Search results for: hierarchical text classification models
6004 Analytical Study of Data Mining Techniques for Software Quality Assurance
Authors: Mariam Bibi, Rubab Mehboob, Mehreen Sirshar
Abstract:
Satisfying the customer requirements is the ultimate goal of producing or developing any product. The quality of the product is decided on the bases of the level of customer satisfaction. There are different techniques which have been reported during the survey which enhance the quality of the product through software defect prediction and by locating the missing software requirements. Some mining techniques were proposed to assess the individual performance indicators in collaborative environment to reduce errors at individual level. The basic intention is to produce a product with zero or few defects thereby producing a best product quality wise. In the analysis of survey the techniques like Genetic algorithm, artificial neural network, classification and clustering techniques and decision tree are studied. After analysis it has been discovered that these techniques contributed much to the improvement and enhancement of the quality of the product.Keywords: data mining, defect prediction, missing requirements, software quality
Procedia PDF Downloads 4686003 Electrical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: electrical disaggregation, DTW, general appliance modeling, event detection
Procedia PDF Downloads 786002 Comparison of Parametric and Bayesian Survival Regression Models in Simulated and HIV Patient Antiretroviral Therapy Data: Case Study of Alamata Hospital, North Ethiopia
Authors: Zeytu G. Asfaw, Serkalem K. Abrha, Demisew G. Degefu
Abstract:
Background: HIV/AIDS remains a major public health problem in Ethiopia and heavily affecting people of productive and reproductive age. We aimed to compare the performance of Parametric Survival Analysis and Bayesian Survival Analysis using simulations and in a real dataset application focused on determining predictors of HIV patient survival. Methods: A Parametric Survival Models - Exponential, Weibull, Log-normal, Log-logistic, Gompertz and Generalized gamma distributions were considered. Simulation study was carried out with two different algorithms that were informative and noninformative priors. A retrospective cohort study was implemented for HIV infected patients under Highly Active Antiretroviral Therapy in Alamata General Hospital, North Ethiopia. Results: A total of 320 HIV patients were included in the study where 52.19% females and 47.81% males. According to Kaplan-Meier survival estimates for the two sex groups, females has shown better survival time in comparison with their male counterparts. The median survival time of HIV patients was 79 months. During the follow-up period 89 (27.81%) deaths and 231 (72.19%) censored individuals registered. The average baseline cluster of differentiation 4 (CD4) cells count for HIV/AIDS patients were 126.01 but after a three-year antiretroviral therapy follow-up the average cluster of differentiation 4 (CD4) cells counts were 305.74, which was quite encouraging. Age, functional status, tuberculosis screen, past opportunistic infection, baseline cluster of differentiation 4 (CD4) cells, World Health Organization clinical stage, sex, marital status, employment status, occupation type, baseline weight were found statistically significant factors for longer survival of HIV patients. The standard error of all covariate in Bayesian log-normal survival model is less than the classical one. Hence, Bayesian survival analysis showed better performance than classical parametric survival analysis, when subjective data analysis was performed by considering expert opinions and historical knowledge about the parameters. Conclusions: Thus, HIV/AIDS patient mortality rate could be reduced through timely antiretroviral therapy with special care on the potential factors. Moreover, Bayesian log-normal survival model was preferable than the classical log-normal survival model for determining predictors of HIV patients survival.Keywords: antiretroviral therapy (ART), Bayesian analysis, HIV, log-normal, parametric survival models
Procedia PDF Downloads 1966001 Identifying Promoters and Their Types Based on a Two-Layer Approach
Authors: Bin Liu
Abstract:
Prokaryotic promoter, consisted of two short DNA sequences located at in -35 and -10 positions, is responsible for controlling the initiation and expression of gene expression. Different types of promoters have different functions, and their consensus sequences are similar. In addition, their consensus sequences may be different for the same type of promoter, which poses difficulties for promoter identification. Unfortunately, all existing computational methods treat promoter identification as a binary classification task and can only identify whether a query sequence belongs to a specific promoter type. It is desired to develop computational methods for effectively identifying promoters and their types. Here, a two-layer predictor is proposed to try to deal with the problem. The first layer is designed to predict whether a given sequence is a promoter and the second layer predicts the type of promoter that is judged as a promoter. Meanwhile, we also analyze the importance of feature and sequence conversation in two aspects: promoter identification and promoter type identification. To the best knowledge of ours, it is the first computational predictor to detect promoters and their types.Keywords: promoter, promoter type, random forest, sequence information
Procedia PDF Downloads 1846000 Assessment of Taiwan Railway Occurrences Investigations Using Causal Factor Analysis System and Bayesian Network Modeling Method
Authors: Lee Yan Nian
Abstract:
Safety investigation is different from an administrative investigation in that the former is conducted by an independent agency and the purpose of such investigation is to prevent accidents in the future and not to apportion blame or determine liability. Before October 2018, Taiwan railway occurrences were investigated by local supervisory authority. Characteristics of this kind of investigation are that enforcement actions, such as administrative penalty, are usually imposed on those persons or units involved in occurrence. On October 21, 2018, due to a Taiwan Railway accident, which caused 18 fatalities and injured another 267, establishing an agency to independently investigate this catastrophic railway accident was quickly decided. The Taiwan Transportation Safety Board (TTSB) was then established on August 1, 2019 to take charge of investigating major aviation, marine, railway and highway occurrences. The objective of this study is to assess the effectiveness of safety investigations conducted by the TTSB. In this study, the major railway occurrence investigation reports published by the TTSB are used for modeling and analysis. According to the classification of railway occurrences investigated by the TTSB, accident types of Taiwan railway occurrences can be categorized into: derailment, fire, Signal Passed at Danger and others. A Causal Factor Analysis System (CFAS) developed by the TTSB is used to identify the influencing causal factors and their causal relationships in the investigation reports. All terminologies used in the CFAS are equivalent to the Human Factors Analysis and Classification System (HFACS) terminologies, except for “Technical Events” which was added to classify causal factors resulting from mechanical failure. Accordingly, the Bayesian network structure of each occurrence category is established based on the identified causal factors in the CFAS. In the Bayesian networks, the prior probabilities of identified causal factors are obtained from the number of times in the investigation reports. Conditional Probability Table of each parent node is determined from domain experts’ experience and judgement. The resulting networks are quantitatively assessed under different scenarios to evaluate their forward predictions and backward diagnostic capabilities. Finally, the established Bayesian network of derailment is assessed using investigation reports of the same accident which was investigated by the TTSB and the local supervisory authority respectively. Based on the assessment results, findings of the administrative investigation is more closely tied to errors of front line personnel than to organizational related factors. Safety investigation can identify not only unsafe acts of individual but also in-depth causal factors of organizational influences. The results show that the proposed methodology can identify differences between safety investigation and administrative investigation. Therefore, effective intervention strategies in associated areas can be better addressed for safety improvement and future accident prevention through safety investigation.Keywords: administrative investigation, bayesian network, causal factor analysis system, safety investigation
Procedia PDF Downloads 1235999 Human Kinetics Education and the Computer Operations, Effects and Merits
Authors: Kehinde Adeyeye Adelabu
Abstract:
Computer applications has completely revolutionized the way of life of people which does not exclude the field of sport education. There are computer technologies which help to enhance teaching in every field of education. Invention of computers has done great to the field of education. This study was therefore carried out to examine the effects and merits of computer operations in Human Kinetics Education and Sports. The study was able to identify the component of computer, uses of computer in Human Kinetics education (sports), computer applications in some branches of human kinetics education. A qualitative research method was employed by the author in gathering experts’ views and used to analyze the effects and merits of computer applications in the field of human kinetics education. No experiment was performed in the cause of carrying out the study. The source of information for the study was text-books, journal, articles, past project reports, internet i.e. Google search engine. Computer has significantly helped to improve Education (Human Kinetic), it has complemented the basic physical fitness testing and gave a more scientific basis to the testing. The use of the software and packages has made cost projections, database applications, inventory control, management of events, word processing, electronic mailing and record keeping easier than the pasts.Keywords: application, computer operation, education, human kinetics
Procedia PDF Downloads 1865998 Non-Linear Assessment of Chromatographic Lipophilicity of Selected Steroid Derivatives
Authors: Milica Karadžić, Lidija Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Anamarija Mandić, Aleksandar Oklješa, Andrea Nikolić, Marija Sakač, Katarina Penov Gaši
Abstract:
Using chemometric approach, the relationships between the chromatographic lipophilicity and in silico molecular descriptors for twenty-nine selected steroid derivatives were studied. The chromatographic lipophilicity was predicted using artificial neural networks (ANNs) method. The most important in silico molecular descriptors were selected applying stepwise selection (SS) paired with partial least squares (PLS) method. Molecular descriptors with satisfactory variable importance in projection (VIP) values were selected for ANN modeling. The usefulness of generated models was confirmed by detailed statistical validation. High agreement between experimental and predicted values indicated that obtained models have good quality and high predictive ability. Global sensitivity analysis (GSA) confirmed the importance of each molecular descriptor used as an input variable. High-quality networks indicate a strong non-linear relationship between chromatographic lipophilicity and used in silico molecular descriptors. Applying selected molecular descriptors and generated ANNs the good prediction of chromatographic lipophilicity of the studied steroid derivatives can be obtained. This article is based upon work from COST Actions (CM1306 and CA15222), supported by COST (European Cooperation and Science and Technology).Keywords: artificial neural networks, chemometrics, global sensitivity analysis, liquid chromatography, steroids
Procedia PDF Downloads 3455997 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland
Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski
Abstract:
PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks
Procedia PDF Downloads 1495996 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology
Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik
Abstract:
Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms
Procedia PDF Downloads 815995 Oxidative Stress Related Alteration of Mitochondrial Dynamics in Cellular Models
Authors: Orsolya Horvath, Laszlo Deres, Krisztian Eros, Katalin Ordog, Tamas Habon, Balazs Sumegi, Kalman Toth, Robert Halmosi
Abstract:
Introduction: Oxidative stress induces an imbalance in mitochondrial fusion and fission processes, finally leading to cell death. The two antioxidant molecules, BGP-15 and L2286 have beneficial effects on mitochondrial functions and on cellular oxidative stress response. In this work, we studied the effects of these compounds on the processes of mitochondrial quality control. Methods: We used H9c2 cardiomyoblast and isolated neonatal rat cardiomyocytes (NRCM) for the experiments. The concentration of stressors and antioxidants was beforehand determined with MTT test. We applied 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG) in 125 µM, 400 µM and 800 µM concentrations for 4 and 8 hours on H9c2 cells. H₂O₂ was applied in 150 µM and 300 µM concentration for 0.5 and 4 hours on both models. L2286 was administered in 10 µM, while BGP-15 in 50 µM doses. Cellular levels of the key proteins playing role in mitochondrial dynamics were measured in Western blot samples. For the analysis of mitochondrial network dynamics, we applied electron microscopy and immunocytochemistry. Results: Due to MNNG treatment the level of fusion proteins (OPA1, MFN2) decreased, while the level of fission protein DRP1 elevated markedly. The levels of fusion proteins OPA1 and MNF2 increased in the L2286 and BGP-15 treated groups. During the 8 hour treatment period, the level of DRP1 also increased in the treated cells (p < 0.05). In the H₂O₂ stressed cells, administration of L2286 increased the level of OPA1 in both H9c2 and NRCM models. MFN2 levels in isolated neonatal rat cardiomyocytes raised considerably due to BGP-15 treatment (p < 0.05). L2286 administration decreased the DRP1 level in H9c2 cells (p < 0.05). We observed that the H₂O₂-induced mitochondrial fragmentation could be decreased by L2286 treatment. Conclusion: Our results indicated that the PARP-inhibitor L2286 has beneficial effect on mitochondrial dynamics during oxidative stress scenario, and also in the case of directly induced DNA damage. We could make the similar conclusions in case of BGP-15 administration, which, via reducing ROS accumulation, propagates fusion processes, this way aids preserving cellular viability. Funding: GINOP-2.3.2-15-2016-00049; GINOP-2.3.2-15-2016-00048; GINOP-2.3.3-15-2016-00025; EFOP-3.6.1-16-2016-00004; ÚNKP-17-4-I-PTE-209Keywords: H9c2, mitochondrial dynamics, neonatal rat cardiomyocytes, oxidative stress
Procedia PDF Downloads 1525994 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition
Procedia PDF Downloads 2745993 Air Dispersion Model for Prediction Fugitive Landfill Gaseous Emission Impact in Ambient Atmosphere
Authors: Moustafa Osman Mohammed
Abstract:
This paper will explore formation of HCl aerosol at atmospheric boundary layers and encourages the uptake of environmental modeling systems (EMSs) as a practice evaluation of gaseous emissions (“framework measures”) from small and medium-sized enterprises (SMEs). The conceptual model predicts greenhouse gas emissions to ecological points beyond landfill site operations. It focuses on incorporation traditional knowledge into baseline information for both measurement data and the mathematical results, regarding parameters influence model variable inputs. The paper has simplified parameters of aerosol processes based on the more complex aerosol process computations. The simple model can be implemented to both Gaussian and Eulerian rural dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of organic vapors, and (iii) dry deposition. The chemical transformation of gas-phase compounds is taken into account photochemical formulation with exposure effects according to HCl concentrations as starting point of risk assessment. The discussion set out distinctly aspect of sustainability in reflection inputs, outputs, and modes of impact on the environment. Thereby, models incorporate abiotic and biotic species to broaden the scope of integration for both quantification impact and assessment risks. The later environmental obligations suggest either a recommendation or a decision of what is a legislative should be achieved for mitigation measures of landfill gas (LFG) ultimately.Keywords: air pollution, landfill emission, environmental management, monitoring/methods and impact assessment
Procedia PDF Downloads 3245992 Threat Analysis: A Technical Review on Risk Assessment and Management of National Testing Service (NTS)
Authors: Beenish Urooj, Ubaid Ullah, Sidra Riasat
Abstract:
National Testing Service-Pakistan (NTS) is an agency in Pakistan that conducts student success appraisal examinations. In this research paper, we must present a security model for the NTS organization. The security model will depict certain security countermeasures for a better defense against certain types of breaches and system malware. We will provide a security roadmap, which will help the company to execute its further goals to maintain security standards and policies. We also covered multiple aspects in securing the environment of the organization. We introduced the processes, architecture, data classification, auditing approaches, survey responses, data handling, and also training and awareness of risk for the company. The primary contribution is the Risk Survey, based on the maturity model meant to assess and examine employee training and knowledge of risks in the company's activities.Keywords: NTS, risk assessment, threat factors, security, services
Procedia PDF Downloads 705991 Creep Analysis and Rupture Evaluation of High Temperature Materials
Authors: Yuexi Xiong, Jingwu He
Abstract:
The structural components in an energy facility such as steam turbine machines are operated under high stress and elevated temperature in an endured time period and thus the creep deformation and creep rupture failure are important issues that need to be addressed in the design of such components. There are numerous creep models being used for creep analysis that have both advantages and disadvantages in terms of accuracy and efficiency. The Isochronous Creep Analysis is one of the simplified approaches in which a full-time dependent creep analysis is avoided and instead an elastic-plastic analysis is conducted at each time point. This approach has been established based on the rupture dependent creep equations using the well-known Larson-Miller parameter. In this paper, some fundamental aspects of creep deformation and the rupture dependent creep models are reviewed and the analysis procedures using isochronous creep curves are discussed. Four rupture failure criteria are examined from creep fundamental perspectives including criteria of Stress Damage, Strain Damage, Strain Rate Damage, and Strain Capability. The accuracy of these criteria in predicting creep life is discussed and applications of the creep analysis procedures and failure predictions of simple models will be presented. In addition, a new failure criterion is proposed to improve the accuracy and effectiveness of the existing criteria. Comparisons are made between the existing criteria and the new one using several examples materials. Both strain increase and stress relaxation form a full picture of the creep behaviour of a material under high temperature in an endured time period. It is important to bear this in mind when dealing with creep problems. Accordingly there are two sets of rupture dependent creep equations. While the rupture strength vs LMP equation shows how the rupture time depends on the stress level under load controlled condition, the strain rate vs rupture time equation reflects how the rupture time behaves under strain-controlled condition. Among the four existing failure criteria for rupture life predictions, the Stress Damage and Strain Damage Criteria provide the most conservative and non-conservative predictions, respectively. The Strain Rate and Strain Capability Criteria provide predictions in between that are believed to be more accurate because the strain rate and strain capability are more determined quantities than stress to reflect the creep rupture behaviour. A modified Strain Capability Criterion is proposed making use of the two sets of creep equations and therefore is considered to be more accurate than the original Strain Capability Criterion.Keywords: creep analysis, high temperature mateials, rapture evalution, steam turbine machines
Procedia PDF Downloads 2915990 Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas
Authors: Ziad Abdeldayem, Jakub Markiewicz, Kunal Kansara, Laura Edwards
Abstract:
Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as filtering. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m.Keywords: airborne laser scanning, digital terrain models, filtering, forested areas
Procedia PDF Downloads 1395989 The Evaluation of Gravity Anomalies Based on Global Models by Land Gravity Data
Authors: M. Yilmaz, I. Yilmaz, M. Uysal
Abstract:
The Earth system generates different phenomena that are observable at the surface of the Earth such as mass deformations and displacements leading to plate tectonics, earthquakes, and volcanism. The dynamic processes associated with the interior, surface, and atmosphere of the Earth affect the three pillars of geodesy: shape of the Earth, its gravity field, and its rotation. Geodesy establishes a characteristic structure in order to define, monitor, and predict of the whole Earth system. The traditional and new instruments, observables, and techniques in geodesy are related to the gravity field. Therefore, the geodesy monitors the gravity field and its temporal variability in order to transform the geodetic observations made on the physical surface of the Earth into the geometrical surface in which positions are mathematically defined. In this paper, the main components of the gravity field modeling, (Free-air and Bouguer) gravity anomalies are calculated via recent global models (EGM2008, EIGEN6C4, and GECO) over a selected study area. The model-based gravity anomalies are compared with the corresponding terrestrial gravity data in terms of standard deviation (SD) and root mean square error (RMSE) for determining the best fit global model in the study area at a regional scale in Turkey. The least SD (13.63 mGal) and RMSE (15.71 mGal) were obtained by EGM2008 for the Free-air gravity anomaly residuals. For the Bouguer gravity anomaly residuals, EIGEN6C4 provides the least SD (8.05 mGal) and RMSE (8.12 mGal). The results indicated that EIGEN6C4 can be a useful tool for modeling the gravity field of the Earth over the study area.Keywords: free-air gravity anomaly, Bouguer gravity anomaly, global model, land gravity
Procedia PDF Downloads 1705988 Brief Guide to Cloud-Based AI Prototyping: Key Insights from Selected Case Studies Using Google Cloud Platform
Authors: Kamellia Reshadi, Pranav Ragji, Theodoros Soldatos
Abstract:
Recent advancements in cloud computing and storage, along with rapid progress in artificial intelligence (AI), have transformed approaches to developing efficient, scalable applications. However, integrating AI with cloud computing poses challenges as these fields are often disjointed, and many advancements remain difficult to access, obscured in complex documentation or scattered across research reports. For this reason, we share experiences from prototype projects combining these technologies. Specifically, we focus on Google Cloud Platform (GCP) functionalities and describe vision and speech activities applied to labeling, subtitling, and urban traffic flow tasks. We describe challenges, pricing, architecture, and other key features, considering the goal of real-time performance. We hope our demonstrations provide not only essential guidelines for using these functionalities but also enable more similar approaches.Keywords: artificial intelligence, cloud computing, real-time applications, case studies, knowledge management, research and development, text labeling, video annotation, urban traffic analysis, public safety, prototyping, Google Cloud Platform
Procedia PDF Downloads 165987 Application of Seasonal Autoregressive Integrated Moving Average Model for Forecasting Monthly Flows in Waterval River, South Africa
Authors: Kassahun Birhanu Tadesse, Megersa Olumana Dinka
Abstract:
Reliable future river flow information is basic for planning and management of any river systems. For data scarce river system having only a river flow records like the Waterval River, a univariate time series models are appropriate for river flow forecasting. In this study, a univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was applied for forecasting Waterval River flow using GRETL statistical software. Mean monthly river flows from 1960 to 2016 were used for modeling. Different unit root tests and Mann-Kendall trend analysis were performed to test the stationarity of the observed flow time series. The time series was differenced to remove the seasonality. Using the correlogram of seasonally differenced time series, different SARIMA models were identified, their parameters were estimated, and diagnostic check-up of model forecasts was performed using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Information (AIc) and Hannan-Quinn (HQc) criteria, SARIMA (3, 0, 2) x (3, 1, 3)12 was selected as the best model for Waterval River flow forecasting. Therefore, this model can be used to generate future river information for water resources development and management in Waterval River system. SARIMA model can also be used for forecasting other similar univariate time series with seasonality characteristics.Keywords: heteroscedasticity, stationarity test, trend analysis, validation, white noise
Procedia PDF Downloads 2055986 Adapting Inclusive Residential Models to Match Universal Accessibility and Fire Protection
Authors: Patricia Huedo, Maria José Ruá, Raquel Agost-Felip
Abstract:
Ensuring sustainable development of urban environments means guaranteeing adequate environmental conditions, being resilient and meeting conditions of safety and inclusion for all people, regardless of their condition. All existing buildings should meet basic safety conditions and be equipped with safe and accessible routes, along with visual, acoustic and tactile signals to protect their users or potential visitors, and regardless of whether they undergo rehabilitation or change of use processes. Moreover, from a social perspective, we consider the need to prioritize buildings occupied by the most vulnerable groups of people that currently do not have specific regulations tailored to their needs. Some residential models in operation are not only outside the scope of application of the regulations in force; they also lack a project or technical data that would allow knowing the fire behavior of the construction materials. However, the difficulty and cost involved in adapting the entire building stock to current regulations can never justify the lack of safety for people. Hence, this work develops a simplified model to assess compliance with the basic safety conditions in case of fire and its compatibility with the specific accessibility needs of each user. The purpose is to support the designer in decision making, as well as to contribute to the development of a basic fire safety certification tool to be applied in inclusive residential models. This work has developed a methodology to support designers in adapting Social Services Centers, usually intended to vulnerable people. It incorporates a checklist of 9 items and information from sources or standards that designers can use to justify compliance or propose solutions. For each item, the verification system is justified, and possible sources of consultation are provided, considering the possibility of lacking technical documentation of construction systems or building materials. The procedure is based on diagnosing the degree of compliance with fire conditions of residential models used by vulnerable groups, considering the special accessibility conditions required by each user group. Through visual inspection and site surveying, the verification model can serve as a support tool, significantly streamlining the diagnostic phase and reducing the number of tests to be requested by over 75%. This speeds up and simplifies the diagnostic phase. To illustrate the methodology, two different buildings in the Valencian Region (Spain) have been selected. One case study is a mental health facility for residential purposes, located in a rural area, on the outskirts of a small town; the other one, is a day care facility for individuals with intellectual disabilities, located in a medium-sized city. The comparison between the case studies allow to validate the model in distinct conditions. Verifying compliance with a basic security level can allow a quality seal and a public register of buildings adapted to fire regulations to be established, similarly to what is being done with other types of attributes such as energy performance.Keywords: fire safety, inclusive housing, universal accessibility, vulnerable people
Procedia PDF Downloads 235985 User-Perceived Quality Factors for Certification Model of Web-Based System
Authors: Jamaiah H. Yahaya, Aziz Deraman, Abdul Razak Hamdan, Yusmadi Yah Jusoh
Abstract:
One of the most essential issues in software products is to maintain it relevancy to the dynamics of the user’s requirements and expectation. Many studies have been carried out in quality aspect of software products to overcome these problems. Previous software quality assessment models and metrics have been introduced with strengths and limitations. In order to enhance the assurance and buoyancy of the software products, certification models have been introduced and developed. From our previous experiences in certification exercises and case studies collaborating with several agencies in Malaysia, the requirements for user based software certification approach is identified and demanded. The emergence of social network applications, the new development approach such as agile method and other varieties of software in the market have led to the domination of users over the software. As software become more accessible to the public through internet applications, users are becoming more critical in the quality of the services provided by the software. There are several categories of users in web-based systems with different interests and perspectives. The classifications and metrics are identified through brain storming approach with includes researchers, users and experts in this area. The new paradigm in software quality assessment is the main focus in our research. This paper discusses the classifications of users in web-based software system assessment and their associated factors and metrics for quality measurement. The quality model is derived based on IEEE structure and FCM model. The developments are beneficial and valuable to overcome the constraints and improve the application of software certification model in future.Keywords: software certification model, user centric approach, software quality factors, metrics and measurements, web-based system
Procedia PDF Downloads 4055984 Numerical Investigation of a Spiral Bladed Tidal Turbine
Authors: Mohammad Fereidoonnezhad, Seán Leen, Stephen Nash, Patrick McGarry
Abstract:
From the perspective of research innovation, the tidal energy industry is still in its early stages. While a very small number of turbines have progressed to utility-scale deployment, blade breakage is commonly reported due to the enormous hydrodynamic loading applied to devices. The aim of this study is the development of computer simulation technologies for the design of next-generation fibre-reinforced composite tidal turbines. This will require significant technical advances in the areas of tidal turbine testing and multi-scale computational modelling. The complex turbine blade profiles are designed to incorporate non-linear distributions of airfoil sections to optimize power output and self-starting capability while reducing power fluctuations. A number of candidate blade geometries are investigated, ranging from spiral geometries to parabolic geometries, with blades arranged in both cylindrical and spherical configurations on a vertical axis turbine. A combined blade element theory (BET-start-up model) is developed in MATLAB to perform computationally efficient parametric design optimisation for a range of turbine blade geometries. Finite element models are developed to identify optimal fibre-reinforced composite designs to increase blade strength and fatigue life. Advanced fluid-structure-interaction models are also carried out to compute blade deflections following design optimisation.Keywords: tidal turbine, composite materials, fluid-structure-interaction, start-up capability
Procedia PDF Downloads 1225983 An Criterion to Minimize FE Mesh-Dependency in Concrete Plate Subjected to Impact Loading
Authors: Kwak, Hyo-Gyung, Gang, Han Gul
Abstract:
In the context of an increasing need for reliability and safety in concrete structures under blast and impact loading condition, the behavior of concrete under high strain rate condition has been an important issue. Since concrete subjected to impact loading associated with high strain rate shows quite different material behavior from that in the static state, several material models are proposed and used to describe the high strain rate behavior under blast and impact loading. In the process of modelling, in advance, mesh dependency in the used finite element (FE) is the key problem because simulation results under high strain-rate condition are quite sensitive to applied FE mesh size. It means that the accuracy of simulation results may deeply be dependent on FE mesh size in simulations. This paper introduces an improved criterion which can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept, and HJC (Holmquist Johnson Cook), CSC (Continuous Surface Cap) and K&C (Karagozian & Case) models are examined to trace their relative sensitivity to the used FE mesh size. To coincide with the purpose of the penetration test with a concrete plate under a projectile (bullet), the residual velocities of projectile after penetration are compared. The correlation studies between analytical results and the parametric studies associated with them show that the variation of residual velocity with the used FE mesh size is quite reduced by applying a unique failure strain value determined according to the proposed criterion.Keywords: high strain rate concrete, penetration simulation, failure strain, mesh-dependency, fracture energy
Procedia PDF Downloads 5215982 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model
Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson
Abstract:
The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania
Procedia PDF Downloads 1065981 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals
Authors: Christine F. Boos, Fernando M. Azevedo
Abstract:
Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing
Procedia PDF Downloads 5285980 Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy
Authors: Samira-Sadat JamaliDinan, Haidar Almohri, Mohammad-Reza Nazem-Zadeh
Abstract:
Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set.Keywords: temporal lobe epilepsy, machine learning, clustering, magnetoencephalography
Procedia PDF Downloads 1565979 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision
Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias
Abstract:
Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.Keywords: healthcare, fall detection, transformer, transfer learning
Procedia PDF Downloads 1485978 Ideology versus Faith in the Collective Political Identity Formation: An Analysis of the Thoughts of Iqbal and Jinnah-The Founding Fathers of Pakistan
Authors: Muhammad Sajjad-ur-Rehman
Abstract:
Pakistan was meant to be a progressive modern Muslim nation state since its inception in 1947. Its birth was a big hope for the Muslims of Sub-continent to transform their societies on Islamic lines—the promise which made them unite and vote for Pakistan during independence movement. This was the vision put forwarded by Allama Iqbal and Muhammad Ali Jinnah—the two founding fathers of Pakistan. Dwelling on interpretive/ analytical approach, this paper analyzes the thoughts and reflections of Iqbal and Jinnah to understand the issues of collective identity formation in Pakistan. It argues that there may be traced two distinct identity models in the thoughts and reflections of these two leading figures of Pakistan movement: First may be called as ‘faith-based identity model’ while the other may be named as ‘interests-based identity model’. These can also be entitled as ‘Islam-as-faith model’ and ‘Islam-as-ideology model’. Former seeks the diffusion of power by cultural/ faith based means and thus society remains independent in determining its change. While the later goes on to open and expand the power realm by maximizing the role of state in determining the social change. With the help of these models, it can better be explained that what made Pakistani society fail in the collective political identity construction, hindering thus the political potential of the society to be utilized for initiating state formation and societal growth. As a result, today, we see a state that is often rebelled and resisted on the name of ethnicity, religion and sectarianism on one hand and by the ordinary folk when and wherever possible.Keywords: idealogy, Iqbal, Jinnah, identity
Procedia PDF Downloads 75977 Treatment of Healthcare Wastewater Using The Peroxi-Photoelectrocoagulation Process: Predictive Models for Chemical Oxygen Demand, Color Removal, and Electrical Energy Consumption
Authors: Samuel Fekadu A., Esayas Alemayehu B., Bultum Oljira D., Seid Tiku D., Dessalegn Dadi D., Bart Van Der Bruggen A.
Abstract:
The peroxi-photoelectrocoagulation process was evaluated for the removal of chemical oxygen demand (COD) and color from healthcare wastewater. A 2-level full factorial design with center points was created to investigate the effect of the process parameters, i.e., initial COD, H₂O₂, pH, reaction time and current density. Furthermore, the total energy consumption and average current efficiency in the system were evaluated. Predictive models for % COD, % color removal and energy consumption were obtained. The initial COD and pH were found to be the most significant variables in the reduction of COD and color in peroxi-photoelectrocoagulation process. Hydrogen peroxide only has a significant effect on the treated wastewater when combined with other input variables in the process like pH, reaction time and current density. In the peroxi-photoelectrocoagulation process, current density appears not as a single effect but rather as an interaction effect with H₂O₂ in reducing COD and color. Lower energy expenditure was observed at higher initial COD, shorter reaction time and lower current density. The average current efficiency was found as low as 13 % and as high as 777 %. Overall, the study showed that hybrid electrochemical oxidation can be applied effectively and efficiently for the removal of pollutants from healthcare wastewater.Keywords: electrochemical oxidation, UV, healthcare pollutants removals, factorial design
Procedia PDF Downloads 795976 An Interactive Voice Response Storytelling Model for Learning Entrepreneurial Mindsets in Media Dark Zones
Authors: Vineesh Amin, Ananya Agrawal
Abstract:
In a prolonged period of uncertainty and disruptions in the pre-said normal order, non-cognitive skills, especially entrepreneurial mindsets, have become a pillar that can reform the educational models to inform the economy. Dreamverse Learning Lab’s IVR-based storytelling program -Call-a-Kahaani- is an evolving experiment with an aim to kindle entrepreneurial mindsets in the remotest locations of India in an accessible and engaging manner. At the heart of this experiment is the belief that at every phase in our life’s story, we have a choice which brings us closer to achieving our true potential. This interactive program is thus designed using real-time storytelling principles to empower learners, ages 24 and below, to make choices and take decisions as they become more self-aware, practice grit, try new things through stories, guided activities, and interactions, simply over a phone call. This research paper highlights the framework behind an ongoing scalable, data-oriented, low-tech program to kindle entrepreneurial mindsets in media dark zones supported by iterative design and prototyping to reach 13700+ unique learners who made 59000+ calls for 183900+min listening duration to listen to content pieces of around 3 to 4 min, with the last monitored (March 2022) record of 34% serious listenership, within one and a half years of its inception. The paper provides an in-depth account of the technical development, content creation, learning, and assessment frameworks, as well as mobilization models which have been leveraged to build this end-to-end system.Keywords: non-cognitive skills, entrepreneurial mindsets, speech interface, remote learning, storytelling
Procedia PDF Downloads 2105975 Neologisms and Word-Formation Processes in Board Game Rulebook Corpus: Preliminary Results
Authors: Athanasios Karasimos, Vasiliki Makri
Abstract:
This research focuses on the design and development of the first text Corpus based on Board Game Rulebooks (BGRC) with direct application on the morphological analysis of neologisms and tendencies in word-formation processes. Corpus linguistics is a dynamic field that examines language through the lens of vast collections of texts. These corpora consist of diverse written and spoken materials, ranging from literature and newspapers to transcripts of everyday conversations. By morphologically analyzing these extensive datasets, morphologists can gain valuable insights into how language functions and evolves, as these extensive datasets can reflect the byproducts of inflection, derivation, blending, clipping, compounding, and neology. This entails scrutinizing how words are created, modified, and combined to convey meaning in a corpus of challenging, creative, and straightforward texts that include rules, examples, tutorials, and tips. Board games teach players how to strategize, consider alternatives, and think flexibly, which are critical elements in language learning. Their rulebooks reflect not only their weight (complexity) but also the language properties of each genre and subgenre of these games. Board games are a captivating realm where strategy, competition, and creativity converge. Beyond the excitement of gameplay, board games also spark the art of word creation. Word games, like Scrabble, Codenames, Bananagrams, Wordcraft, Alice in the Wordland, Once uUpona Time, challenge players to construct words from a pool of letters, thus encouraging linguistic ingenuity and vocabulary expansion. These games foster a love for language, motivating players to unearth obscure words and devise clever combinations. On the other hand, the designers and creators produce rulebooks, where they include their joy of discovering the hidden potential of language, igniting the imagination, and playing with the beauty of words, making these games a delightful fusion of linguistic exploration and leisurely amusement. In this research, more than 150 rulebooks in English from all types of modern board games, either language-independent or language-dependent, are used to create the BGRC. A representative sample of each genre (family, party, worker placement, deckbuilding, dice, and chance games, strategy, eurogames, thematic, role-playing, among others) was selected based on the score from BoardGameGeek, the size of the texts and the level of complexity (weight) of the game. A morphological model with morphological networks, multi-word expressions, and word-creation mechanics based on the complexity of the textual structure, difficulty, and board game category will be presented. In enabling the identification of patterns, trends, and variations in word formation and other morphological processes, this research aspires to make avail of this creative yet strict text genre so as to (a) give invaluable insight into morphological creativity and innovation that (re)shape the lexicon of the English language and (b) test morphological theories. Overall, it is shown that corpus linguistics empowers us to explore the intricate tapestry of language, and morphology in particular, revealing its richness, flexibility, and adaptability in the ever-evolving landscape of human expression.Keywords: board game rulebooks, corpus design, morphological innovations, neologisms, word-formation processes
Procedia PDF Downloads 100