Search results for: Alaa Ashraf Khaleel Abdallah
16 Study of Drape and Seam Strength of Fabric and Garment in Relation to Weave Design and Comparison of 2D and 3D Drape Properties
Authors: Shagufta Riaz, Ayesha Younus, Munir Ashraf, Tanveer Hussain
Abstract:
Aesthetic and performance are two most important considerations along with quality, durability, comfort and cost that affect the garment credibility. Fabric drape is perhaps the most important clothing characteristics that distinguishes fabric from the sheet, paper, steel or other film materials. It enables the fabric to mold itself under its own weight into desired and required shape when only part of it is directly sustained. The fabric has the ability to be crumpled charmingly in bent folds of single or double curvature due to its drapeability to produce a smooth flowing i.e. ‘the sinusoidal-type folds of a curtain or skirt’. Drape and seam strength are two parameters that are considered for aesthetic and performance of fabric for both apparel and home textiles. Until recently, no such study have been conducted in which effect of weave designs on drape and seam strength of fabric and garment is inspected. Therefore, the aim of this study was to measure seam strength and drape of fabric and garment objectively by changing weave designs and quality of the fabric. Also, the comparison of 2-D drape and 3-D drape was done to find whether a fabric behaves in same manner or differently when sewn and worn on the body. Four different cotton weave designs were developed and pr-treatment was done. 2-D Drape of the fabric was measured by drapemeter attached with digital camera and a supporting disc to hang the specimen on it. Drape coefficient value (DC %) has negative relation with drape. It is the ratio of draped sample’s projected shadow area to the area of undraped (flat) sample expressed as percentage. Similarly, 3-D drape was measured by hanging the A-line skirts for developed weave designs. BS 3356 standard test method was followed for bending length examination. It is related to the angle that the fabric makes with its horizontal axis. Seam strength was determined by following ASTM test standard. For sewn fabric, stitch density of seam was found by magnifying glass according to standard ASTM test method. In this research study, from the experimentation and evaluation it was investigated that drape and seam strength were significantly affected by change of weave design and quality of fabric (PPI & yarn count). Drapeability increased as the number of interlacement or contact point deceased between warp and weft yarns. As the weight of fabric, bending length, and density of fabric had indirect relationship with drapeability. We had concluded that 2-D drape was higher than 3-D drape even though the garment was made of the same fabric construction. Seam breakage strength decreased with decrease in picks density and yarn count.Keywords: drape coefficient, fabric, seam strength, weave
Procedia PDF Downloads 26315 Counteract Heat Stress on Broiler Chicks by Adding Anti-Heat Stress Vitamins (Vitamin C and E) with Organic Zinc
Authors: Omnia Y. Shawky, Asmaa M. Megahed, Alaa E. ElKomy, A. E. Abd-El-Hamid, Y. A. Attia
Abstract:
This study was carried out to elevate the broilers physiological response against heat stress and reduce this impact by adding vitamin C (VC), vitamin E (VE) alone/or with organic zinc (Zn) to chicks’ rations. A total of 192, 26-day-old Arbor Acers male chicks were randomly divided into equal 8 groups (4 replicates for each). All experimental groups were treated as follow: Group 2 was served as a heat stress control that reared at 37ºC with relative humidity 53 ± 8% for 6 hours/day for three successive days/week and fed the basal diet only. Groups 3-8 were heat stressed in a like manner to group 2 and fed basal diet inclusion 200mg VC (group 3), 200mg VE (group 4), 200mg VC+200mg VE (group 5), 200mg VC+30mg Zn (group 6), 200mg VE+30mg Zn (group 7) and 200mg VC+200mg VE+30mg Zn (group 8) /kg feed, while Group 1 was served as a positive control that reared on a neutral temperature (NT) (approximately 21ºC) and fed the basal diet only. Respiration rate and rectal temperature were boosted of HS chicks (80.8 breath/min and 41.97ºC) compared to NT group (60.12 breath/min and 40.9ºC), while, adding VC alone and with VE or Zn resulted in decrease these measurements. Heat stress had a significantly negative effect on chicks body weight gain, feed consumption and feed conversion ratio compared to the NT group, this harmful effect could be overcome by adding VC and VE individually or with Zn. Chicks exposed to heat stress showed slightly increase hemoglobin concentration compared to NT group, while, adding VC, VE individually or with Zn alleviated this effect. Plasma glucose concentration was significantly increased in HS group than the NT group, but adding VC, VE individually or with Zn resulted in a reduction plasma glucose level, which it was still higher than the NT group. Heat stress caused an increase in plasma total lipids and cholesterol concentration compared to the NT group and inclusion VC or VE alone or with Zn was not able to reduce this effect. The increased liver enzymes activities (AST and ALT) that observed in HS group compared to NT group were removed by adding VC and VE individually or with Zn. As well, exposure of broiler chicks to heat stress resulted in a slightly decrease in plasma total antioxidant capacity level (TAC) superoxide dismutase and catalase enzymes activities, while inclusion VC and VE individually or with Zn in chicks rations caused an increased in these measurements. Broiler chicks that exposed to HS revealed a significant increase in heat shock protein (Hsp 70) compared to the NT group, while, adding VC or VE individually or with Zn resulted in a significant decrease in Hsp70 than the HS group and VE alone or with VC had the greatest effect. In conclusion, it could be overcome the harmful and the negative effect of heat stress on broiler chicks’ productive performance and physiological status by inclusion VC (200mg) or VE (200mg) individual or in a combination with organic zinc (30 mg) in chicks’ rations.Keywords: heat stress, broiler, vitamin C, vitamin E, organic zinc
Procedia PDF Downloads 20414 Slope Stability and Landslides Hazard Analysis, Limitations of Existing Approaches, and a New Direction
Authors: Alisawi Alaa T., Collins P. E. F.
Abstract:
The analysis and evaluation of slope stability and landslide hazards are landslide hazards are critically important in civil engineering projects and broader considerations of safety. The level of slope stability risk should be identified due to its significant and direct financial and safety effects. Slope stability hazard analysis is performed considering static and/or dynamic loading circumstances. To reduce and/or prevent the failure hazard caused by landslides, a sophisticated and practical hazard analysis method using advanced constitutive modeling should be developed and linked to an effective solution that corresponds to the specific type of slope stability and landslides failure risk. Previous studies on slope stability analysis methods identify the failure mechanism and its corresponding solution. The commonly used approaches include used approaches include limit equilibrium methods, empirical approaches for rock slopes (e.g., slope mass rating and Q-slope), finite element or finite difference methods, and district element codes. This study presents an overview and evaluation of these analysis techniques. Contemporary source materials are used to examine these various methods on the basis of hypotheses, the factor of safety estimation, soil types, load conditions, and analysis conditions and limitations. Limit equilibrium methods play a key role in assessing the level of slope stability hazard. The slope stability safety level can be defined by identifying the equilibrium of the shear stress and shear strength. The slope is considered stable when the movement resistance forces are greater than those that drive the movement with a factor of safety (ratio of the resistance of the resistance of the driving forces) that is greater than 1.00. However, popular and practical methods, including limit equilibrium approaches, are not effective when the slope experiences complex failure mechanisms, such as progressive failure, liquefaction, internal deformation, or creep. The present study represents the first episode of an ongoing project that involves the identification of the types of landslides hazards, assessment of the level of slope stability hazard, development of a sophisticated and practical hazard analysis method, linkage of the failure type of specific landslides conditions to the appropriate solution and application of an advanced computational method for mapping the slope stability properties in the United Kingdom, and elsewhere through geographical information system (GIS) and inverse distance weighted spatial interpolation(IDW) technique. This study investigates and assesses the different assesses the different analysis and solution techniques to enhance the knowledge on the mechanism of slope stability and landslides hazard analysis and determine the available solutions for each potential landslide failure risk.Keywords: slope stability, finite element analysis, hazard analysis, landslides hazard
Procedia PDF Downloads 10013 Assessment of Water Pollution in the River Nile (Egypt) by Applying Blood Biomarkers in Two Excellent Model Species Oreochromis niloticus niloticus and Clarias gariepinus
Authors: Alaa G. M. Osman, Abd-El –Baset M. Abd El Reheem, Khaled Y. Abouelfadl, Usama M. Mahmoud, Mohsen A. Moustafa
Abstract:
This study aimed to explore new sites of biomarker research and to establish the use of blood parameters in wild fish populations. Four hundred and twenty fish samples were collected from six sites along the whole course of the river Nile, Egypt. The mean values of erythrocytes, thrombocytes, hemoglobin concentration, hematocrit value, and mean corpuscular volume were significantly lower in the blood of Nile tilapia and African catfish collected from downstream (contaminated) compared to upstream sites. In contrast, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration in the peripheral blood of both fish species significantly increased from upstream to downstream river Nile. The leukocytes count was significantly decreased in contaminated sites compared to upstream area. Hematological variables in the peripheral blood of Oreochromis niloticus niloticus and Clarias gariepinus exhibited significant (p<0.05) correlation with nearly all the detected chemical and physical parameters along the Nile course. In the present study, lower cellular and nuclear areas and cellular and nuclear shape factor were recorded in the erythrocytes of fish collected from downstream compared to those caught from upstream sites. This was confirmed by higher immature ratios of red cells in the blood of fish sampled from downstream river Nile. Karyorrhetic and enucleated erythrocytes were significantly correlated with physiochemical parameters in water samples collected from the same sites is being higher in the blood of fish collected from downstream sites. To see if there was any correlation between fish altered physiological fitness and environmental stress, we measured serum biochemical variables namely; total protein, cholesterol, triglycerides, calcium, chlorides, alkaline phosphatase activity (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), uric acid activity, creatinine, and serum glucose. The level of all the selected biochemical variables in the blood of O. niloticus niloticus and C. gariepinus were recorded to be significantly higher (p<0.05) in downstream sites. According to the present results, nearly all the detected haematological and blood biochemical variables are suitable indicators of contaminant exposure in O. niloticus niloticus and C. gariepinus. Also the detected erythrocytes malformations in blood collected from Nile tilapia and African catfish were proven to be suitable for bio-monitoring aquatic pollution. The results revealed species-specific differences in sensitivities, suggesting that Nile tilapia may serve as a more sensitive test species compared to African catfish.Keywords: biomarkers, water pollution, blood parameters, river nile, african catfish, nile tilapia
Procedia PDF Downloads 29112 Hypoglossal Nerve Stimulation (Baseline vs. 12 months) for Obstructive Sleep Apnea: A Meta-Analysis
Authors: Yasmeen Jamal Alabdallat, Almutazballlah Bassam Qablan, Hamza Al-Salhi, Salameh Alarood, Ibraheem Alkhawaldeh, Obada Abunar, Adam Abdallah
Abstract:
Obstructive sleep apnea (OSA) is a disorder caused by the repeated collapse of the upper airway during sleep. It is the most common cause of sleep-related breathing disorder, as OSA can cause loud snoring, daytime fatigue, or more severe problems such as high blood pressure, cardiovascular disease, coronary artery disease, insulin-resistant diabetes, and depression. The hypoglossal nerve stimulator (HNS) is an implantable medical device that reduces the occurrence of obstructive sleep apnea by electrically stimulating the hypoglossal nerve in rhythm with the patient's breathing, causing the tongue to move. This stimulation helps keep the patient's airways clear while they sleep. This systematic review and meta-analysis aimed to assess the clinical outcome of hypoglossal nerve stimulation as a treatment of obstructive sleep apnea. A computer literature search of PubMed, Scopus, Web of Science, and Cochrane Central Register of Controlled Trials was conducted from inception until August 2022. Studies assessing the following clinical outcomes (Apnea-Hypopnea Index (AHI), Epworth Sleepiness Scale (ESS), Functional Outcomes of Sleep Questionnaire (FOSQ), Oxygen Desaturation Indices (ODI), (Oxygen Saturation (SaO2)) were pooled in the meta-analysis using Review Manager Software. We assessed the quality of studies according to the Cochrane risk-of-bias tool for randomized trials (RoB2), Risk of Bias In Non-randomized Studies - of Interventions (ROBINS-I), and a modified version of NOS for the non-comparative cohort studies.13 Studies (Six Clinical Trials and Seven prospective cohort studies) with a total of 817 patients were included in the meta-analysis. The results of AHI were reported in 11 studies examining OSA 696 patients. We found that there was a significant improvement in the AHI after 12 months of HNS (MD = 18.2 with 95% CI, (16.7 to 19.7; I2 = 0%); P < 0.00001). Further, 12 studies reported the results of ESS after 12 months of intervention with a significant improvement in the range of sleepiness among the examined 757 OSA patients (MD = 5.3 with 95% CI, (4.75 to 5.86; I2 = 65%); P < 0.0001). Moreover, nine studies involving 699 participants reported the results of FOSQ after 12 months of HNS with a significant reported improvement (MD = -3.09 with 95% CI, (-3.41 to 2.77; I2 = 0%); P < 0.00001). In addition, ten studies reported the results of ODI with a significant improvement after 12 months of HNS among the 817 examined patients (MD = 14.8 with 95% CI, (13.25 to 16.32; I2 = 0%); P < 000001). The Hypoglossal Nerve Stimulation showed a significant positive impact on obstructive sleep apnea patients after 12 months of therapy in terms of apnea-hypopnea index, oxygen desaturation indices, manifestations of the behavioral morbidity associated with obstructive sleep apnea, and functional status resulting from sleepiness.Keywords: apnea, meta-analysis, hypoglossal, stimulation
Procedia PDF Downloads 11511 Offshore Wind Assessment and Analysis for South Western Mediterranean Sea
Authors: Abdallah Touaibia, Nachida Kasbadji Merzouk, Mustapha Merzouk, Ryma Belarbi
Abstract:
accuracy assessment and a better understand of the wind resource distribution are the most important tasks for decision making before installing wind energy operating systems in a given region, there where our interest come to the Algerian coastline and its Mediterranean sea area. Despite its large coastline overlooking the border of Mediterranean Sea, there is still no strategy encouraging the development of offshore wind farms in Algerian waters. The present work aims to estimate the offshore wind fields for the Algerian Mediterranean Sea based on wind data measurements ranging from 1995 to 2018 provided of 24 years of measurement by seven observation stations focusing on three coastline cities in Algeria under a different measurement time step recorded from 30 min, 60 min, and 180 min variate from one to each other, two stations in Spain, two other ones in Italy and three in the coast of Algeria from the east Annaba, at the center Algiers, and to Oran taken place at the west of it. The idea behind consists to have multiple measurement points that helping to characterize this area in terms of wind potential by the use of interpolation method of their average wind speed values between these available data to achieve the approximate values of others locations where aren’t any available measurement because of the difficulties against the implementation of masts within the deep depth water. This study is organized as follow: first, a brief description of the studied area and its climatic characteristics were done. After that, the statistical properties of the recorded data were checked by evaluating wind histograms, direction roses, and average speeds using MatLab programs. Finally, ArcGIS and MapInfo soft-wares were used to establish offshore wind maps for better understanding the wind resource distribution, as well as to identify windy sites for wind farm installation and power management. The study pointed out that Cap Carbonara is the windiest site with an average wind speed of 7.26 m/s at 10 m, inducing a power density of 902 W/m², then the site of Cap Caccia with 4.88 m/s inducing a power density of 282 W/m². The average wind speed of 4.83 m/s is occurred for the site of Oran, inducing a power density of 230 W/m². The results indicated also that the dominant wind direction where the frequencies are highest for the site of Cap Carbonara is the West with 34%, an average wind speed of 9.49 m/s, and a power density of 1722 W/m². Then comes the site of Cap Caccia, where the prevailing wind direction is the North-west, about 20% and 5.82 m/s occurring a power density of 452 W/m². The site of Oran comes in third place with the North dominant direction with 32% inducing an average wind speed of 4.59 m/s and power density of 189 W/m². It also shown that the proposed method is either crucial in understanding wind resource distribution for revealing windy sites over a large area and more effective for wind turbines micro-siting.Keywords: wind ressources, mediterranean sea, offshore, arcGIS, mapInfo, wind maps, wind farms
Procedia PDF Downloads 14710 Impact of Maternal Nationality on Caesarean Section Rate Variation in a High-income Country
Authors: Saheed Shittu, Lolwa Alansari, Fahed Nattouf, Tawa Olukade, Naji Abdallah, Tamara Alshdafat, Sarra Amdouni
Abstract:
Cesarean sections (CS), a highly regarded surgical intervention for improving fetal-maternal outcomes and serving as an integral part of emergency obstetric services, are not without complications. Although CS has many advantages, it poses significant risks to both mother and child and increases healthcare expenditures in the long run. The escalating global prevalence of CS, coupled with variations in rates among immigrant populations, has prompted an inquiry into the correlation between CS rates and the nationalities of women undergoing deliveries at Al-Wakra Hospital (AWH), Qatar's second-largest public maternity hospital. This inquiry is motivated by the notable CS rate of 36%, deemed high in comparison to the 34% recorded across other Hamad Medical Corporation (HMC) maternity divisions This is Qatar's first comprehensive investigation of Caesarean section rates and nationalities. A retrospective cross-sectional study was conducted, and data for all births delivered in 2019 were retrieved from the hospital's electronic medical records. The CS rate, the crude rate, and adjusted risks of Caesarean delivery for mothers from each nationality were determined. The common indications for CS were analysed based on nationality. The association between nationality and Caesarean rates was examined using binomial logistic regression analysis considering Qatari women as a standard reference group. The correlation between the CS rate in the country of nationality and the observed CS rate in Qatar was also examined using Pearson's correlation. This study included 4,816 births from 69 different nationalities. CS was performed in 1767 women, equating to 36.5%. The nationalities with the highest CS rates were Egyptian (49.6%), Lebanese (45.5%), Filipino and Indian (both 42.2%). Qatari women recorded a CS rate of 33.4%. The major indication for elective CS was previous multiple CS (39.9%) and one prior CS, where the patient declined vaginal birth after the cesarean (VBAC) option (26.8%). A distinct pattern was noticed: elective CS was predominantly performed on Arab women, whereas emergency CS was common among women of Asian and Sub-Saharan African nationalities. Moreover, a significant correlation was found between the CS rates in Qatar and the women's countries of origin. Also, a high CS rate was linked to instances of previous CS. As a result of these insights, strategic interventions were successfully implemented at the facility to mitigate unwarranted CS, resulting in a notable reduction in CS rate from 36.5% in 2019 to 34% in 2022. This proves the efficacy of the meticulously researched approach. The focus has now shifted to reducing primary CS rates and facilitating well-informed decisions regarding childbirth methods.Keywords: maternal nationality, caesarean section rate variation, migrants, high-income country
Procedia PDF Downloads 709 Synthesis, Computational Studies, Antioxidant and Anti-Inflammatory Bio-Evaluation of 2,5-Disubstituted- 1,3,4-Oxadiazole Derivatives
Authors: Sibghat Mansoor Rana, Muhammad Islam, Hamid Saeed, Hummera Rafique, Muhammad Majid, Muhammad Tahir Aqeel, Fariha Imtiaz, Zaman Ashraf
Abstract:
The 1,3,4-oxadiazole derivatives Ox-6a-f have been synthesized by incorporating flur- biprofen moiety with the aim to explore the potential of target molecules to decrease the oxidative stress. The title compounds Ox-6a-f were prepared by simple reactions in which a flurbiprofen –COOH group was esterified with methanol in an acid-catalyzed medium, which was then reacted with hydrazine to afford the corresponding hydrazide. The acid hydrazide was then cyclized into 1,3,4-oxadiazole-2-thiol by reacting with CS2 in the presence of KOH. The title compounds Ox-6a-f were synthesized by the reaction of an –SH group with various alkyl/aryl chlorides, which involves an S-alkylation reaction. The structures of the synthesized Ox-6a-f derivatives were ascer- tained by spectroscopic data. The in silico molecular docking was performed against target proteins cyclooxygenase-2 COX-2 (PDBID 5KIR) and cyclooxygenase-1 COX-1 (PDBID 6Y3C) to determine the binding affinity of the synthesized compounds with these structures. It has been inferred that most of the synthesized compounds bind well with an active binding site of 5KIR compared to 6Y3C, and especially compound Ox-6f showed excellent binding affinity (7.70 kcal/mol) among all synthesized compounds Ox-6a-f. The molecular dynamic (MD) simulation has also been performed to check the stability of docking complexes of ligands with COX-2 by determining their root mean square deviation and root mean square fluctuation. Little fluctuation was observed in case of Ox-6f, which forms the most stable complex with COX-2. The comprehensive antioxidant potential of the synthesized compounds has been evaluated by determining their free radical scavenging activity, including DPPH, OH, nitric oxide (NO), and iron chelation assay. The derivative Ox-6f showed promising results with 80.23% radical scavenging potential at a dose of 100 μg/mL while ascorbic acid exhibited 87.72% inhibition at the same dose. The anti-inflammatory activity of the final products has also been performed, and inflammatory markers were assayed, such as a thiobarbituric acid-reducing substance, nitric oxide, interleukin-6 (IL-6), and COX-2. The derivatives Ox-6d and Ox-6f displayed higher anti-inflammatory activity, exhibiting 70.56% and 74.16% activity, respectively. The results were compared with standard ibuprofen, which showed 84.31% activity at the same dose, 200 μg/mL. The anti-inflammatory potential has been performed by following the carrageen-induced hind paw edema model, and results showed that derivative Ox-6f exhibited 79.83% reduction in edema volume compared to standard ibuprofen, which reduced 84.31% edema volume. As dry lab and wet lab results confirm each other, it has been deduced that derivative Ox-6f may serve as the lead structure to design potent compounds to address oxidative stress.Keywords: synthetic chemistry, pharmaceutical chemistry, oxadiazole derivatives, anti-inflammatory, anti-cancer compounds
Procedia PDF Downloads 168 The Hidden Mechanism beyond Ginger (Zingiber officinale Rosc.) Potent in vivo and in vitro Anti-Inflammatory Activity
Authors: Shahira M. Ezzat, Marwa I. Ezzat, Mona M. Okba, Esther T. Menze, Ashraf B. Abdel-Naim, Shahnas O. Mohamed
Abstract:
Background: In order to decrease the burden of the high cost of synthetic drugs, it is important to focus on phytopharmaceuticals. The aim of our study was to search for the mechanism of ginger (Zingiber officinale Roscoe) anti-inflammatory potential and to correlate it to its biophytochemicals. Methods: Various extracts viz. water, 50%, 70%, 80%, and 90% ethanol were prepared from ginger rhizomes. Fractionation of the aqueous extract (AE) was accomplished using Diaion HP-20. In vitro anti-inflammatory activity of the different extracts and isolated compounds was evaluated by protein denaturation inhibition, membrane stabilization, protease inhibition, and anti-lipoxygenase assays. In vivo anti-inflammatory activity of AE was estimated by assessment of rat paw oedema after carrageenan injection. Prostaglandin E2 (PGE2), certain inflammation markers (TNF-α, IL-6, IL-1α, IL-1β, INFr, MCP-1MIP, RANTES, and Nox) levels and MPO activity in the paw edema exudates were measured. Total antioxidant capacity (TAC) was also determined. Histopathological alterations of paw tissues were scored. Results: All the tested extracts showed significant (p < 0.1) anti-inflammatory activities. The highest percentage of heat induced albumin denaturation (66%) was exhibited by the 50% ethanol (250 μg/ml). The 70 and 90% ethanol extracts (500 μg/ml) were more potent as membrane stabilizers (34.5 and 37%, respectively) than diclofenac (33%). The 80 and 90% ethanol extracts (500 μg/ml) showed maximum protease inhibition (56%). The strongest anti-lipoxygenase activity was observed for the AE. It showed more significant lipoxygenase inhibition activity than that of diclofenac (58% and 52%, respectively) at the same concentration (125 μg/ml). Fractionation of AE yielded four main fractions (Fr I-IV) which showed significant in vitro anti-inflammatory. Purification of Fr-III and IV led to the isolation of 6-poradol (G1), 6-shogaol (G2); methyl 6- gingerol (G3), 5-gingerol (G4), 6-gingerol (G5), 8-gingerol (G6), 10-gingerol (G7), and 1-dehydro-6-gingerol (G8). G2 (62.5 ug/ml), G1 (250 ug/ml), and G8 (250 ug/ml) exhibited potent anti-inflammatory activity in all studied assays, while G4 and G5 exhibited moderate activity. In vivo administration of AE ameliorated rat paw oedema in a dose-dependent manner. AE (at 200 mg/kg) showed significant reduction (60%) of PGE2 production. The AE at different doses (at 25-200 mg/kg) showed significant reduction in inflammatory markers except for IL-1α. AE (at 25 mg/kg) is superior to indomethacin in reduction of IL-1β. Treatment of animals with the AE (100, 200 mg/kg) or indomethacin (10 mg/kg) showed significant reduction in TNF-α, IL-6, MCP-1, and RANTES levels, and MPO activity by about (31, 57 and 32% ) (65, 60 and 57%) (27, 41 and 28%) (23, 32 and 23%) (66, 67 and 67%) respectively. AE at 100 and 200 mg/kg was equipotent to indomethacin in reduction of NOₓ level and in increasing the TAC. Histopathological examination revealed very few inflammatory cells infiltration and oedema after administration of AE (200 mg/kg) prior to carrageenan. Conclusion: Ginger anti-inflammatory activity is mediated by inhibiting macrophage and neutrophils activation as well as negatively affecting monocyte and leukocyte migration. Moreover, it produced dose-dependent decrease in pro-inflammatory cytokines and chemokines and replenished the total antioxidant capacity. We strongly recommend future investigations of ginger in the potential signal transduction pathways.Keywords: anti-lipoxygenase activity, inflammatory markers, 1-dehydro-6-gingerol, 6-shogaol
Procedia PDF Downloads 2537 Selection and Preparation of High Performance, Natural and Cost-Effective Hydrogel as a Bio-Ink for 3D Bio-Printing and Organ on Chip Applications
Authors: Rawan Ashraf, Ahmed E. Gomaa, Gehan Safwat, Ayman Diab
Abstract:
Background: Three-dimensional (3D) bio-printing has become a versatile and powerful method for generating a variety of biological constructs, including bone or extracellular matrix scaffolds endo- or epithelial, muscle tissue, as well as organoids. Aim of the study: Fabricate a low cost DIY 3D bio-printer to produce 3D bio-printed products such as anti-microbial packaging or multi-organs on chips. We demonstrate the alignment between two types of 3D printer technology (3D Bio-printer and DLP) on Multi-organ-on-a-chip (multi-OoC) devices fabrication. Methods: First, Design and Fabrication of the Syringe Unit for Modification of an Off-the-Shelf 3D Printer, then Preparation of Hydrogel based on natural polymers Sodium Alginate and Gelatin, followed by acquisition of the cell suspension, then modeling the desired 3D structure. Preparation for 3D printing, then Cell-free and cell-laden hydrogels went through the printing process at room temperature under sterile conditions and finally post printing curing process and studying the printed structure regards physical and chemical characteristics. The hard scaffold of the Organ on chip devices was designed and fabricated using the DLP-3D printer, following similar approaches as the Microfluidics system fabrication. Results: The fabricated Bio-Ink was based onHydrogel polymer mix of sodium alginate and gelatin 15% to 0.5%, respectively. Later the 3D printing process was conducted using a higher percentage of alginate-based hydrogels because of it viscosity and the controllable crosslinking, unlike the thermal crosslinking of Gelatin. The hydrogels were colored to simulate the representation of two types of cells. The adaption of the hard scaffold, whether for the Microfluidics system or the hard-tissues, has been acquired by the DLP 3D printers with fabricated natural bioactive essential oils that contain antimicrobial activity, followed by printing in Situ three complex layers of soft-hydrogel as a cell-free Bio-Ink to simulate the real-life tissue engineering process. The final product was a proof of concept for a rapid 3D cell culturing approaches that uses an engineered hard scaffold along with soft-tissues, thus, several applications were offered as products of the current prototype, including the Organ-On-Chip as a successful integration between DLP and 3D bioprinter. Conclusion: Multiple designs for the organ-on-a-chip (multi-OoC) devices have been acquired in our study with main focus on the low cost fabrication of such technology and the potential to revolutionize human health research and development. We describe circumstances in which multi-organ models are useful after briefly examining the requirement for full multi-organ models with a systemic component. Following that, we took a look at the current multi-OoC platforms, such as integrated body-on-a-chip devices and modular techniques that use linked organ-specific modules.Keywords: 3d bio-printer, hydrogel, multi-organ on chip, bio-inks
Procedia PDF Downloads 1746 Scientific and Regulatory Challenges of Advanced Therapy Medicinal Products
Authors: Alaa Abdellatif, Gabrièle Breda
Abstract:
Background. Advanced therapy medicinal products (ATMPs) are innovative therapies that mainly target orphan diseases and high unmet medical needs. ATMP includes gene therapy medicinal products (GTMP), somatic cell therapy medicinal products (CTMP), and tissue-engineered therapies (TEP). Since legislation opened the way in 2007, 25 ATMPs have been approved in the EU, which is about the same amount as the U.S. Food and Drug Administration. However, not all of the ATMPs that have been approved have successfully reached the market and retained their approval. Objectives. We aim to understand all the factors limiting the market access to very promising therapies in a systemic approach, to be able to overcome these problems, in the future, with scientific, regulatory and commercial innovations. Further to recent reviews that focus either on specific countries, products, or dimensions, we will address all the challenges faced by ATMP development today. Methodology. We used mixed methods and a multi-level approach for data collection. First, we performed an updated academic literature review on ATMP development and their scientific and market access challenges (papers published between 2018 and April 2023). Second, we analyzed industry feedback from cell and gene therapy webinars and white papers published by providers and pharmaceutical industries. Finally, we established a comparative analysis of the regulatory guidelines published by EMA and the FDA for ATMP approval. Results: The main challenges in bringing these therapies to market are the high development costs. Developing ATMPs is expensive due to the need for specialized manufacturing processes. Furthermore, the regulatory pathways for ATMPs are often complex and can vary between countries, making it challenging to obtain approval and ensure compliance with different regulations. As a result of the high costs associated with ATMPs, challenges in obtaining reimbursement from healthcare payers lead to limited patient access to these treatments. ATMPs are often developed for orphan diseases, which means that the patient population is limited for clinical trials which can make it challenging to demonstrate their safety and efficacy. In addition, the complex manufacturing processes required for ATMPs can make it challenging to scale up production to meet demand, which can limit their availability and increase costs. Finally, ATMPs face safety and efficacy challenges: dangerous adverse events of these therapies like toxicity related to the use of viral vectors or cell therapy, starting material and donor-related aspects. Conclusion. As a result of our mixed method analysis, we found that ATMPs face a number of challenges in their development, regulatory approval, and commercialization and that addressing these challenges requires collaboration between industry, regulators, healthcare providers, and patient groups. This first analysis will help us to address, for each challenge, proper and innovative solution(s) in order to increase the number of ATMPs approved and reach the patientsKeywords: advanced therapy medicinal products (ATMPs), product development, market access, innovation
Procedia PDF Downloads 765 Effect of Rolling Shear Modulus and Geometric Make up on the Out-Of-Plane Bending Performance of Cross-Laminated Timber Panel
Authors: Md Tanvir Rahman, Mahbube Subhani, Mahmud Ashraf, Paul Kremer
Abstract:
Cross-laminated timber (CLT) is made from layers of timber boards orthogonally oriented in the thickness direction, and due to this, CLT can withstand bi-axial bending in contrast with most other engineered wood products such as laminated veneer lumber (LVL) and glued laminated timber (GLT). Wood is cylindrically anisotropic in nature and is characterized by significantly lower elastic modulus and shear modulus in the planes perpendicular to the fibre direction, and is therefore classified as orthotropic material and is thus characterized by 9 elastic constants which are three elastic modulus in longitudinal direction, tangential direction and radial direction, three shear modulus in longitudinal tangential plane, longitudinal radial plane and radial tangential plane and three Poisson’s ratio. For simplification, timber materials are generally assumed to be transversely isotropic, reducing the number of elastic properties characterizing it to 5, where the longitudinal plane and radial planes are assumed to be planes of symmetry. The validity of this assumption was investigated through numerical modelling of CLT with both orthotropic mechanical properties and transversely isotropic material properties for three softwood species, which are Norway spruce, Douglas fir, Radiata pine, and three hardwood species, namely Victorian ash, Beech wood, and Aspen subjected to uniformly distributed loading under simply supported boundary condition. It was concluded that assuming the timber to be transversely isotropic results in a negligible error in the order of 1 percent. It was also observed that along with longitudinal elastic modulus, ratio of longitudinal shear modulus (GL) and rolling shear modulus (GR) has a significant effect on a deflection for CLT panels of lower span to depth ratio. For softwoods such as Norway spruce and Radiata pine, the ratio of longitudinal shear modulus, GL to rolling shear modulus GR is reported to be in the order of 12 to 15 times in literature. This results in shear flexibility in transverse layers leading to increased deflection under out-of-plane loading. The rolling shear modulus of hardwoods has been found to be significantly higher than those of softwoods, where the ratio between longitudinal shear modulus to rolling shear modulus as low as 4. This has resulted in a significant rise in research into the manufacturing of CLT from entirely from hardwood, as well as from a combination of softwood and hardwoods. The commonly used beam theory to analyze the performance of CLT panels under out-of-plane loads are the Shear analogy method, Gamma method, and k-method. The shear analogy method has been found to be the most effective method where shear deformation is significant. The effect of the ratio of longitudinal shear modulus and rolling shear modulus of cross-layer on the deflection of CLT under uniformly distributed load with respect to its length to depth ratio was investigated using shear analogy method. It was observed that shear deflection is reduced significantly as the ratio of the shear modulus of the longitudinal layer and rolling shear modulus of cross-layer decreases. This indicates that there is significant room for improvement of the bending performance of CLT through developing hybrid CLT from a mix of softwood and hardwood.Keywords: rolling shear modulus, shear deflection, ratio of shear modulus and rolling shear modulus, timber
Procedia PDF Downloads 1274 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data
Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann
Abstract:
Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers
Procedia PDF Downloads 2053 Prevalence, Median Time, and Associated Factors with the Likelihood of Initial Antidepressant Change: A Cross-Sectional Study
Authors: Nervana Elbakary, Sami Ouanes, Sadaf Riaz, Oraib Abdallah, Islam Mahran, Noriya Al-Khuzaei, Yassin Eltorki
Abstract:
Major Depressive Disorder (MDD) requires therapeutic interventions during the initial month after being diagnosed for better disease outcomes. International guidelines recommend a duration of 4–12 weeks for an initial antidepressant (IAD) trial at an optimized dose to get a response. If depressive symptoms persist after this duration, guidelines recommend switching, augmenting, or combining strategies as the next step. Most patients with MDD in the mental health setting have been labeled incorrectly as treatment-resistant where in fact they have not been subjected to an adequate trial of guideline-recommended therapy. Premature discontinuation of IAD due to ineffectiveness can cause unfavorable consequences. Avoiding irrational practices such as subtherapeutic doses of IAD, premature switching between the ADs, and refraining from unjustified polypharmacy can help the disease to go into a remission phase We aimed to determine the prevalence and the patterns of strategies applied after an IAD was changed because of a suboptimal response as a primary outcome. Secondary outcomes included the median survival time on IAD before any change; and the predictors that were associated with IAD change. This was a retrospective cross- sectional study conducted in Mental Health Services in Qatar. A dataset between January 1, 2018, and December 31, 2019, was extracted from the electronic health records. Inclusion and exclusion criteria were defined and applied. The sample size was calculated to be at least 379 patients. Descriptive statistics were reported as frequencies and percentages, in addition, to mean and standard deviation. The median time of IAD to any change strategy was calculated using survival analysis. Associated predictors were examined using two unadjusted and adjusted cox regression models. A total of 487 patients met the inclusion criteria of the study. The average age for participants was 39.1 ± 12.3 years. Patients with first experience MDD episode 255 (52%) constituted a major part of our sample comparing to the relapse group 206(42%). About 431 (88%) of the patients had an occurrence of IAD change to any strategy before end of the study. Almost half of the sample (212 (49%); 95% CI [44–53%]) had their IAD changed less than or equal to 30 days. Switching was consistently more common than combination or augmentation at any timepoint. The median time to IAD change was 43 days with 95% CI [33.2–52.7]. Five independent variables (age, bothersome side effects, un-optimization of the dose before any change, comorbid anxiety, first onset episode) were significantly associated with the likelihood of IAD change in the unadjusted analysis. The factors statistically associated with higher hazard of IAD change in the adjusted analysis were: younger age, un-optimization of the IAD dose before any change, and comorbid anxiety. Because almost half of the patients in this study changed their IAD as early as within the first month, efforts to avoid treatment failure are needed to ensure patient-treatment targets are met. The findings of this study can have direct clinical guidance for health care professionals since an optimized, evidence-based use of AD medication can improve the clinical outcomes of patients with MDD; and also, to identify high-risk factors that could worsen the survival time on IAD such as young age and comorbid anxietyKeywords: initial antidepressant, dose optimization, major depressive disorder, comorbid anxiety, combination, augmentation, switching, premature discontinuation
Procedia PDF Downloads 1512 A Review on Biological Control of Mosquito Vectors
Authors: Asim Abbasi, Muhammad Sufyan, Iqra, Hafiza Javaria Ashraf
Abstract:
The share of vector-borne diseases (VBDs) in the global burden of infectious diseases is almost 17%. The advent of new drugs and latest research in medical science helped mankind to compete with these lethal diseases but still diseases transmitted by different mosquito species, including filariasis, malaria, viral encephalitis and dengue are serious threats for people living in disease endemic areas. Injudicious and repeated use of pesticides posed selection pressure on mosquitoes leading to development of resistance. Hence biological control agents are under serious consideration of scientific community to be used in vector control programmes. Fish have a history of predating immature stages of different aquatic insects including mosquitoes. The noteworthy examples in Africa and Asia includes, Aphanius discolour and a fish in the Panchax group. Moreover, common mosquito fish, Gambusia affinis predates mostly on temporary water mosquitoes like anopheline as compared to permanent water breeders like culicines. Mosquitoes belonging to genus Toxorhynchites have a worldwide distribution and are mostly associated with the predation of other mosquito larvae habituating with them in natural and artificial water containers. These species are harmless to humans as their adults do not suck human blood but feeds on floral nectar. However, their activity is mostly temperature dependent as Toxorhynchites brevipalpis consume 359 Aedes aegypti larvae at 30-32 ºC in contrast to 154 larvae at 20-26 ºC. Although many bacterial species were isolated from mosquito cadavers but those belonging to genus Bacillus are found highly pathogenic against them. The successful species of this genus include Bacillus thuringiensis and Bacillus sphaericus. The prime targets of B. thuringiensis are mostly the immatures of genus Aedes, Culex, Anopheles and Psorophora while B. sphaericus is specifically toxic against species of Culex, Psorophora and Culiseta. The entomopathogenic nematodes belonging to family, mermithidae are also pathogenic to different mosquito species. Eighty different species of mosquitoes including Anopheles, Aedes and Culex proved to be highly vulnerable to the attack of two mermithid species, Romanomermis culicivorax and R. iyengari. Cytoplasmic polyhedrosis virus was the first described pathogenic virus, isolated from the cadavers of mosquito specie, Culex tarsalis. Other viruses which are pathogenic to culicine includes, iridoviruses, cytopolyhedrosis viruses, entomopoxviruses and parvoviruses. Protozoa species belonging to division microsporidia are the common pathogenic protozoans in mosquito populations which kill their host by the chronic effects of parasitism. Moreover, due to their wide prevalence in anopheline mosquitoes and transversal and horizontal transmission from infected to healthy host, microsporidia of the genera Nosema and Amblyospora have received much attention in various mosquito control programmes. Fungal based mycopesticides are used in biological control of insect pests with 47 species reported virulent against different stages of mosquitoes. These include both aquatic fungi i.e. species of Coelomomyces, Lagenidium giganteum and Culicinomyces clavosporus, and the terrestrial fungi Metarhizium anisopliae and Beauveria bassiana. Hence, it was concluded that the integrated use of all these biological control agents can be a healthy contribution in mosquito control programmes and become a dire need of the time to avoid repeated use of pesticides.Keywords: entomopathogenic nematodes, protozoa, Toxorhynchites, vector-borne
Procedia PDF Downloads 2671 Flood Risk Management in the Semi-Arid Regions of Lebanon - Case Study “Semi Arid Catchments, Ras Baalbeck and Fekha”
Authors: Essam Gooda, Chadi Abdallah, Hamdi Seif, Safaa Baydoun, Rouya Hdeib, Hilal Obeid
Abstract:
Floods are common natural disaster occurring in semi-arid regions in Lebanon. This results in damage to human life and deterioration of environment. Despite their destructive nature and their immense impact on the socio-economy of the region, flash floods have not received adequate attention from policy and decision makers. This is mainly because of poor understanding of the processes involved and measures needed to manage the problem. The current understanding of flash floods remains at the level of general concepts; most policy makers have yet to recognize that flash floods are distinctly different from normal riverine floods in term of causes, propagation, intensity, impacts, predictability, and management. Flash floods are generally not investigated as a separate class of event but are rather reported as part of the overall seasonal flood situation. As a result, Lebanon generally lacks policies, strategies, and plans relating specifically to flash floods. Main objective of this research is to improve flash flood prediction by providing new knowledge and better understanding of the hydrological processes governing flash floods in the East Catchments of El Assi River. This includes developing rainstorm time distribution curves that are unique for this type of study region; analyzing, investigating, and developing a relationship between arid watershed characteristics (including urbanization) and nearby villages flow flood frequency in Ras Baalbeck and Fekha. This paper discusses different levels of integration approach¬es between GIS and hydrological models (HEC-HMS & HEC-RAS) and presents a case study, in which all the tasks of creating model input, editing data, running the model, and displaying output results. The study area corresponds to the East Basin (Ras Baalbeck & Fakeha), comprising nearly 350 km2 and situated in the Bekaa Valley of Lebanon. The case study presented in this paper has a database which is derived from Lebanese Army topographic maps for this region. Using ArcMap to digitizing the contour lines, streams & other features from the topographic maps. The digital elevation model grid (DEM) is derived for the study area. The next steps in this research are to incorporate rainfall time series data from Arseal, Fekha and Deir El Ahmar stations to build a hydrologic data model within a GIS environment and to combine ArcGIS/ArcMap, HEC-HMS & HEC-RAS models, in order to produce a spatial-temporal model for floodplain analysis at a regional scale. In this study, HEC-HMS and SCS methods were chosen to build the hydrologic model of the watershed. The model then calibrated using flood event that occurred between 7th & 9th of May 2014 which considered exceptionally extreme because of the length of time the flows lasted (15 hours) and the fact that it covered both the watershed of Aarsal and Ras Baalbeck. The strongest reported flood in recent times lasted for only 7 hours covering only one watershed. The calibrated hydrologic model is then used to build the hydraulic model & assessing of flood hazards maps for the region. HEC-RAS Model is used in this issue & field trips were done for the catchments in order to calibrated both Hydrologic and Hydraulic models. The presented models are a kind of flexible procedures for an ungaged watershed. For some storm events it delivers good results, while for others, no parameter vectors can be found. In order to have a general methodology based on these ideas, further calibration and compromising of results on the dependence of many flood events parameters and catchment properties is required.Keywords: flood risk management, flash flood, semi arid region, El Assi River, hazard maps
Procedia PDF Downloads 478