Search results for: machine learning in healthcare
6055 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery
Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong
Abstract:
The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition
Procedia PDF Downloads 2926054 The Use of Layered Neural Networks for Classifying Hierarchical Scientific Fields of Study
Authors: Colin Smith, Linsey S Passarella
Abstract:
Due to the proliferation and decentralized nature of academic publication, no widely accepted scheme exists for organizing papers by their scientific field of study (FoS) to the author’s best knowledge. While many academic journals require author provided keywords for papers, these keywords range wildly in scope and are not consistent across papers, journals, or field domains, necessitating alternative approaches to paper classification. Past attempts to perform field-of-study (FoS) classification on scientific texts have largely used a-hierarchical FoS schemas or ignored the schema’s inherently hierarchical structure, e.g. by compressing the structure into a single layer for multi-label classification. In this paper, we introduce an application of a Layered Neural Network (LNN) to the problem of performing supervised hierarchical classification of scientific fields of study (FoS) on research papers. In this approach, paper embeddings from a pretrained language model are fed into a top-down LNN. Beginning with a single neural network (NN) for the highest layer of the class hierarchy, each node uses a separate local NN to classify the subsequent subfield child node(s) for an input embedding of concatenated paper titles and abstracts. We compare our LNN-FOS method to other recent machine learning methods using the Microsoft Academic Graph (MAG) FoS hierarchy and find that the LNN-FOS offers increased classification accuracy at each FoS hierarchical level.Keywords: hierarchical classification, layer neural network, scientific field of study, scientific taxonomy
Procedia PDF Downloads 1386053 Challenge in Teaching Physics during the Pandemic: Another Way of Teaching and Learning
Authors: Edson Pierre, Gustavo de Jesus Lopez Nunez
Abstract:
The objective of this work is to analyze how physics can be taught remotely through the use of platforms and software to attract the attention of 2nd-year high school students at Colégio Cívico Militar Professor Carmelita Souza Dias and point out how remote teaching can be a teaching-learning strategy during the period of social distancing. Teaching physics has been a challenge for teachers and students, permeating common sense with the great difficulty of teaching and learning the subject. The challenge increased in 2020 and 2021 with the impact caused by the new coronavirus pandemic (Sars-Cov-2) and its variants that have affected the entire world. With these changes, a new teaching modality emerged: remote teaching. It brought new challenges and one of them was promoting distance research experiences, especially in physics teaching, since there are learning difficulties and it is often impossible for the student to relate the theory observed in class with the reality that surrounds them. Teaching physics in schools faces some difficulties, which makes it increasingly less attractive for young people to choose this profession. Bearing in mind that the study of physics is very important, as it puts students in front of concrete and real situations, situations that physical principles can respond to, helping to understand nature, nourishing and nurturing a taste for science. The use of new platforms and software, such as PhET Interactive Simulations from the University of Colorado at Boulder, is a virtual laboratory that has numerous simulations of scientific experiments, which serve to improve the understanding of the content taught practically, facilitating student learning and absorption of content, being a simple, practical and free simulation tool, attracts more attention from students, causing them to acquire greater knowledge about the subject studied, or even a quiz, bringing certain healthy competitiveness to students, generating knowledge and interest in the themes used. The present study takes the Theory of Social Representations as a theoretical reference, examining the content and process of constructing the representations of teachers, subjects of our investigation, on the evaluation of teaching and learning processes, through a methodology of qualitative. The result of this work has shown that remote teaching was really a very important strategy for the process of teaching and learning physics in the 2nd year of high school. It provided greater interaction between the teacher and the student. Therefore, the teacher also plays a fundamental role since technology is increasingly present in the educational environment, and he is the main protagonist of this process.Keywords: physics teaching, technologies, remote learning, pandemic
Procedia PDF Downloads 696052 A New Learning Automata-Based Algorithm to the Priority-Based Target Coverage Problem in Directional Sensor Networks
Authors: Shaharuddin Salleh, Sara Marouf, Hosein Mohammadi
Abstract:
Directional sensor networks (DSNs) have recently attracted a great deal of attention due to their extensive applications in a wide range of situations. One of the most important problems associated with DSNs is covering a set of targets in a given area and, at the same time, maximizing the network lifetime. This is due to limitation in sensing angle and battery power of the directional sensors. This problem gets more complicated by the possibility that targets may have different coverage requirements. In the present study, this problem is referred to as priority-based target coverage (PTC). As sensors are often densely deployed, organizing the sensors into several cover sets and then activating these cover sets successively is a promising solution to this problem. In this paper, we propose a learning automata-based algorithm to organize the directional sensors into several cover sets in such a way that each cover set could satisfy coverage requirements of all the targets. Several experiments are conducted to evaluate the performance of the proposed algorithm. The results demonstrated that the algorithms were able to contribute to solving the problem.Keywords: directional sensor networks, target coverage problem, cover set formation, learning automata
Procedia PDF Downloads 4196051 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision
Authors: Zahow Muoftah
Abstract:
Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.Keywords: computer vision, banana, apple, detection, classification
Procedia PDF Downloads 1106050 Rural School English Teacher Motivational Practice on Facilitating Student Motivation
Authors: Hsiao-Wen Hsu
Abstract:
It is generally believed that the teacher’s use of motivational strategies can enhance student motivation, especially in a place like Taiwan where teacher usually dominates student EFL learning. However, only little empirical studies support this claim. This study examined the connection between teachers’ use of motivational teaching practice and observed student motivated behavior in rural junior high schools in Taiwan. The use of motivational strategies by 12 teachers in five recognized rural junior high schools was investigated observed using a classroom observation instrument, the Motivation Orientation of Language Teaching. Meanwhile, post-lesson teacher evaluations accomplished by both the researcher and the teacher were functioning as part of the measure of teacher motivational practice. The data collected through observation scheme follows the real-time coding principle to examine observable teacher motivational practice and learner motivated behaviors. The results support the previous research findings that teachers’ use of motivational strategies is associated with the student motivated behaviors as well as the students’ level of motivation regarding English learning.Keywords: English learning, motivational strategies, student motivation, teacher motivational practices
Procedia PDF Downloads 4116049 Comprehensive Review of Ultralightweight Security Protocols
Authors: Prashansa Singh, Manjot Kaur, Rohit Bajaj
Abstract:
The proliferation of wireless sensor networks and Internet of Things (IoT) devices in the quickly changing digital landscape has highlighted the urgent need for strong security solutions that can handle these systems’ limited resources. A key solution to this problem is the emergence of ultralightweight security protocols, which provide strong security features while respecting the strict computational, energy, and memory constraints imposed on these kinds of devices. This in-depth analysis explores the field of ultralightweight security protocols, offering a thorough examination of their evolution, salient features, and the particular security issues they resolve. We carefully examine and contrast different protocols, pointing out their advantages and disadvantages as well as the compromises between resource limitations and security resilience. We also study these protocols’ application domains, including the Internet of Things, RFID systems, and wireless sensor networks, to name a few. In addition, the review highlights recent developments and advancements in the field, pointing out new trends and possible avenues for future research. This paper aims to be a useful resource for researchers, practitioners, and developers, guiding the design and implementation of safe, effective, and scalable systems in the Internet of Things era by providing a comprehensive overview of ultralightweight security protocols.Keywords: wireless sensor network, machine-to-machine, MQTT broker, server, ultralightweight, TCP/IP
Procedia PDF Downloads 886048 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems
Authors: Rodolfo Lorbieski, Silvia Modesto Nassar
Abstract:
Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.Keywords: stacking, multi-layers, ensemble, multi-class
Procedia PDF Downloads 2716047 Teachers' Design and Implementation of Collaborative Learning Tasks in Higher Education
Authors: Bing Xu, Kerry Lee, Jason M. Stephen
Abstract:
Collaborative learning (CL) has been regarded as a way to facilitate students to gain knowledge and improve social skills. In China, lecturers in higher education institutions have commonly adopted CL in their daily practice. However, such a strategy could not be effective when it is designed and applied in an inappropriate way. Previous research hardly focused on how CL was applied in Chinese universities. This present study aims to gain a deep understanding of how Chinese lecturers design and implement CL tasks. The researchers interviewed ten lecturers from different faculties in various universities in China and usedGroup Learning Activity Instructional Design (GLAID) framework to analyse the data. We found that not all lecturers pay enough attention to eight essential components (proposed by GLAID) when they designed CL tasks, especially the components of Structure and Guidance. Meanwhile, only a small part of lecturers made formative assessment to help students improve learning. We also discuss the strengths and limitations and CL design and further provide suggestions to the lecturers who intend to use CL in class. Research Objectives: The aims of the present research are threefold. We intend to 1) gain a deep understanding of how Chinese lecturers design and implement collaborative learning (CL) tasks, 2) find strengths and limitations of CL design in higher education, and 3) give suggestions about how to improve the design and implement. Research Methods: This research adopted qualitative methods. We applied the semi-structured interview method to interview ten Chinese lecturers about how they designed and implemented CL tasks in their courses. There were 9 questions in the interview protocol focusing on eight components of GLAID. Then, underpinning the GLAID framework, we utilized the coding reliability thematic analysis method to analyse the research data. The coding work was done by two PhD students whose research fields are CL, and the Cohen’s Kappa was 0.772 showing the inter-coder reliability was good. Contribution: Though CL has been commonly adopted in China, few studies have paid attention to the details about how lecturers designed and implemented CL tasks in practice. This research addressed such a gap and found not lecturers were aware of how to design CL and felt it difficult to structure the task and guide the students on collaboration, and further ensure student engagement in CL. In summary, this research advocates for teacher training; otherwise, students may not gain the expected learning outcomes.Keywords: collaborative learning, higher education, task design, GLAID framework
Procedia PDF Downloads 1026046 Development of National Education Policy-2020 Aligned Student-Centric-Outcome-Based-Curriculum of Engineering Programmes of Polytechnics in India: Faculty Preparedness and Challenges Ahead
Authors: Jagannath P. Tegar
Abstract:
The new National Education Policy (NEP) 2020 of Govt. of India has envisaged a major overhaul of the education system of India, in particular, the revamping of the Curriculum of Higher Education. In this process, the faculty members of the Indian universities and institutions have a challenging role in developing the curriculum, which is a shift from the traditional (content-based) curriculum to a student-centric- outcome-based Curriculum (SC-OBC) to be implemented in all of the Universities and institutions. The efforts and initiatives on the design and implementation of SC-OBC are remarkable in the engineering and technical education landscape of the country, but it is still in its early stages and many more steps are needed for the successful adaptation in every level of Higher Education. The premier institute of Govt. of India (NITTTR, Bhopal) has trained and developed the capacity and capability among the teachers of Polytechnics on the design and development of Student Centric - Outcome Based Curriculum and also providing academic consultancy for reforming curriculum in line of NEP- 2020 envisions for the states such as Chhattisgarh, Bihar and Maharashtra to make them responsibly ready for such a new shift in Higher Education. This research-based paper is on three main aspects: 1) the level of acceptance and preparedness of teachers /faculty towards NEP-2020 and student-centred outcome-based learning. 2) the extent of implementing NEP-2020 and student-centered outcome-based learning at Indian institutions/ universities and 3) the challenges of implementing NEP-2020 and student-centered outcome-based learning outcome-based education in the Indian context. The paper content will inspire curriculum designers and developers to prepare SC-OBC that meets the specific needs of industry and society at large, which is intended in the NEP-2020 of Govt. of IndiaKeywords: outcome based curriculum, student centric learning, national education policy -2020, implementation of nep-2020. outcome based learning, higher education curriculum
Procedia PDF Downloads 846045 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes
Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani
Abstract:
The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning
Procedia PDF Downloads 4066044 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions
Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu
Abstract:
In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.Keywords: artificial intelligence, ML, logistic regression, performance, prediction
Procedia PDF Downloads 1006043 Development of a General Purpose Computer Programme Based on Differential Evolution Algorithm: An Application towards Predicting Elastic Properties of Pavement
Authors: Sai Sankalp Vemavarapu
Abstract:
This paper discusses the application of machine learning in the field of transportation engineering for predicting engineering properties of pavement more accurately and efficiently. Predicting the elastic properties aid us in assessing the current road conditions and taking appropriate measures to avoid any inconvenience to commuters. This improves the longevity and sustainability of the pavement layer while reducing its overall life-cycle cost. As an example, we have implemented differential evolution (DE) in the back-calculation of the elastic modulus of multi-layered pavement. The proposed DE global optimization back-calculation approach is integrated with a forward response model. This approach treats back-calculation as a global optimization problem where the cost function to be minimized is defined as the root mean square error in measured and computed deflections. The optimal solution which is elastic modulus, in this case, is searched for in the solution space by the DE algorithm. The best DE parameter combinations and the most optimum value is predicted so that the results are reproducible whenever the need arises. The algorithm’s performance in varied scenarios was analyzed by changing the input parameters. The prediction was well within the permissible error, establishing the supremacy of DE.Keywords: cost function, differential evolution, falling weight deflectometer, genetic algorithm, global optimization, metaheuristic algorithm, multilayered pavement, pavement condition assessment, pavement layer moduli back calculation
Procedia PDF Downloads 1696042 A Comparison of Convolutional Neural Network Architectures for the Classification of Alzheimer’s Disease Patients Using MRI Scans
Authors: Tomas Premoli, Sareh Rowlands
Abstract:
In this study, we investigate the impact of various convolutional neural network (CNN) architectures on the accuracy of diagnosing Alzheimer’s disease (AD) using patient MRI scans. Alzheimer’s disease is a debilitating neurodegenerative disorder that affects millions worldwide. Early, accurate, and non-invasive diagnostic methods are required for providing optimal care and symptom management. Deep learning techniques, particularly CNNs, have shown great promise in enhancing this diagnostic process. We aim to contribute to the ongoing research in this field by comparing the effectiveness of different CNN architectures and providing insights for future studies. Our methodology involved preprocessing MRI data, implementing multiple CNN architectures, and evaluating the performance of each model. We employed intensity normalization, linear registration, and skull stripping for our preprocessing. The selected architectures included VGG, ResNet, and DenseNet models, all implemented using the Keras library. We employed transfer learning and trained models from scratch to compare their effectiveness. Our findings demonstrated significant differences in performance among the tested architectures, with DenseNet201 achieving the highest accuracy of 86.4%. Transfer learning proved to be helpful in improving model performance. We also identified potential areas for future research, such as experimenting with other architectures, optimizing hyperparameters, and employing fine-tuning strategies. By providing a comprehensive analysis of the selected CNN architectures, we offer a solid foundation for future research in Alzheimer’s disease diagnosis using deep learning techniques. Our study highlights the potential of CNNs as a valuable diagnostic tool and emphasizes the importance of ongoing research to develop more accurate and effective models.Keywords: Alzheimer’s disease, convolutional neural networks, deep learning, medical imaging, MRI
Procedia PDF Downloads 816041 Current-Based Multiple Faults Detection in Electrical Motors
Authors: Moftah BinHasan
Abstract:
Induction motors (IM) are vital components in industrial processes whose failure may yield to an unexpected interruption at the industrial plant, with highly incurred consequences in costs, product quality, and safety. Among different detection approaches proposed in the literature, that based on stator current monitoring termed as Motor Current Signature Analysis (MCSA) is the most preferred. MCSA is advantageous due to its non-invasive properties. The popularity of motor current signature analysis comes from being that the current consists of motor harmonics, around the supply frequency, which show some properties related to different situations of healthy and faulty conditions. One of the techniques used with machine line current resorts to spectrum analysis. Besides discussing the fundamentals of MCSA and its applications in the condition monitoring arena, this paper shows a summary of the most frequent faults and their consequence signatures on the stator current spectrum of an induction motor. In addition, this article presents different case studies of induction motor fault diagnosis. These faults were seeded in the machine which was run for more than an hour for each test before the results were recorded for the faulty situations. These results are then compared with those for the healthy cases that were recorded earlier.Keywords: induction motor, condition monitoring, fault diagnosis, MCSA, rotor, stator, bearing, eccentricity
Procedia PDF Downloads 4646040 The Relationship between Mobile Phone Usage and Secondary School Students’ Academic Performance: Work Experience at an International School
Authors: L. N. P. Wedikandage, Mohamed Razmi Zahir
Abstract:
Technology is a global imperative because of its contributions to human existence and because it has improved global socioeconomic relations. As a result, the mobile phone has become the most important mode of communication today. Smartphones, Internet-enabled devices with built-in computer software and applications, are one of the most significant inventions of the twenty-first century. Technology is advantageous to many people, especially those involved in education. It is an important learning tool for today's schoolchildren. It enables students to access online learning platforms and course resources and interact digitally. Senior secondary students, in particular, have some of the most expensive and sophisticated mobile phones, tablets, and iPads capable of connecting to the internet and various social media platforms, other websites, and so on. At present, the use of mobile phones' potential for effective teaching and learning is growing. This is due to the benefits of mobile learning, including the ability to share knowledge without any limits in space or Time and the capacity to facilitate the development of critical thinking, participatory learning, problem-solving, and the development of lifelong communication skills. However, it is yet unclear how mobile devices may affect education and how they may affect opportunities for learning. As a result, the purpose of this research was to ascertain the relationship between mobile phone usage and the academic Performance of secondary-level students at an international school in Sri Lanka. The study's sample consisted of 523 secondary-level students from an international school, ranging from Form 1 to Upper 6. For the study, a survey research design and questionnaires were used. Google Forms was used to create the students' survey. There were three hypotheses tested to find out the relationship between mobile phone usage and academic preference. The findings show that there is a positive relationship between mobile phone usage and academic performance among secondary school students (the number of students obtaining simple passes is significantly higher when mobile phones are being used for more than 7 hours), no relationship between mobile phone usage and academic performance among secondary school students of different parents' occupations, and a relationship between the frequency of mobile phone usage and academic performance among secondary school students.Keywords: mobile phone, academic performance, secondary level, international schools
Procedia PDF Downloads 926039 Health Equity in Hard-to-Reach Rural Communities in Abia State, Nigeria: An Asset-Based Community Development Intervention to Influence Community Norms and Address the Social Determinants of Health in Hard-to-Reach Rural Communities
Authors: Chinasa U. Imo, Queen Chikwendu, Jonathan Ajuma, Mario Banuelos
Abstract:
Background: Sociocultural norms primarily influence the health-seeking behavior of populations in rural communities. In the Nkporo community, Abia State, Nigeria, their sociocultural perception of diseases runs counter to biomedical definitions, wherein they rely heavily on traditional medicine and practices. In a state where birth asphyxia and sepsis account for the significant causes of death for neonates, malaria leads to the causes of other mortalities, followed by common preventable diseases such as diarrhea, pneumonia, acute respiratory tract infection, malnutrition, and HIV/AIDS. Most local mothers attribute their health conditions and that of their children to witchcraft attacks, the hand of God, and ancestral underlining. This influences how they see antenatal and postnatal care, choice of place of accessing care and birth delivery, response to children's illnesses, immunization, and nutrition. Method: To implement a community health improvement program, we adopted an asset-based community development model to address health's normative and social determinants. The first step was to use a qualitative approach to conduct a community health needs baseline assessment, involving focus group discussions with twenty-five (25) youths aged 18-25, semi-structured interviews with ten (10) officers-in-charge of primary health centers, eight (8) ward health committee members, and nine (9) community leaders. Secondly, we designed an intervention program. Going forward, we will proceed with implementing and evaluating this program. Result: The priority needs identified by the communities were malaria, lack of clean drinking water, and the need for behavioral change information. The study also highlighted the significant influence of youths on their peers, family, and community as caregivers and information interpreters. Based on the findings, the NGO SieDi-Hub collaborated with the Abia State Ministry of Health, the State Primary Healthcare Agency, and Empower Next Generations to design a one-year "Community Health Youth Champions Pilot Program." Twenty (20) youths in the community were trained and equipped to champion a participatory approach to bridging the gap between access and delivery of primary healthcare, to adjust sociocultural norms to improve health equity for people in Nkporo community – with limited education, lack of access to health information, and quality healthcare facilities using an innovative community-led improvement approach. Conclusion: Youths play a vital role in achieving health equity, being a vulnerable population with significant influence. To ensure effective primary healthcare, strategies must include cultural humility. The asset-based community development model offers valuable tools, and this article will share ongoing lessons from the intervention's behavioral change strategies with young people.Keywords: asset-based community development, community health, primary health systems strengthening, youth empowerment
Procedia PDF Downloads 1006038 The Application of Computer and Technology in Language Teaching and Learning
Authors: Pouya Vakili
Abstract:
Since computers were first introduced into educational facilities, foreign language educators have been faced with the problem of integrating high-tech multimedia techniques into a traditional text-based curriculum. As studies of language teaching have pointed out, ‘Language teaching tends in practice to be eclectic…. There are not only exceptionally many paths and educational means for arriving at a given educational goal, but there are also many types of educational materials which can be used to achieve that goal’. For language educators who are trying to incorporate technology into their curricula, the choices seem endless. Yet the quantity, as well as the limitations, of available computer programs does not guarantee that these programs can be successfully integrated into a curriculum.Keywords: curriculum, language teaching, learning, multimedia, technology
Procedia PDF Downloads 5806037 Benefits of Using Social Media and Collaborative Online Platforms in PBL
Authors: Susanna Graziano, Lydia Krstic Ward
Abstract:
The purpose of this presentation is to demonstrate the steps of using multimedia and collaborative platforms in project-based learning. The presentation will demonstrate the stages of the learning project with various components of independent and collaborative learning, where students research the topic, share information, prepare a survey, use social media (Facebook, Instagram, WhasApp) and collaborative platforms (wikispaces.com and Google docs) to collect, analyze and process data, then produce reports and logos to be displayed as a final product. At the beginning of the presentation participants will answer a questionnaire about project based learning and share their experience on using social media, real–world project work and collaborative learning. Using a PPP, the presentation will walk participants through the steps of a completed project where tertiary education students are involved in putting together a multimedia campaign for safe driving in Kuwait. The research component of the project entails taking a holistic view on the problem of the high death rate in traffic accidents. The final goal of the project is to lead students to raise public awareness about the importance of safe driving. The project steps involve using the social media and collaborative platforms for collecting data and sharing the required materials to be used in the final product – a display of written reports, slogans and videos, as well as oral presentations. The same structure can be used to organize a multimedia campaign focusing on other issues, whilst scaffolding on students’ ability to brainstorm, retrieve information, organize it and engage in collaborative/ cooperative learning whilst being immersed in content-based learning as well as in authentic tasks. More specifically, the project we carried out at Box Hill College was a real-world one and involved a multimedia Campaign for Safe Driving since reckless driving is one of the major problems in the country. The idea for the whole project started by a presentation given by a board member of the Kuwaiti Society for Traffic Safety who was invited to college and spoke about: • Driving laws in the country, • What causes car accidents, • Driving safety tips. The principal goal of this project was to let students consider problems of traffic in Kuwait from different points of view. They also had to address the number and causes of accidents, evaluate the effectiveness of the local traffic law in order to send a warning about the importance of safe driving and, finally, suggest ways of its improvement. Benefits included: • Engagement, • Autonomy, • Motivation, • Content knowledge, • Language mastery, • Enhanced critical thinking, • Increased metacognitive awareness, • Improved social skills, • Authentic experience.Keywords: social media, online learning platforms, collaborative platforms, project based learning
Procedia PDF Downloads 4306036 Explaining the Role of Iran Health System in Polypharmacy among the Elderly
Authors: Mohsen Shati, Seyede Salehe Mortazavi, Seyed Kazem Malakouti, Hamidreza Khanke Fazlollah Ahmadi
Abstract:
Taking unnecessary or excessive medication or using drugs with no indication (polypharmacy) by people of all ages, especially the elderly, is associated with increased adverse drug reactions (ADR), medical errors, hospitalization and escalating the costs. It may be facilitated or impeded by the healthcare system. In this study, we are going to describe the role of the health system in the practice of polypharmacy in Iranian elderly. In this Inductive qualitative content analysis using Graneheim and Lundman methods, purposeful sample selection until saturation has been made. Participants have been selected from doctors, pharmacists, policy-makers and the elderly. A total of 25 persons (9 men and 16 women) have participated in this study. Data analysis after incorporating codes with similar characteristics revealed 14 subcategories and six main categories of the referral system, physicians’ accessibility, health data management, drug market, laws enforcement, and social protection. Some of the conditions of the healthcare system have given rise to polypharmacy in the elderly. In the absence of a comprehensive specialty and subspecialty referral system, patients may go to any physician office so may well be confused about numerous doctors' prescriptions. Electronic records not being prepared for the patients, failure to comply with laws, lack of robust enforcement for the existing laws and close surveillance are among the contributing factors. Inadequate insurance and supportive services are also evident. Age-specific care providing has not yet been institutionalized, while, inadequate specialist workforce playing a major role. So, one may not ignore the health system as contributing factor in designing effective interventions to fix the problem.Keywords: elderly, polypharmacy, health system, qualitative study
Procedia PDF Downloads 1536035 A Constructionist View of Projects, Social Media and Tacit Knowledge in a College Classroom: An Exploratory Study
Authors: John Zanetich
Abstract:
Designing an educational activity that encourages inquiry and collaboration is key to engaging students in meaningful learning. Educational Information and Communications Technology (EICT) plays an important role in facilitating cooperative and collaborative learning in the classroom. The EICT also facilitates students’ learning and development of the critical thinking skills needed to solve real world problems. Projects and activities based on constructivism encourage students to embrace complexity as well as find relevance and joy in their learning. It also enhances the students’ capacity for creative and responsible real-world problem solving. Classroom activities based on constructivism offer students an opportunity to develop the higher–order-thinking skills of defining problems and identifying solutions. Participating in a classroom project is an activity for both acquiring experiential knowledge and applying new knowledge to practical situations. It also provides an opportunity for students to integrate new knowledge into a skill set using reflection. Classroom projects can be developed around a variety of learning objects including social media, knowledge management and learning communities. The construction of meaning through project-based learning is an approach that encourages interaction and problem-solving activities. Projects require active participation, collaboration and interaction to reach the agreed upon outcomes. Projects also serve to externalize the invisible cognitive and social processes taking place in the activity itself and in the student experience. This paper describes a classroom project designed to elicit interactions by helping students to unfreeze existing knowledge, to create new learning experiences, and then refreeze the new knowledge. Since constructivists believe that students construct their own meaning through active engagement and participation as well as interactions with others. knowledge management can be used to guide the exchange of both tacit and explicit knowledge in interpersonal interactions between students and guide the construction of meaning. This paper uses an action research approach to the development of a classroom project and describes the use of technology, social media and the active use of tacit knowledge in the college classroom. In this project, a closed group Facebook page becomes the virtual classroom where interaction is captured and measured using engagement analytics. In the virtual learning community, the principles of knowledge management are used to identify the process and components of the infrastructure of the learning process. The project identifies class member interests and measures student engagement in a learning community by analyzing regular posting on the Facebook page. These posts are used to foster and encourage interactions, reflect a student’s interest and serve as reaction points from which viewers of the post convert the explicit information in the post to implicit knowledge. The data was collected over an academic year and was provided, in part, by the Google analytic reports on Facebook and self-reports of posts by members. The results support the use of active tacit knowledge activities, knowledge management and social media to enhance the student learning experience and help create the knowledge that will be used by students to construct meaning.Keywords: constructivism, knowledge management, tacit knowledge, social media
Procedia PDF Downloads 2186034 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text
Authors: Paolo Fantozzi, Luigi Laura, Umberto Nanni
Abstract:
The problem of Entity relation discovery in structured data, a well covered topic in literature, consists in searching within unstructured sources (typically, text) in order to find connections among entities. These can be a whole dictionary, or a specific collection of named items. In many cases machine learning and/or text mining techniques are used for this goal. These approaches might be unfeasible in computationally challenging problems, such as processing massive data streams. A faster approach consists in collecting the cooccurrences of any two words (entities) in order to create a graph of relations - a cooccurrence graph. Indeed each cooccurrence highlights some grade of semantic correlation between the words because it is more common to have related words close each other than having them in the opposite sides of the text. Some authors have used sliding windows for such problem: they count all the occurrences within a sliding windows running over the whole text. In this paper we generalise such technique, coming up to a Weighted-Distance Sliding Window, where each occurrence of two named items within the window is accounted with a weight depending on the distance between items: a closer distance implies a stronger evidence of a relationship. We develop an experiment in order to support this intuition, by applying this technique to a data set consisting in the text of the Bible, split into verses.Keywords: cooccurrence graph, entity relation graph, unstructured text, weighted distance
Procedia PDF Downloads 1566033 Developing Digital Competencies in Aboriginal Students through University-College Partnerships
Authors: W. S. Barber, S. L. King
Abstract:
This paper reports on a pilot project to develop a collaborative partnership between a community college in rural northern Ontario, Canada, and an urban university in the greater Toronto area in Oshawa, Canada. Partner institutions will collaborate to address learning needs of university applicants whose goals are to attain an undergraduate university BA in Educational Studies and Digital Technology degree, but who may not live in a geographical location that would facilitate this pathways process. The UOIT BA degree is attained through a 2+2 program, where students with a 2 year college diploma or equivalent can attain a four year undergraduate degree. The goals reported on the project are as: 1. Our aim is to expand the BA program to include an additional stream which includes serious educational games, simulations and virtual environments, 2. Develop fully (using both synchronous and asynchronous technologies) online learning modules for use by university applicants who otherwise are not geographically located close to a physical university site, 3. Assess the digital competencies of all students, including members of local, distance and Indigenous communities using a validated tool developed and tested by UOIT across numerous populations. This tool, the General Technical Competency Use and Scale (GTCU) will provide the collaborating institutions with data that will allow for analyzing how well students are prepared to succeed in fully online learning communities. Philosophically, the UOIT BA program is based on a fully online learning communities model (FOLC) that can be accessed from anywhere in the world through digital learning environments via audio video conferencing tools such as Adobe Connect. It also follows models of adult learning and mobile learning, and makes a university degree accessible to the increasing demographic of adult learners who may use mobile devices to learn anywhere anytime. The program is based on key principles of Problem Based Learning, allowing students to build their own understandings through the co-design of the learning environment in collaboration with the instructors and their peers. In this way, this degree allows students to personalize and individualize the learning based on their own culture, background and professional/personal experiences. Using modified flipped classroom strategies, students are able to interrogate video modules on their own time in preparation for one hour discussions occurring in video conferencing sessions. As a consequence of the program flexibility, students may continue to work full or part time. All of the partner institutions will co-develop four new modules, administer the GTCU and share data, while creating a new stream of the UOIT BA degree. This will increase accessibility for students to bridge from community colleges to university through a fully digital environment. We aim to work collaboratively with Indigenous elders, community members and distance education instructors to increase opportunities for more students to attain a university education.Keywords: aboriginal, college, competencies, digital, universities
Procedia PDF Downloads 2196032 Strategies for Incorporating Intercultural Intelligence into Higher Education
Authors: Hyoshin Kim
Abstract:
Most post-secondary educational institutions have offered a wide variety of professional development programs and resources in order to advance the quality of education. Such programs are designed to support faculty members by focusing on topics such as course design, behavioral learning objectives, class discussion, and evaluation methods. These are based on good intentions and might help both new and experienced educators. However, the fundamental flaw is that these ‘effective methods’ are assumed to work regardless of what we teach and whom we teach. This paper is focused on intercultural intelligence and its application to education. It presents a comprehensive literature review on context and cultural diversity in terms of beliefs, values and worldviews. What has worked well with a group of homogeneous local students may not work well with more diverse and international students. It is because students hold different notions of what is means to learn or know something. It is necessary for educators to move away from certain sets of generic teaching skills, which are based on a limited, particular view of teaching and learning. The main objective of the research is to expand our teaching strategies by incorporating what students bring to the course. There have been a growing number of resources and texts on teaching international students. Unfortunately, they tend to be based on the deficiency model, which treats diversity not as strengths, but as problems to be solved. This view is evidenced by the heavy emphasis on assimilationist approaches. For example, cultural difference is negatively evaluated, either implicitly or explicitly. Therefore the pressure is on culturally diverse students. The following questions reflect the underlying assumption of deficiencies: - How can we make them learn better? - How can we bring them into the mainstream academic culture?; and - How can they adapt to Western educational systems? Even though these questions may be well-intended, there seems to be something fundamentally wrong as the assumption of cultural superiority is embedded in this kind of thinking. This paper examines how educators can incorporate intercultural intelligence into the course design by utilizing a variety of tools such as pre-course activities, peer learning and reflective learning journals. The main goal is to explore ways to engage diverse learners in all aspects of learning. This can be achieved by activities designed to understand their prior knowledge, life experiences, and relevant cultural identities. It is crucial to link course material to students’ diverse interests thereby enhancing the relevance of course content and making learning more inclusive. Internationalization of higher education can be successful only when cultural differences are respected and celebrated as essential and positive aspects of teaching and learning.Keywords: intercultural competence, intercultural intelligence, teaching and learning, post-secondary education
Procedia PDF Downloads 2156031 Culture Sensitization: Understanding German Culture by Learning German
Authors: Lakshmi Shenoy
Abstract:
In today’s era of Globalization, arises the need that students and professionals relocate temporarily or permanently to another country in order to pursue their respective academic and career goals. This involves not only learning the local language of the country but also integrating oneself into the native culture. This paper explains the method of understanding a nation’s culture through the study of its language. The method uses language not as a series of rules that connect words together but as a social practice in which one can actively participate. It emphasizes on how culture provides an environment in which languages can flourish and how culture dictates the interpretation of the language especially in case of German. This paper introduces language and culture as inseparable entities, as two sides of the same coin.Keywords: language and culture, sociolinguistics, Ronald Wardhaugh, German
Procedia PDF Downloads 3106030 Stochastic Modeling and Productivity Analysis of a Flexible Manufacturing System
Authors: Mehmet Savsar, Majid Aldaihani
Abstract:
Flexible Manufacturing Systems (FMS) are used to produce a variety of parts on the same equipment. Therefore, their utilization is higher than traditional machining systems. Higher utilization, on the other hand, results in more frequent equipment failures and additional need for maintenance. Therefore, it is necessary to carefully analyze operational characteristics and productivity of FMS or Flexible Manufacturing Cells (FMC), which are smaller configuration of FMS, before installation or during their operation. Appropriate models should be developed to determine production rates based on operational conditions, including equipment reliability, availability, and repair capacity. In this paper, a stochastic model is developed for an automated FMC system, which consists of two machines served by two robots and a single repairman. The model is used to determine system productivity and equipment utilization under different operational conditions, including random machine failures, random repairs, and limited repair capacity. The results are compared to previous study results for FMC system with sufficient repair capacity assigned to each machine. The results show that the model will be useful for design engineers and operational managers to analyze performance of manufacturing systems at the design or operational stages.Keywords: flexible manufacturing, FMS, FMC, stochastic modeling, production rate, reliability, availability
Procedia PDF Downloads 5206029 Practice Educators' Perspective: Placement Challenges in Social Work Education in England
Authors: Yuet Wah Echo Yeung
Abstract:
Practice learning is an important component of social work education. Practice educators are charged with the responsibility to support and enable learning while students are on placement. They also play a key role in teaching students to integrate theory and practice, as well as assessing their performance. Current literature highlights the structural factors that make it difficult for practice educators to create a positive learning environment for students. Practice educators find it difficult to give sufficient attention to their students because of the lack of workload relief, the increasing emphasis on managerialism and bureaucratisation, and a range of competing organisational and professional demands. This paper reports the challenges practice educators face and how they manage these challenges in this context. Semi-structured face-to-face interviews were conducted with thirteen practice educators who support students in statutory and voluntary social care settings in the Northwest of England. Interviews were conducted between April and July 2017 and each interview lasted about 40 minutes. All interviews were recorded and transcribed. All practice educators are experienced social work practitioners with practice experience ranging from 6 to 42 years. On average they have acted as practice educators for 13 years and all together have supported 386 students. Our findings reveal that apart from the structural factors that impact how practice educators perform their roles, they also faced other challenges when supporting students on placement. They include difficulty in engaging resistant students, complexity in managing power dynamics in the context of practice learning, and managing the dilemmas of fostering a positive relationship with students whilst giving critical feedback. Suggestions to enhance the practice educators’ role include support from organisations and social work teams; effective communication with university tutors, and a forum for practice educators to share good practice and discuss placement issues.Keywords: social work education, placement challenges, practice educator, practice learning
Procedia PDF Downloads 1956028 Effectiveness of GeoGebra in Developing Conceptual Understanding of Transformation Geometry Case of Grade 11 Students
Authors: Gebreegziabher Hailu Gebrecherkos
Abstract:
This study examines the effectiveness of GeoGebra in developing the conceptual understanding of transformation geometry among Grade 11 students. Utilizing a quasi-experimental design, the research compares the learning outcomes of students who engaged with GeoGebra against those who received traditional instruction. Pre- and post-tests were administered to assess students' grasp of key transformation concepts, including translations, rotations, reflections, and dilations. Additionally, qualitative data were gathered through student interviews and classroom observations to explore their experiences and perceptions of using GeoGebra. Results indicate that students utilizing GeoGebra showed significantly greater improvement in their understanding of transformation geometry concepts. The interactive features of GeoGebra facilitated visualization and exploration, leading to enhanced engagement and deeper conceptual insights. The findings underscore the potential of GeoGebra as a powerful educational tool that not only fosters mathematical understanding but also accommodates diverse learning styles in the classroom. This study contributes valuable insights for educators seeking to improve the teaching and learning of transformation geometry in secondary education.Keywords: calculus, conceptual understanding, GeoGebra, transformation geometry
Procedia PDF Downloads 276027 Three Memorizing Strategies Reflective of Individual Students' Learning Modalities Applied to Piano Education
Authors: Olga Guseynova
Abstract:
Being an individual activity, the memorizing process is affected to a greater degree by the individual variables; therefore, one of the decisive factors influencing the memorization is students’ individual characteristics. Based on an extensive literature study in the domains of piano education, psychology, and neuroscience, this comprehensive research was designed in order to develop three memorizing strategies that are reflective of individual students’ learning modalities (visual, kinesthetic and auditory) applied to the piano education. The design of the study required an interdisciplinary approach which incorporated the outcome of neuropsychological and pedagogic experiments. The objectives were to determine the interaction between the process of perception and the process of memorizing music; to systematize the methods of memorizing piano sheet music in accordance with the specifics of perception types; to develop Piano Memorization Inventory (PMI) and the Three Memorizing Strategies (TMS). The following research methods were applied: a method of interdisciplinary analysis and synthesis, a method of non-participant observation. As a result of literature analysis, the following conclusions were made: the majority of piano teachers and piano students participated in the surveys, had not used and usually had not known any memorizing strategy regarding learning styles. As a result, they had used drilling as the main strategy of memorizing. The Piano Memorization Inventory and Three Memorizing Strategies developed by the author of the research were based on the observation and findings of the previous researches and considered the experience of pedagogical and neuropsychological studies.Keywords: interdisciplinary approach, memorizing strategies, perceptual learning styles, piano memorization inventory
Procedia PDF Downloads 3096026 Breastfeeding Experiences of Nutritionist who are Mothers in Quito- Ecuador
Authors: Maria Jose Mendoza Gordillo
Abstract:
Introduction: Research regarding breastfeeding is devoted to how essential breastfeeding is to guarantee wellbeing for the mother and the baby from a medical standpoint relegating the cultural, material and social barriers for breastfeeding. Consequently, worldwide breastfeeding rates are low, and Ecuador is not the exception, especially among working mothers. Worldwide, health care providers have low rates of breastfeeding due to several barriers to lactation, such as the work schedule, a lack of private places for pumping while at work, and negative emotions. Goals and Methods: This study aimed to explore how do Ecuadorian women embrace their identities as nutritionists and mothers within their breastfeeding experience. The primary data come from 20 synchronous semi-structured interviews, which follow a topic guide. The interviews were recorded and transcribed verbatim. The data analysis followed the Phronetic Iterative Approach. Results: Women shifted the preconceived idea of the ideal breastfeeding that came from the medicalized discourse of breastfeeding, and that was constructed in their training as nutritionists. Although these women believe that breast milk and breastfeeding is the best way to feed a baby, the internalized ideal of breastfeeding shifted through the experience of motherhood. When these women developed their identity as mothers, they understood that the ideal breastfeeding is different from the medicalized discourse. Although they have that clash between the ideal and the external reality, they continued breastfeeding their babies and those experiences made them improve their professional practice. Conclusions: The narratives that women shared illustrate how complex it was to manage the different roles and identities that they wanted to fulfill to keep their identity of a good mother who breastfeeds her baby and, at the same time, a good healthcare provider identity. The process of breastfeeding for this group of women who are mothers and healthcare professionals appears to be a unique relational and identity negotiation process.Keywords: breastfeeding, identity, nutritionist, qualitative
Procedia PDF Downloads 183