend, and provides relevant theories and technical methods for the "third-line" demarcations of Gujiao's territorial space planning, optimizes territorial space functions, and puts forward targeted strategies for the promotion of regional ecosystem services, providing theoretical support for the improvement of human well-being and sustainable development of resource-based cities.Keywords: coal resource-based city, territorial spatial planning, ecosystem service cluster, gmop model, geosos-FLUS model, functional zoning optimization and upgrading
Procedia PDF Downloads 61