Search results for: loan amount
157 Developing a Deep Understanding of the Immune Response in Hepatitis B Virus Infected Patients Using a Knowledge Driven Approach
Authors: Hanan Begali, Shahi Dost, Annett Ziegler, Markus Cornberg, Maria-Esther Vidal, Anke R. M. Kraft
Abstract:
Chronic hepatitis B virus (HBV) infection can be treated with nucleot(s)ide analog (NA), for example, which inhibits HBV replication. However, they have hardly any influence on the functional cure of HBV, which is defined by hepatitis B surface antigen (HBsAg) loss. NA needs to be taken life-long, which is not available for all patients worldwide. Additionally, NA-treated patients are still at risk of developing cirrhosis, liver failure, or hepatocellular carcinoma (HCC). Although each patient has the same components of the immune system, immune responses vary between patients. Therefore, a deeper understanding of the immune response against HBV in different patients is necessary to understand the parameters leading to HBV cure and to use this knowledge to optimize HBV therapies. This requires seamless integration of an enormous amount of diverse and fine-grained data from viral markers, e.g., hepatitis B core-related antigen (HBcrAg) and hepatitis B surface antigen (HBsAg). The data integration system relies on the assumption that profiling human immune systems requires the analysis of various variables (e.g., demographic data, treatments, pre-existing conditions, immune cell response, or HLA-typing) rather than only one. However, the values of these variables are collected independently. They are presented in a myriad of formats, e.g., excel files, textual descriptions, lab book notes, and images of flow cytometry dot plots. Additionally, patients can be identified differently in these analyses. This heterogeneity complicates the integration of variables, as data management techniques are needed to create a unified view in which individual formats and identifiers are transparent when profiling the human immune systems. The proposed study (HBsRE) aims at integrating heterogeneous data sets of 87 chronically HBV-infected patients, e.g., clinical data, immune cell response, and HLA-typing, with knowledge encoded in biomedical ontologies and open-source databases into a knowledge-driven framework. This new technique enables us to harmonize and standardize heterogeneous datasets in the defined modeling of the data integration system, which will be evaluated in the knowledge graph (KG). KGs are data structures that represent the knowledge and data as factual statements using a graph data model. Finally, the analytic data model will be applied on top of KG in order to develop a deeper understanding of the immune profiles among various patients and to evaluate factors playing a role in a holistic profile of patients with HBsAg level loss. Additionally, our objective is to utilize this unified approach to stratify patients for new effective treatments. This study is developed in the context of the project “Transforming big data into knowledge: for deep immune profiling in vaccination, infectious diseases, and transplantation (ImProVIT)”, which is a multidisciplinary team composed of computer scientists, infection biologists, and immunologists.Keywords: chronic hepatitis B infection, immune response, knowledge graphs, ontology
Procedia PDF Downloads 108156 Increase in the Shelf Life Anchovy (Engraulis ringens) from Flaying then Bleeding in a Sodium Citrate Solution
Authors: Santos Maza, Enzo Aldoradin, Carlos Pariona, Eliud Arpi, Maria Rosales
Abstract:
The objective of this study was to investigate the effect of flaying then bleeding anchovy (Engraulis ringens) immersed within a sodium citrate solution. Anchovy is a pelagic fish that readily deteriorates due to its high content of polyunsaturated fatty acids. As such, within the Peruvian food industry, the shelf life of frozen anchovy is explicitly 6 months, this short duration imparts a barrier to use for direct consumption human. Thus, almost all capture of anchovy by the fishing industry is eventually used in the production of fishmeal. We offer this an alternative to its typical production process in order to increase shelf life. In the present study, 100 kg of anchovies were captured and immediately mixed with ice on ship, maintaining a high quality sensory metric (e.g., with color blue in back) while still arriving for processing less than 2 h after capture. Anchovies with fat content of 3% were immediately flayed (i.e., reducing subcutaneous fat), beheaded, gutted and bled (i.e., removing hemoglobin) by immersion in water (Control) or in a solution of 2.5% sodium citrate (treatment), then subsequently frozen at -30 °C for 8 h in 2 kg batches. Subsequent glazing and storage at -25 °C for 14 months completed the experiments parameters. The peroxide value (PV), acidity (A), fatty acid profile (FAP), thiobarbituric acid reactive substances (TBARS), heme iron (HI), pH and sensory attributes of the samples were evaluated monthly. The results of the PV, TBARS, A, pH and sensory analyses displayed significant differences (p<0.05) between treatment and control sample; where the sodium citrate treated samples showed increased preservation features. Specifically, at the beginning of the study, flayed, beheaded, gutted and bled anchovies displayed low content of fat (1.5%) with moderate amount of PV, A and TBARS, and were not rejected by sensory analysis. HI values and FAP displayed varying behavior, however, results of HI did not reveal a decreasing trend. This result is indicative of the fact that levels of iron were maintained as HI and did not convert into no heme iron, which is known to be the primary catalyst of lipid oxidation in fish. According to the FAP results, the major quantity of fatty acid was of polyunsaturated fatty acid (PFA) followed by saturated fatty acid (SFA) and then monounsaturated fatty acid (MFA). According to sensory analysis, the shelf life of flayed, beheaded and gutted anchovy (control and treatment) was 14 months. This shelf life was reached at laboratory level because high quality anchovies were used and immediately flayed, beheaded, gutted, bled and frozen. Therefore, it is possible to maintain the shelf life of anchovies for a long time. Overall, this method displayed a large increase in shelf life relative to that commonly seen for anchovies in this industry. However, these results should be extrapolated at industrial scales to propose better processing conditions and improve the quality of anchovy for direct human consumption.Keywords: citrate sodium solution, heme iron, polyunsaturated fatty acids, shelf life of frozen anchovy
Procedia PDF Downloads 294155 Distribution of Micro Silica Powder at a Ready Mixed Concrete
Authors: Kyong-Ku Yun, Dae-Ae Kim, Kyeo-Re Lee, Kyong Namkung, Seung-Yeon Han
Abstract:
Micro silica is collected as a by-product of the silicon and ferrosilicon alloy production in electric arc furnace using highly pure quartz, wood chips, coke and the like. It consists of about 85% of silicon which has spherical particles with an average particle size of 150 μm. The bulk density of micro silica varies from 150 to 700kg/m^3 and the fineness ranges from 150,000 to 300,000cm^2/g. An amorphous structure with a high silicon oxide content of micro silica induces an active reaction with calcium hydroxide (Ca(OH)₂) generated by the cement hydrate of a large surface area (about 20 m^² / g), and they are also known to form calcium, silicate, hydrate conjugate (C-S-H). Micro silica tends to act as a filler because of the fine particles and the spherical shape. These particles do not get covered by water and they fit well in the space between the relatively rough cement grains which does not freely fluidize concrete. On the contrary, water demand increases since micro silica particles have a tendency to absorb water because of the large surface area. The overall effect of micro silica depends on the amount of micro silica added with other parameters in the water-(cement + micro silica) ratio, and the availability of superplasticizer. In this research, it was studied on cellular sprayed concrete. This method involves a direct re-production of ready mixed concrete into a high performance at a job site. It could reduce the cost of construction by an adding a cellular and a micro silica into a ready mixed concrete truck in a field. Also, micro silica which is difficult with mixing due to high fineness in the field can be added and dispersed in concrete by increasing the fluidity of ready mixed concrete through the surface activity of cellular. Increased air content is converged to a certain level of air content by spraying and it also produces high-performance concrete by remixing of powders in the process of spraying. As it does not use a field mixing equipment the cost of construction decrease and it can be constructed after installing special spray machine in a commercial pump car. Therefore, use of special equipment is minimized, providing economic feasibility through the utilization of existing equipment. This study was carried out to evaluate a highly reliable method of confirming dispersion through a high performance cellular sprayed concrete. A mixture of 25mm coarse aggregate and river sand was applied to the concrete. In addition, by applying silica fume and foam, silica fume dispersion is confirmed in accordance with foam mixing, and the mean and standard deviation is obtained. Then variation coefficient is calculated to finally evaluate the dispersion. Comparison and analysis of before and after spraying were conducted on the experiment variables of 21L, 35L foam for each 7%, 14% silica fume respectively. Taking foam and silica fume as variables, the experiment proceed. Casting a specimen for each variable, a five-day sample is taken from each specimen for EDS test. In this study, it was examined by an experiment materials, plan and mix design, test methods, and equipment, for the evaluation of dispersion in accordance with micro silica and foam.Keywords: micro silica, distribution, ready mixed concrete, foam
Procedia PDF Downloads 218154 Opportunities and Challenges: Tracing the Evolution of India's First State-led Curriculum-based Media Literacy Intervention
Authors: Ayush Aditya
Abstract:
In today's digitised world, the extent of an individual’s social involvement is largely determined by their interaction over the internet. The Internet has emerged as a primary source of information consumption and a reliable medium for receiving updates on everyday activities. Owing to this change in the information consumption pattern, the internet has also emerged as a hotbed of misinformation. Experts are of the view that media literacy has emerged as one of the most effective strategies for addressing the issue of misinformation. This paper aims to study the evolution of the Kerala government's media literacy policy, its implementation strategy, challenges and opportunities. The objective of this paper is to create a conceptual framework containing details of the implementation strategy based on the Kerala model. Extensive secondary research of literature, newspaper articles, and other online sources was carried out to locate the timeline of this policy. This was followed by semi-structured interview discussions with government officials from Kerala to trace the origin and evolution of this policy. Preliminary findings based on the collected data suggest that this policy is a case of policy by chance, as the officer who headed this policy during the state level implementation was the one who has already piloted a media literacy program in a district called Kannur as the district collector. Through this paper, an attempt is made to trace the history of the media literacy policy starting from the Kannur intervention in 2018, which was started to address the issue of vaccine hesitancy around measles rubella(MR) vaccination. If not for the vaccine hesitancy, this program would not have been rolled out in Kannur. Interviews with government officials suggest that when authorities decided to take up this initiative in 2020, a huge amount of misinformation emerging during the COVID-19 pandemic was the trigger. There was misinformation regarding government orders, healthcare facilities, vaccination, and lockdown regulations, which affected everyone, unlike the case of Kannur, where it was only a certain age group of kids. As a solution to this problem, the state government decided to create a media literacy curriculum to be taught in all government schools of the state starting from standard 8 till graduation. This was a tricky task, as a new course had to be immediately introduced in the school curriculum amid all the disruptions in the education system caused by the pandemic. It was revealed during the interview that in the case of the state-wide implementation, every step involved multiple checks and balances, unlike the earlier program where stakeholders were roped-in as and when the need emerged. On the pedagogy, while the training during the pilot could be managed through PowerPoint presentation, designing a state-wide curriculum involved multiple iterations and expert approvals. The reason for this is COVID-19 related misinformation has lost its significance. In the next phase of the research, an attempt will be made to compare other aspects of the pilot implementation with the state-wide implementation.Keywords: media literacy, digital media literacy, curriculum based media literacy intervention, misinformation
Procedia PDF Downloads 93153 Intraspecific Biochemical Diversity of Dalmatian Pyrethrum Across the Different Bioclimatic Regions of Its Natural Distribution Area
Authors: Martina Grdiša, Filip Varga, Nina Jeran, Ante Turudić, Zlatko Šatović
Abstract:
Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.) is a plant species that occurs naturally in the eastern Mediterranean. It is of immense economic importance as it synthesizes and accumulates the phytochemical compound pyrethrin. Pyrethrin consists of several monoterpene esters (pyrethrin I and II, cinerin I and II and jasmolin I and II), which have insecticidal and repellent activity through their synergistic action. In this study, 15 natural Dalmatian pyrethrum populations were sampled along their natural range in Croatia, Bosnia and Herzegovina and Montenegro to characterize and compare their pyrethrin profiles and to define the bioclimatic factors associated with the accumulation of each pyrethrin compound. Pyrethrins were extracted from the dried flower heads of Dalmatian pyrethrum using ultrasound-assisted extraction and the amount of each compound was quantified using high-performance liquid chromatography coupled to DAD-UV /VIS. The biochemical data were subjected to analysis of variance, correlation analysis and multivariate analysis. Quantitative variability within and among populations was found, with population P15 Vranjske Njive, Podgorica having the significantly highest pyrethrin I content (66.47% of total pyrethrin content), while the highest levels of total pyrethrin were found in P14 Budva (1.27% of dry flower weight; DW), followed by P08 Korčula (1.15% DW). Based on the environmental conditions at the sampling sites of the populations, five bioclimatic groups were distinguished, referred to as A, B, C, D, and E, each with rare chemical profile. The first group (A) consisted of the northern Adriatic population P01 Vrbnik, Krk and the population P06 Sevid - the coastal population of the central Adriatic, and generally differed significantly from the other bioclimatic groups by higher average jasmolin II values (2.13% of total pyrethrin). The second group (B) consisted of two central Adriatic island populations (P02 Telašćica, Dugi otok and P03 Žman, Dugi otok), while the remaining central Adriatic island populations were grouped in bioclimatic group C, which was characterized by the significantly highest average pyrethrin II (48.52% of total pyrethrin) and cinerin II (5.31% DW) content. The South Adriatic inland populations P10 Srđ and P11 Trebinje (Bosnia and Herzegovina), and the populations from Montenegro (P12 Grahovo, P13 Lovćen, P14 Budva and P15 Vranjske Njive, Podgorica) formed bioclimatic group E. This bioclimatic group was characterized by the highest average values for pyrethrin I (53.07 % of total pyrethrin), total pyrethrin content (1.06 % DW) and the ratio of pyrethrin I and II (1.85). Slightly lower values (although not significant) for the latter traits were detected in bioclimatic group D (southern Adriatic island populations P07 Vis, P08 Korčula and P09 Mljet). A weak but significant correlation was found between the levels of some pyrethrin compounds and bioclimatic variables (e.g., BIO03 Isothermality and BIO04 Temperature Seasonality), which explains part of the variability observed in the populations studied. This suggests the interconnection between bioclimatic variables and biochemical profiles either through the selection of adapted genotypes or through the ability of species to alter the expression of biochemical traits in response to environmental changes.Keywords: biopesticides, biochemical variability, pyrethrin, Tanacetum cinerariifolium
Procedia PDF Downloads 155152 Assessment of Soil Quality Indicators in Rice Soil of Tamil Nadu
Authors: Kaleeswari R. K., Seevagan L .
Abstract:
Soil quality in an agroecosystem is influenced by the cropping system, water and soil fertility management. A valid soil quality index would help to assess the soil and crop management practices for desired productivity and soil health. The soil quality indices also provide an early indication of soil degradation and needy remedial and rehabilitation measures. Imbalanced fertilization and inadequate organic carbon dynamics deteriorate soil quality in an intensive cropping system. The rice soil ecosystem is different from other arable systems since rice is grown under submergence, which requires a different set of key soil attributes for enhancing soil quality and productivity. Assessment of the soil quality index involves indicator selection, indicator scoring and comprehensive score into one index. The most appropriate indicator to evaluate soil quality can be selected by establishing the minimum data set, which can be screened by linear and multiple regression factor analysis and score function. This investigation was carried out in intensive rice cultivating regions (having >1.0 lakh hectares) of Tamil Nadu viz., Thanjavur, Thiruvarur, Nagapattinam, Villupuram, Thiruvannamalai, Cuddalore and Ramanathapuram districts. In each district, intensive rice growing block was identified. In each block, two sampling grids (10 x 10 sq.km) were used with a sampling depth of 10 – 15 cm. Using GIS coordinates, and soil sampling was carried out at various locations in the study area. The number of soil sampling points were 41, 28, 28, 32, 37, 29 and 29 in Thanjavur, Thiruvarur, Nagapattinam, Cuddalore, Villupuram, Thiruvannamalai and Ramanathapuram districts, respectively. Principal Component Analysis is a data reduction tool to select some of the potential indicators. Principal Component is a linear combination of different variables that represents the maximum variance of the dataset. Principal Component that has eigenvalues equal or higher than 1.0 was taken as the minimum data set. Principal Component Analysis was used to select the representative soil quality indicators in rice soils based on factor loading values and contribution percent values. Variables having significant differences within the production system were used for the preparation of the minimum data set. Each Principal Component explained a certain amount of variation (%) in the total dataset. This percentage provided the weight for variables. The final Principal Component Analysis based soil quality equation is SQI = ∑ i=1 (W ᵢ x S ᵢ); where S- score for the subscripted variable; W-weighing factor derived from PCA. Higher index scores meant better soil quality. Soil respiration, Soil available Nitrogen and Potentially Mineralizable Nitrogen were assessed as soil quality indicators in rice soil of the Cauvery Delta zone covering Thanjavur, Thiruvavur and Nagapattinam districts. Soil available phosphorus could be used as a soil quality indicator of rice soils in the Cuddalore district. In rain-fed rice ecosystems of coastal sandy soil, DTPA – Zn could be used as an effective soil quality indicator. Among the soil parameters selected from Principal Component Analysis, Microbial Biomass Nitrogen could be used quality indicator for rice soils of the Villupuram district. Cauvery Delta zone has better SQI as compared with other intensive rice growing zone of Tamil Nadu.Keywords: soil quality index, soil attributes, soil mapping, and rice soil
Procedia PDF Downloads 86151 Examining Litter Distributions in Lethbridge, Alberta, Canada, Using Citizen Science and GIS Methods: OpenLitterMap App and Story Maps
Authors: Tali Neta
Abstract:
Humans’ impact on the environment has been incredibly brutal, with enormous plastic- and other pollutants (e.g., cigarette buds, paper cups, tires) worldwide. On land, litter costs taxpayers a fortune. Most of the litter pollution comes from the land, yet it is one of the greatest hazards to marine environments. Due to spatial and temporal limitations, previous litter data covered very small areas. Currently, smartphones can be used to obtain information on various pollutants (through citizen science), and they can greatly assist in acknowledging and mitigating the environmental impact of litter. Litter app data, such as the Litterati, are available for study through a global map only; these data are not available for download, and it is not clear whether irrelevant hashtags have been eliminated. Instagram and Twitter open-source geospatial data are available for download; however, these are considered inaccurate, computationally challenging, and impossible to quantify. Therefore, the resulting data are of poor quality. Other downloadable geospatial data (e.g., Marine Debris Tracker8 and Clean Swell10) are focused on marine- rather than terrestrial litter. Therefore, accurate terrestrial geospatial documentation of litter distribution is needed to improve environmental awareness. The current research employed citizen science to examine litter distribution in Lethbridge, Alberta, Canada, using the OpenLitterMap (OLM) app. The OLM app is an application used to track litter worldwide, and it can mark litter locations through photo georeferencing, which can be presented through GIS-designed maps. The OLM app provides open-source data that can be downloaded. It also offers information on various litter types and “hot-spots” areas where litter accumulates. In this study, Lethbridge College students collected litter data with the OLM app. The students produced GIS Story Maps (interactive web GIS illustrations) and presented these to school children to improve awareness of litter's impact on environmental health. Preliminary results indicate that towards the Lethbridge Coulees’ (valleys) East edges, the amount of litter significantly increased due to shrubs’ presence, that acted as litter catches. As wind generally travels from west to east in Lethbridge, litter in West-Lethbridge often finds its way down in the east part of the coulees. The students’ documented various litter types, while the majority (75%) included plastic and paper food packaging. The students also found metal wires, broken glass, plastic bottles, golf balls, and tires. Presentations of the Story Maps to school children had a significant impact, as the children voluntarily collected litter during school recess, and they were looking into solutions to reduce litter. Further litter distribution documentation through Citizen Science is needed to improve public awareness. Additionally, future research will be focused on Drone imagery of highly concentrated litter areas. Finally, a time series analysis of litter distribution will help us determine whether public education through Citizen Science and Story Maps can assist in reducing litter and reaching a cleaner and healthier environment.Keywords: citizen science, litter pollution, Open Litter Map, GIS Story Map
Procedia PDF Downloads 79150 Hybrid Renewable Energy Systems for Electricity and Hydrogen Production in an Urban Environment
Authors: Same Noel Ngando, Yakub Abdulfatai Olatunji
Abstract:
Renewable energy micro-grids, such as those powered by solar or wind energy, are often intermittent in nature. This means that the amount of energy generated by these systems can vary depending on weather conditions or other factors, which can make it difficult to ensure a steady supply of power. To address this issue, energy storage systems have been developed to increase the reliability of renewable energy micro-grids. Battery systems have been the dominant energy storage technology for renewable energy micro-grids. Batteries can store large amounts of energy in a relatively small and compact package, making them easy to install and maintain in a micro-grid setting. Additionally, batteries can be quickly charged and discharged, allowing them to respond quickly to changes in energy demand. However, the process involved in recycling batteries is quite costly and difficult. An alternative energy storage system that is gaining popularity is hydrogen storage. Hydrogen is a versatile energy carrier that can be produced from renewable energy sources such as solar or wind. It can be stored in large quantities at low cost, making it suitable for long-distance mass storage. Unlike batteries, hydrogen does not degrade over time, so it can be stored for extended periods without the need for frequent maintenance or replacement, allowing it to be used as a backup power source when the micro-grid is not generating enough energy to meet demand. When hydrogen is needed, it can be converted back into electricity through a fuel cell. Energy consumption data is got from a particular residential area in Daegu, South Korea, and the data is processed and analyzed. From the analysis, the total energy demand is calculated, and different hybrid energy system configurations are designed using HOMER Pro (Hybrid Optimization for Multiple Energy Resources) and MATLAB software. A techno-economic and environmental comparison and life cycle assessment (LCA) of the different configurations using battery and hydrogen as storage systems are carried out. The various scenarios included PV-hydrogen-grid system, PV-hydrogen-grid-wind, PV-hydrogen-grid-biomass, PV-hydrogen-wind, PV-hydrogen-biomass, biomass-hydrogen, wind-hydrogen, PV-battery-grid-wind, PV- battery -grid-biomass, PV- battery -wind, PV- battery -biomass, and biomass- battery. From the analysis, the least cost system for the location was the PV-hydrogen-grid system, with a net present cost of about USD 9,529,161. Even though all scenarios were environmentally friendly, taking into account the recycling cost and pollution involved in battery systems, all systems with hydrogen as a storage system produced better results. In conclusion, hydrogen is becoming a very prominent energy storage solution for renewable energy micro-grids. It is easier to store compared with electric power, so it is suitable for long-distance mass storage. Hydrogen storage systems have several advantages over battery systems, including flexibility, long-term stability, and low environmental impact. The cost of hydrogen storage is still relatively high, but it is expected to decrease as more hydrogen production, and storage infrastructure is built. With the growing focus on renewable energy and the need to reduce greenhouse gas emissions, hydrogen is expected to play an increasingly important role in the energy storage landscape.Keywords: renewable energy systems, microgrid, hydrogen production, energy storage systems
Procedia PDF Downloads 94149 Development of Mesoporous Gel Based Nonwoven Structure for Thermal Barrier Application
Authors: R. P. Naik, A. K. Rakshit
Abstract:
In recent years, with the rapid development in science and technology, people have increasing requirements on uses of clothing for new functions, which contributes to opportunities for further development and incorporation of new technologies along with novel materials. In this context, textiles are of fast decalescence or fast heat radiation media as per as comfort accountability of textile articles are concern. The microstructure and texture of textiles play a vital role in determining the heat-moisture comfort level of the human body because clothing serves as a barrier to the outside environment and a transporter of heat and moisture from the body to the surrounding environment to keep thermal balance between body heat produced and body heat loss. The main bottleneck which is associated with textile materials to be successful as thermal insulation materials can be enumerated as; firstly, high loft or bulkiness of material so as to provide predetermined amount of insulation by ensuring sufficient trapping of air. Secondly, the insulation depends on forced convection; such convective heat loss cannot be prevented by textile material. Third is that the textile alone cannot reach the level of thermal conductivity lower than 0.025 W/ m.k of air. Perhaps, nano-fibers can do so, but still, mass production and cost-effectiveness is a problem. Finally, such high loft materials for thermal insulation becomes heavier and uneasy to manage especially when required to carry over a body. The proposed works aim at developing lightweight effective thermal insulation textiles in combination with nanoporous silica-gel which provides the fundamental basis for the optimization of material properties to achieve good performance of the clothing system. This flexible nonwoven silica-gel composites fabric in intact monolith was successfully developed by reinforcing SiO2-gel in thermal bonded nonwoven fabric via sol-gel processing. Ambient Pressure Drying method is opted for silica gel preparation for cost-effective manufacturing. The formed structure of the nonwoven / SiO₂ -gel composites were analyzed, and the transfer properties were measured. The effects of structure and fibre on the thermal properties of the SiO₂-gel composites were evaluated. Samples are then tested against untreated samples of same GSM in order to study the effect of SiO₂-gel application on various properties of nonwoven fabric. The nonwoven fabric composites reinforced with aerogel showed intact monolith structure were also analyzed for their surface structure, functional group present, microscopic images. Developed product reveals a significant reduction in pores' size and air permeability than the conventional nonwoven fabric. Composite made from polyester fibre with lower GSM shows lowest thermal conductivity. Results obtained were statistically analyzed by using STATISTICA-6 software for their level of significance. Univariate tests of significance for various parameters are practiced which gives the P value for analyzing significance level along with that regression summary for dependent variable are also studied to obtain correlation coefficient.Keywords: silica-gel, heat insulation, nonwoven fabric, thermal barrier clothing
Procedia PDF Downloads 111148 The Influence of a Radio Intervention on Farmers’ Practices in Climate Change Mitigation and Adaptation in Kilifi, Kenya
Authors: Fiona Mwaniki
Abstract:
Climate change is considered a serious threat to sustainable development globally and as one of the greatest ecological, economic and social challenges of our time. The global demand for food is projected to increase by 60% by 2050. Small holder farmers who are vulnerable to the adverse effects of climate change are expected to contribute to this projected demand. Effective climate change education and communication is therefore required for smallholder and subsistence farmers’ in order to build communities that are more climate change aware, prepared and resilient. In Kenya radio is the most important and dominant mass communication tool for agricultural extension. This study investigated the potential role of radio in influencing farmers’ understanding and use of climate change information. The broad aims of this study were three-fold. Firstly, to identify Kenyan farmers’ perceptions and responses to the impacts of climate change. Secondly, to develop radio programs that communicate climate change information to Kenyan farmers and thirdly, to evaluate the impact of information disseminated through radio on farmers’ understanding and responses to climate change mitigation and adaptation. This study was conducted within the farming community of Kilifi County, located along the Kenyan coast. Education and communication about climate change was undertaken using radio to make available information understandable to different social and cultural groups. A mixed methods pre-and post-intervention design that provided the opportunity for triangulating results from both quantitative and qualitative data was used. Quantitative and qualitative data was collected simultaneously, where quantitative data was collected through semi structured surveys with 421 farmers’ and qualitative data was derived from 11 focus group interviews, six interviews with key informants and nine climate change experts. The climate change knowledge gaps identified in the initial quantitative and qualitative data were used in developing radio programs. Final quantitative and qualitative data collection and analysis enabled an assessment of the impact of climate change messages aired through radio on the farming community in Kilifi County. Results of this study indicate that 32% of the farmers’ listened to the radio programs and 26% implemented technologies aired on the programs that would help them adapt to climate change. The most adopted technologies were planting drought tolerant crops including indigenous crop varieties, planting trees, water harvesting and use of manure. The proportion of farmers who indicated they knew “a fair amount” about climate change increased significantly (Z= -5.1977, p < 0.001) from 33% (at the pre intervention phase of this study) to 64% (post intervention). However, 68% of the farmers felt they needed “a lot more” information on agriculture interventions (43%), access to financial resources (21%) and the effects of climate change (15%). The challenges farmers’ faced when adopting the interventions included lack of access to financial resources (18%), high cost of adaptation measures (17%), and poor access to water (10%). This study concludes that radio effectively complements other agricultural extension methods and has the potential to engage farmers’ on climate change issues and motivate them to take action.Keywords: climate change, climate change intervention, farmers, radio
Procedia PDF Downloads 338147 Purple Spots on Historical Parchments: Confirming the Microbial Succession at the Basis of Biodeterioration
Authors: N. Perini, M. C. Thaller, F. Mercuri, S. Orlanducci, A. Rubechini, L. Migliore
Abstract:
The preservation of cultural heritage is one of the major challenges of today’s society, because of the fundamental right of future generations to inherit it as the continuity with their historical and cultural identity. Parchments, consisting of a semi-solid matrix of collagen produced from animal skin (i.e., sheep or goats), are a significant part of the cultural heritage, being used as writing material for many centuries. Due to their animal origin, parchments easily undergo biodeterioration. The most common biological damage is characterized by isolated or coalescent purple spots that often leads to the detachment of the superficial layer and the loss of the written historical content of the document. Although many parchments with the same biodegradative features were analyzed, no common causative agent has been found so far. Very recently, a study was performed on a purple-damaged parchment roll dated back 1244 A.D, the A.A. Arm. I-XVIII 3328, belonging to the oldest collection of the Vatican Secret Archive (Fondo 'Archivum Arcis'), by comparing uncolored undamaged and purple damaged areas of the same document. As a whole, the study gave interesting results to hypothesize a model of biodeterioration, consisting of a microbial succession acting in two main phases: the first one, common to all the damaged parchments, is characterized by halophilic and halotolerant bacteria fostered by the salty environment within the parchment maybe induced by bringing of the hides; the second one, changing with the individual history of each parchment, determines the identity of its colonizers. The design of this model was pivotal to this study, performed by different labs of the Tor Vergata University (Rome, Italy), in collaboration with the Vatican Secret Archive. Three documents, belonging to a collection of dramatically damaged parchments archived as 'Faldone Patrizi A 19' (dated back XVII century A.D.), were analyzed through a multidisciplinary approach, including three updated technologies: (i) Next Generation Sequencing (NGS, Illumina) to describe the microbial communities colonizing the damaged and undamaged areas, (ii) RAMAN spectroscopy to analyze the purple pigments, (iii) Light Transmitted Analysis (LTA) to evaluate the kind and entity of the damage to native collagen. The metagenomic analysis obtained from NGS revealed DNA sequences belonging to Halobacterium salinarum mainly in the undamaged areas. RAMAN spectroscopy detected pigments within the purple spots, mainly bacteriorhodopsine/rhodopsin-like pigments, a purple transmembrane protein containing retinal and present in Halobacteria. The LTA technique revealed extremely damaged collagen structures in both damaged and undamaged areas of the parchments. In the light of these data, the study represents a first confirmation of the microbial succession model described above. The demonstration of this model is pivotal to start any possible new restoration strategy to bring back historical parchments to their original beauty, but also to open opportunities for intervention on a huge amount of documents.Keywords: biodeterioration, parchments, purple spots, ecological succession
Procedia PDF Downloads 171146 Colocalization Analysis to Understand Yttrium Uptake in Saxifraga paniculata Using Complementary Imaging Technics
Authors: Till Fehlauer, Blanche Collin, Bernard Angeletti, Andrea Somogyi, Claire Lallemand, Perrine Chaurand, Cédric Dentant, Clement Levard, Jerome Rose
Abstract:
Over the last decades, yttrium (Y) has gained importance in high-tech applications. It is an essential part of alloys and compounds used for lasers, displays, or cell phones, for example. Due to its chemical similarities with the lanthanides, Y is often considered a rare earth element (REE). Despite their increased usage, the environmental behavior of REEs remains poorly understood. Especially regarding their interactions with plants, many uncertainties exist. On the one hand, Y is known to have a negative effect on root development and germination, but on the other hand, it appears to promote plant growth at low concentrations. In order to understand these phenomena, a precise knowledge is necessary about how Y is absorbed by the plant and how it is handled once inside the organism. Contradictory studies exist, stating that due to a similar ionic radius, Y and the other REEs might be absorbed through Ca²⁺-channels, while others suspect that Y has a shared pathway with Al³⁺. In this study, laser ablation coupled ICP-MS, and synchrotron-based micro-X-ray fluorescence (µXRF, beamline Nanoscopium, SOLEIL, France) have been used in order to localize Y within the plant tissue and identify associated elements. The plant used in this study is Saxifraga paniculata, a rugged alpine plant that has shown an affinity for Y in previous studies (in prep.). Furthermore, Saxifraga paniculata performs guttation, which means that it possesses phloem sap secreting openings on the leaf surface that serve to regulate root pressure. These so-called hydathodes could provide special insights in elemental transport in plants. The plants have been grown on Y doped soil (500mg/kg DW) for four months. The results showed that Y was mainly concentrated in the roots of Saxifraga paniculata (260 ± 85mg/kg), and only a small amount was translocated to the leaves (10 ± 7.8mg/kg). µXRF analysis indicated that within the root transects, the majority of Y remained in the epidermis and hardly penetrated the stele. Laser ablation coupled ICP-MS confirmed this finding and showed a positive correlation in the roots between Y, Fe, Al, and to a lesser extent Ca. In the stem transect, Y was mainly detected in a hotspot of approximately 40µm in diameter situated in the endodermis area. Within the stem and especially in the hotspot, Y was highly colocalized with Al and Fe. Similar-sized Y hotspots have been detected in/on the leaves. All of them were strongly colocalized with Al and Fe, except for those situated within the hydathodes, which showed no colocalization with any of the measured elements. Accordingly, a relation between Y and Ca during root uptake remains possible, whereas a correlation to Fe and Al appears to be dominant in the aerial parts, suggesting common storage compartments, the formation of complexes, or a shared pathway during translocation.Keywords: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Phytoaccumulation, Rare earth elements, Saxifraga paniculata, Synchrotron-based micro-X-ray fluorescence, Yttrium
Procedia PDF Downloads 148145 Development of Biosensor Chip for Detection of Specific Antibodies to HSV-1
Authors: Zatovska T. V., Nesterova N. V., Baranova G. V., Zagorodnya S. D.
Abstract:
In recent years, biosensor technologies based on the phenomenon of surface plasmon resonance (SPR) are becoming increasingly used in biology and medicine. Their application facilitates exploration in real time progress of binding of biomolecules and identification of agents that specifically interact with biologically active substances immobilized on the biosensor surface (biochips). Special attention is paid to the use of Biosensor analysis in determining the antibody-antigen interaction in the diagnostics of diseases caused by viruses and bacteria. According to WHO, the diseases that are caused by the herpes simplex virus (HSV), take second place (15.8%) after influenza as a cause of death from viral infections. Current diagnostics of HSV infection include PCR and ELISA assays. The latter allows determination the degree of immune response to viral infection and respective stages of its progress. In this regard, the searches for new and available diagnostic methods are very important. This work was aimed to develop Biosensor chip for detection of specific antibodies to HSV-1 in the human blood serum. The proteins of HSV1 (strain US) were used as antigens. The viral particles were accumulated in cell culture MDBK and purified by differential centrifugation in cesium chloride density gradient. Analysis of the HSV1 proteins was performed by polyacrylamide gel electrophoresis and ELISA. The protein concentration was measured using De Novix DS-11 spectrophotometer. The device for detection of antigen-antibody interactions was an optoelectronic two-channel spectrometer ‘Plasmon-6’, using the SPR phenomenon in the Krechman optical configuration. It was developed at the Lashkarev Institute of Semiconductor Physics of NASU. The used carrier was a glass plate covered with 45 nm gold film. Screening of human blood serums was performed using the test system ‘HSV-1 IgG ELISA’ (GenWay, USA). Development of Biosensor chip included optimization of conditions of viral antigen sorption and analysis steps. For immobilization of viral proteins 0.2% solution of Dextran 17, 200 (Sigma, USA) was used. Sorption of antigen took place at 4-8°C within 18-24 hours. After washing of chip, three times with citrate buffer (pH 5,0) 1% solution of BSA was applied to block the sites not occupied by viral antigen. It was found direct dependence between the amount of immobilized HSV1 antigen and SPR response. Using obtained biochips, panels of 25 positive and 10 negative for the content of antibodies to HSV-1 human sera were analyzed. The average value of SPR response was 185 a.s. for negative sera and from 312 to. 1264 a.s. for positive sera. It was shown that SPR data were agreed with ELISA results in 96% of samples proving the great potential of SPR in such researches. It was investigated the possibility of biochip regeneration and it was shown that application of 10 mM NaOH solution leads to rupture of intermolecular bonds. This allows reuse the chip several times. Thus, in this study biosensor chip for detection of specific antibodies to HSV1 was successfully developed expanding a range of diagnostic methods for this pathogen.Keywords: biochip, herpes virus, SPR
Procedia PDF Downloads 417144 Li-Ion Batteries vs. Synthetic Natural Gas: A Life Cycle Analysis Study on Sustainable Mobility
Authors: Guido Lorenzi, Massimo Santarelli, Carlos Augusto Santos Silva
Abstract:
The growth of non-dispatchable renewable energy sources in the European electricity generation mix is promoting the research of technically feasible and cost-effective solutions to make use of the excess energy, produced when the demand is low. The increasing intermittent renewable capacity is becoming a challenge to face especially in Europe, where some countries have shares of wind and solar on the total electricity produced in 2015 higher than 20%, with Denmark around 40%. However, other consumption sectors (mainly transportation) are still considerably relying on fossil fuels, with a slow transition to other forms of energy. Among the opportunities for different mobility concepts, electric (EV) and biofuel-powered vehicles (BPV) are the options that currently appear more promising. The EVs are targeting mainly the light duty users because of their zero (Full electric) or reduced (Hybrid) local emissions, while the BPVs encourage the use of alternative resources with the same technologies (thermal engines) used so far. The batteries which are applied to EVs are based on ions of Lithium because of their overall good performance in energy density, safety, cost and temperature performance. Biofuels, instead, can be various and the major difference is in their physical state (liquid or gaseous). In this study gaseous biofuels are considered and, more specifically, Synthetic Natural Gas (SNG) produced through a process of Power-to-Gas consisting in an electrochemical upgrade (with Solid Oxide Electrolyzers) of biogas with CO2 recycling. The latter process combines a first stage of electrolysis, where syngas is produced, and a second stage of methanation in which the product gas is turned into methane and then made available for consumption. A techno-economic comparison between the two alternatives is possible, but it does not capture all the different aspects involved in the two routes for the promotion of a more sustainable mobility. For this reason, a more comprehensive methodology, i.e. Life Cycle Assessment, is adopted to describe the environmental implications of using excess electricity (directly or indirectly) for new vehicle fleets. The functional unit of the study is 1 km and the two options are compared in terms of overall CO2 emissions, both considering Cradle to Gate and Cradle to Grave boundaries. Showing how production and disposal of materials affect the environmental performance of the analyzed routes is useful to broaden the perspective on the impacts that different technologies produce, in addition to what is emitted during the operational life. In particular, this applies to batteries for which the decommissioning phase has a larger impact on the environmental balance compared to electrolyzers. The lower (more than one order of magnitude) energy density of Li-ion batteries compared to SNG implies that for the same amount of energy used, more material resources are needed to obtain the same effect. The comparison is performed in an energy system that simulates the Western European one, in order to assess which of the two solutions is more suitable to lead the de-fossilization of the transport sector with the least resource depletion and the mildest consequences for the ecosystem.Keywords: electrical energy storage, electric vehicles, power-to-gas, life cycle assessment
Procedia PDF Downloads 178143 Ultrasonic Atomizer for Turbojet Engines
Authors: Aman Johri, Sidhant Sood, Pooja Suresh
Abstract:
This paper suggests a new and more efficient method of atomization of fuel in a combustor nozzle of a high bypass turbofan engine, using ultrasonic vibrations. Since atomization of fuel just before the fuel spray is injected into the combustion chamber is an important and crucial aspect related to functioning of a propulsion system, the technology suggested by this paper and the experimental analysis on the system components eventually proves to assist in complete and rapid combustion of the fuel in the combustor module of the engine. Current propulsion systems use carburetors, atomization nozzles and apertures in air intake pipes for atomization. The idea of this paper is to deploy new age hybrid technology, namely the Ultrasound Field Effect (UFE) to effectively atomize fuel before it enters the combustion chamber, as a viable and effective method to increase efficiency and improve upon existing designs. The Ultrasound Field Effect is applied axially, on diametrically opposite ends of an atomizer tube that gloves onto the combustor nozzle, where the fuel enters and exits under a pre-defined pressure. The Ultrasound energy vibrates the fuel particles to a breakup frequency. At reaching this frequency, the fuel particles start disintegrating into smaller diameter particles perpendicular to the axis of application of the field from the parent boundary layer of fuel flow over the baseplate. These broken up fuel droplets then undergo swirling effect as per the original nozzle design, with a higher breakup ratio than before. A significant reduction of the size of fuel particles eventually results in an increment in the propulsive efficiency of the engine. Moreover, the Ultrasound atomizer operates within a control frequency such that effects of overheating and induced vibrations are least felt on the overall performance of the engine. The design of an electrical manifold for the multiple-nozzle system over a typical can-annular combustor is developed along with this study, such that the product can be installed and removed easily for maintenance and repairing, can allow for easy access for inspections and transmits least amount of vibrational energy to the surface of the combustor. Since near-field ultrasound is used, the vibrations are easily controlled, thereby successfully reducing vibrations on the outer shell of the combustor. Experimental analysis is carried out on the effect of ultrasonic vibrations on flowing jet turbine fuel using an ultrasound generator probe and results of an effective decrease in droplet size across a constant diameter, away from the boundary layer of flow is noted using visual aid by observing under ultraviolet light. The choice of material for the Ultrasound inducer tube and crystal along with the operating range of temperatures, pressures, and frequencies of the Ultrasound field effect are also studied in this paper, while taking into account the losses incurred due to constant vibrations and thermal loads on the tube surface.Keywords: atomization, ultrasound field effect, titanium mesh, breakup frequency, parent boundary layer, baseplate, propulsive efficiency, jet turbine fuel, induced vibrations
Procedia PDF Downloads 240142 The Employment of Unmanned Aircraft Systems for Identification and Classification of Helicopter Landing Zones and Airdrop Zones in Calamity Situations
Authors: Marielcio Lacerda, Angelo Paulino, Elcio Shiguemori, Alvaro Damiao, Lamartine Guimaraes, Camila Anjos
Abstract:
Accurate information about the terrain is extremely important in disaster management activities or conflict. This paper proposes the use of the Unmanned Aircraft Systems (UAS) at the identification of Airdrop Zones (AZs) and Helicopter Landing Zones (HLZs). In this paper we consider the AZs the zones where troops or supplies are dropped by parachute, and HLZs areas where victims can be rescued. The use of digital image processing enables the automatic generation of an orthorectified mosaic and an actual Digital Surface Model (DSM). This methodology allows obtaining this fundamental information to the terrain’s comprehension post-disaster in a short amount of time and with good accuracy. In order to get the identification and classification of AZs and HLZs images from DJI drone, model Phantom 4 have been used. The images were obtained with the knowledge and authorization of the responsible sectors and were duly registered in the control agencies. The flight was performed on May 24, 2017, and approximately 1,300 images were obtained during approximately 1 hour of flight. Afterward, new attributes were generated by Feature Extraction (FE) from the original images. The use of multispectral images and complementary attributes generated independently from them increases the accuracy of classification. The attributes of this work include the Declivity Map and Principal Component Analysis (PCA). For the classification four distinct classes were considered: HLZ 1 – small size (18m x 18m); HLZ 2 – medium size (23m x 23m); HLZ 3 – large size (28m x 28m); AZ (100m x 100m). The Decision Tree method Random Forest (RF) was used in this work. RF is a classification method that uses a large collection of de-correlated decision trees. Different random sets of samples are used as sampled objects. The results of classification from each tree and for each object is called a class vote. The resulting classification is decided by a majority of class votes. In this case, we used 200 trees for the execution of RF in the software WEKA 3.8. The classification result was visualized on QGIS Desktop 2.12.3. Through the methodology used, it was possible to classify in the study area: 6 areas as HLZ 1, 6 areas as HLZ 2, 4 areas as HLZ 3; and 2 areas as AZ. It should be noted that an area classified as AZ covers the classifications of the other classes, and may be used as AZ, HLZ of large size (HLZ3), medium size (HLZ2) and small size helicopters (HLZ1). Likewise, an area classified as HLZ for large rotary wing aircraft (HLZ3) covers the smaller area classifications, and so on. It was concluded that images obtained through small UAV are of great use in calamity situations since they can provide data with high accuracy, with low cost, low risk and ease and agility in obtaining aerial photographs. This allows the generation, in a short time, of information about the features of the terrain in order to serve as an important decision support tool.Keywords: disaster management, unmanned aircraft systems, helicopter landing zones, airdrop zones, random forest
Procedia PDF Downloads 177141 Transport of Reactive Carbo-Iron Composite Particles for in situ Groundwater Remediation Investigated at Laboratory and Field Scale
Authors: Sascha E. Oswald, Jan Busch
Abstract:
The in-situ dechlorination of contamination by chlorinated solvents in groundwater via zero-valent iron (nZVI) is potentially an efficient and prompt remediation method. A key requirement is that nZVI has to be introduced in the subsurface in a way that substantial quantities of the contaminants are actually brought into direct contact with the nZVI in the aquifer. Thus it could be a more flexible and precise alternative to permeable reactive barrier techniques using granular iron. However, nZVI are often limited by fast agglomeration and sedimentation in colloidal suspensions, even more so in the aquifer sediments, which is a handicap for the application to treat source zones or contaminant plumes. Colloid-supported nZVI show promising characteristics to overcome these limitations and Carbo-Iron Colloids is a newly developed composite material aiming for that. The nZVI is built onto finely ground activated carbon of about a micrometer diameter acting as a carrier for it. The Carbo-Iron Colloids are often suspended with a polyanionic stabilizer, and carboxymethyl cellulose is one with good properties for that. We have investigated the transport behavior of Carbo-Iron Colloids (CIC) on different scales and for different conditions to assess its mobility in aquifer sediments as a key property for making its application feasible. The transport properties were tested in one-dimensional laboratory columns, a two-dimensional model aquifer and also an injection experiment in the field. Those experiments were accompanied by non-invasive tomographic investigations of the transport and filtration processes of CIC suspensions. The laboratory experiments showed that a larger part of the CIC can travel at least scales of meters for favorable but realistic conditions. Partly this is even similar to a dissolved tracer. For less favorable conditions this can be much smaller and in all cases a particular fraction of the CIC injected is retained mainly shortly after entering the porous medium. As field experiment a horizontal flow field was established, between two wells with a distance of 5 meters, in a confined, shallow aquifer at a contaminated site in North German lowlands. First a tracer test was performed and a basic model was set up to define the design of the CIC injection experiment. Then CIC suspension was introduced into the aquifer at the injection well while the second well was pumped and samples taken there to observe the breakthrough of CIC. This was based on direct visual inspection and total particle and iron concentrations of water samples analyzed in the laboratory later. It could be concluded that at least 12% of the CIC amount injected reached the extraction well in due course, some of it traveling distances larger than 10 meters in the non-uniform dipole flow field. This demonstrated that these CIC particles have a substantial mobility for reaching larger volumes of a contaminated aquifer and for interacting there by their reactivity with dissolved contaminants in the pore space. Therefore they seem suited well for groundwater remediation by in-situ formation of reactive barriers for chlorinated solvent plumes or even source removal.Keywords: carbo-iron colloids, chlorinated solvents, in-situ remediation, particle transport, plume treatment
Procedia PDF Downloads 246140 Numerical Model of Crude Glycerol Autothermal Reforming to Hydrogen-Rich Syngas
Authors: A. Odoom, A. Salama, H. Ibrahim
Abstract:
Hydrogen is a clean source of energy for power production and transportation. The main source of hydrogen in this research is biodiesel. Glycerol also called glycerine is a by-product of biodiesel production by transesterification of vegetable oils and methanol. This is a reliable and environmentally-friendly source of hydrogen production than fossil fuels. A typical composition of crude glycerol comprises of glycerol, water, organic and inorganic salts, soap, methanol and small amounts of glycerides. Crude glycerol has limited industrial application due to its low purity thus, the usage of crude glycerol can significantly enhance the sustainability and production of biodiesel. Reforming techniques is an approach for hydrogen production mainly Steam Reforming (SR), Autothermal Reforming (ATR) and Partial Oxidation Reforming (POR). SR produces high hydrogen conversions and yield but is highly endothermic whereas POR is exothermic. On the downside, PO yields lower hydrogen as well as large amount of side reactions. ATR which is a fusion of partial oxidation reforming and steam reforming is thermally neutral because net reactor heat duty is zero. It has relatively high hydrogen yield, selectivity as well as limits coke formation. The complex chemical processes that take place during the production phases makes it relatively difficult to construct a reliable and robust numerical model. Numerical model is a tool to mimic reality and provide insight into the influence of the parameters. In this work, we introduce a finite volume numerical study for an 'in-house' lab-scale experiment of ATR. Previous numerical studies on this process have considered either using Comsol or nodal finite difference analysis. Since Comsol is a commercial package which is not readily available everywhere and lab-scale experiment can be considered well mixed in the radial direction. One spatial dimension suffices to capture the essential feature of ATR, in this work, we consider developing our own numerical approach using MATLAB. A continuum fixed bed reactor is modelled using MATLAB with both pseudo homogeneous and heterogeneous models. The drawback of nodal finite difference formulation is that it is not locally conservative which means that materials and momenta can be generated inside the domain as an artifact of the discretization. Control volume, on the other hand, is locally conservative and suites very well problems where materials are generated and consumed inside the domain. In this work, species mass balance, Darcy’s equation and energy equations are solved using operator splitting technique. Therefore, diffusion-like terms are discretized implicitly while advection-like terms are discretized explicitly. An upwind scheme is adapted for the advection term to ensure accuracy and positivity. Comparisons with the experimental data show very good agreements which build confidence in our modeling approach. The models obtained were validated and optimized for better results.Keywords: autothermal reforming, crude glycerol, hydrogen, numerical model
Procedia PDF Downloads 140139 The Effects of Lithofacies on Oil Enrichment in Lucaogou Formation Fine-Grained Sedimentary Rocks in Santanghu Basin, China
Authors: Guoheng Liu, Zhilong Huang
Abstract:
For more than the past ten years, oil and gas production from marine shale such as the Barnett shale. In addition, in recent years, major breakthroughs have also been made in lacustrine shale gas exploration, such as the Yanchang Formation of the Ordos Basin in China. Lucaogou Formation shale, which is also lacustrine shale, has also yielded a high production in recent years, for wells such as M1, M6, and ML2, yielding a daily oil production of 5.6 tons, 37.4 tons and 13.56 tons, respectively. Lithologic identification and classification of reservoirs are the base and keys to oil and gas exploration. Lithology and lithofacies obviously control the distribution of oil and gas in lithological reservoirs, so it is of great significance to describe characteristics of lithology and lithofacies of reservoirs finely. Lithofacies is an intrinsic property of rock formed under certain conditions of sedimentation. Fine-grained sedimentary rocks such as shale formed under different sedimentary conditions display great particularity and distinctiveness. Hence, to our best knowledge, no constant and unified criteria and methods exist for fine-grained sedimentary rocks regarding lithofacies definition and classification. Consequently, multi-parameters and multi-disciplines are necessary. A series of qualitative descriptions and quantitative analysis were used to figure out the lithofacies characteristics and its effect on oil accumulation of Lucaogou formation fine-grained sedimentary rocks in Santanghu basin. The qualitative description includes core description, petrographic thin section observation, fluorescent thin-section observation, cathode luminescence observation and scanning electron microscope observation. The quantitative analyses include X-ray diffraction, total organic content analysis, ROCK-EVAL.II Methodology, soxhlet extraction, porosity and permeability analysis and oil saturation analysis. Three types of lithofacies were mainly well-developed in this study area, which is organic-rich massive shale lithofacies, organic-rich laminated and cloddy hybrid sedimentary lithofacies and organic-lean massive carbonate lithofacies. Organic-rich massive shale lithofacies mainly include massive shale and tuffaceous shale, of which quartz and clay minerals are the major components. Organic-rich laminated and cloddy hybrid sedimentary lithofacies contain lamina and cloddy structure. Rocks from this lithofacies chiefly consist of dolomite and quartz. Organic-lean massive carbonate lithofacies mainly contains massive bedding fine-grained carbonate rocks, of which fine-grained dolomite accounts for the main part. Organic-rich massive shale lithofacies contain the highest content of free hydrocarbon and solid organic matter. Moreover, more pores were developed in organic-rich massive shale lithofacies. Organic-lean massive carbonate lithofacies contain the lowest content solid organic matter and develop the least amount of pores. Organic-rich laminated and cloddy hybrid sedimentary lithofacies develop the largest number of cracks and fractures. To sum up, organic-rich massive shale lithofacies is the most favorable type of lithofacies. Organic-lean massive carbonate lithofacies is impossible for large scale oil accumulation.Keywords: lithofacies classification, tuffaceous shale, oil enrichment, Lucaogou formation
Procedia PDF Downloads 220138 Recovery of Polyphenolic Phytochemicals From Greek Grape Pomace (Vitis Vinifera L.)
Authors: Christina Drosou, Konstantina E. Kyriakopoulou, Andreas Bimpilas, Dimitrios Tsimogiannis, Magdalini C. Krokida
Abstract:
Rationale: Agiorgitiko is one of the most widely-grown and commercially well-established red wine varieties in Greece. Each year viticulture industry produces a large amount of waste consisting of grape skins and seeds (pomace) during a short period. Grapes contain polyphenolic compounds which are partially transferred to wine during winemaking. Therefore, winery wastes could be an alternative cheap source for obtaining such compounds with important antioxidant activity. Specifically, red grape waste contains anthocyanins and flavonols which are characterized by multiple biological activities, including cardioprotective, anti-inflammatory, anti-carcinogenic, antiviral and antibacterial properties attributed mainly to their antioxidant activity. Ultrasound assisted extraction (UAE) is considered an effective way to recover phenolic compounds, since it combines the advantage of mechanical effect with low temperature. Moreover, green solvents can be used in order to recover extracts intended for used in the food and nutraceutical industry. Apart from the extraction, pre-treatment process like drying can play an important role on the preservation of the grape pomace and the enhancement of its antioxidant capacity. Objective: The aim of this study is to recover natural extracts from winery waste with high antioxidant capacity using green solvents so they can be exploited and utilized as enhancers in food or nutraceuticals. Methods: Agiorgitiko grape pomace was dehydrated by air drying (AD) and accelerated solar drying (ASD) in order to explore the effect of the pre-treatment on the recovery of bioactive compounds. UAE was applied in untreated and dried samples using water and water: ethanol (1:1) as solvents. The total antioxidant potential and phenolic content of the extracts was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and Folin-Ciocalteu method, respectively. Finally, the profile of anthocyanins and flavonols was specified using HPLC-DAD analysis. The efficiency of processes was determined in terms of extraction yield, antioxidant activity, phenolic content and the anthocyanins and flavovols profile. Results & Discussion: The experiments indicated that the pre-treatment was essential for the recovery of highly nutritious compounds from the pomace as long as the extracts samples showed higher phenolic content and antioxidant capacity. Water: ethanol (1:1) was considered a more effective solvent on the recovery of phenolic compounds. Moreover, ASD grape pomace extracted with the solvent system exhibited the highest antioxidant activity (IC50=0.36±0.01mg/mL) and phenolic content (TPC=172.68±0.01mgGAE/g dry extract), followed by AD and untreated pomace. The major compounds recovered were malvidin3-O-glucoside and quercetin3-O-glucoside according to the HPLC analysis. Conclusions: Winery waste can be exploited for the recovery of nutritious compounds using green solvents such as water or ethanol. The pretreatment of the pomace can significantly affect the concentration of phenolic compounds, while UAE is considered a highly effective extraction process.Keywords: agiorgitico grape pomace, antioxidants, phenolic compounds, ultrasound assisted extraction
Procedia PDF Downloads 393137 Stochastic Matrices and Lp Norms for Ill-Conditioned Linear Systems
Authors: Riadh Zorgati, Thomas Triboulet
Abstract:
In quite diverse application areas such as astronomy, medical imaging, geophysics or nondestructive evaluation, many problems related to calibration, fitting or estimation of a large number of input parameters of a model from a small amount of output noisy data, can be cast as inverse problems. Due to noisy data corruption, insufficient data and model errors, most inverse problems are ill-posed in a Hadamard sense, i.e. existence, uniqueness and stability of the solution are not guaranteed. A wide class of inverse problems in physics relates to the Fredholm equation of the first kind. The ill-posedness of such inverse problem results, after discretization, in a very ill-conditioned linear system of equations, the condition number of the associated matrix can typically range from 109 to 1018. This condition number plays the role of an amplifier of uncertainties on data during inversion and then, renders the inverse problem difficult to handle numerically. Similar problems appear in other areas such as numerical optimization when using interior points algorithms for solving linear programs leads to face ill-conditioned systems of linear equations. Devising efficient solution approaches for such system of equations is therefore of great practical interest. Efficient iterative algorithms are proposed for solving a system of linear equations. The approach is based on a preconditioning of the initial matrix of the system with an approximation of a generalized inverse leading to a stochastic preconditioned matrix. This approach, valid for non-negative matrices, is first extended to hermitian, semi-definite positive matrices and then generalized to any complex rectangular matrices. The main results obtained are as follows: 1) We are able to build a generalized inverse of any complex rectangular matrix which satisfies the convergence condition requested in iterative algorithms for solving a system of linear equations. This completes the (short) list of generalized inverse having this property, after Kaczmarz and Cimmino matrices. Theoretical results on both the characterization of the type of generalized inverse obtained and the convergence are derived. 2) Thanks to its properties, this matrix can be efficiently used in different solving schemes as Richardson-Tanabe or preconditioned conjugate gradients. 3) By using Lp norms, we propose generalized Kaczmarz’s type matrices. We also show how Cimmino's matrix can be considered as a particular case consisting in choosing the Euclidian norm in an asymmetrical structure. 4) Regarding numerical results obtained on some pathological well-known test-cases (Hilbert, Nakasaka, …), some of the proposed algorithms are empirically shown to be more efficient on ill-conditioned problems and more robust to error propagation than the known classical techniques we have tested (Gauss, Moore-Penrose inverse, minimum residue, conjugate gradients, Kaczmarz, Cimmino). We end on a very early prospective application of our approach based on stochastic matrices aiming at computing some parameters (such as the extreme values, the mean, the variance, …) of the solution of a linear system prior to its resolution. Such an approach, if it were to be efficient, would be a source of information on the solution of a system of linear equations.Keywords: conditioning, generalized inverse, linear system, norms, stochastic matrix
Procedia PDF Downloads 135136 Towards Visual Personality Questionnaires Based on Deep Learning and Social Media
Authors: Pau Rodriguez, Jordi Gonzalez, Josep M. Gonfaus, Xavier Roca
Abstract:
Image sharing in social networks has increased exponentially in the past years. Officially, there are 600 million Instagrammers uploading around 100 million photos and videos per day. Consequently, there is a need for developing new tools to understand the content expressed in shared images, which will greatly benefit social media communication and will enable broad and promising applications in education, advertisement, entertainment, and also psychology. Following these trends, our work aims to take advantage of the existing relationship between text and personality, already demonstrated by multiple researchers, so that we can prove that there exists a relationship between images and personality as well. To achieve this goal, we consider that images posted on social networks are typically conditioned on specific words, or hashtags, therefore any relationship between text and personality can also be observed with those posted images. Our proposal makes use of the most recent image understanding models based on neural networks to process the vast amount of data generated by social users to determine those images most correlated with personality traits. The final aim is to train a weakly-supervised image-based model for personality assessment that can be used even when textual data is not available, which is an increasing trend. The procedure is described next: we explore the images directly publicly shared by users based on those accompanying texts or hashtags most strongly related to personality traits as described by the OCEAN model. These images will be used for personality prediction since they have the potential to convey more complex ideas, concepts, and emotions. As a result, the use of images in personality questionnaires will provide a deeper understanding of respondents than through words alone. In other words, from the images posted with specific tags, we train a deep learning model based on neural networks, that learns to extract a personality representation from a picture and use it to automatically find the personality that best explains such a picture. Subsequently, a deep neural network model is learned from thousands of images associated with hashtags correlated to OCEAN traits. We then analyze the network activations to identify those pictures that maximally activate the neurons: the most characteristic visual features per personality trait will thus emerge since the filters of the convolutional layers of the neural model are learned to be optimally activated depending on each personality trait. For example, among the pictures that maximally activate the high Openness trait, we can see pictures of books, the moon, and the sky. For high Conscientiousness, most of the images are photographs of food, especially healthy food. The high Extraversion output is mostly activated by pictures of a lot of people. In high Agreeableness images, we mostly see flower pictures. Lastly, in the Neuroticism trait, we observe that the high score is maximally activated by animal pets like cats or dogs. In summary, despite the huge intra-class and inter-class variabilities of the images associated to each OCEAN traits, we found that there are consistencies between visual patterns of those images whose hashtags are most correlated to each trait.Keywords: emotions and effects of mood, social impact theory in social psychology, social influence, social structure and social networks
Procedia PDF Downloads 196135 A Shift in Approach from Cereal Based Diet to Dietary Diversity in India: A Case Study of Aligarh District
Authors: Abha Gupta, Deepak K. Mishra
Abstract:
Food security issue in India has surrounded over availability and accessibility of cereal which is regarded as the only food group to check hunger and improve nutrition. Significance of fruits, vegetables, meat and other food products have totally been neglected given the fact that they provide essential nutrients to the body. There is a need to shift the emphasis from cereal-based approach to a more diverse diet so that aim of achieving food security may change from just reducing hunger to an overall health. This paper attempts to analyse how far dietary diversity level has been achieved across different socio-economic groups in India. For this purpose, present paper sets objectives to determine (a) percentage share of different food groups to total food expenditure and consumption by background characteristics (b) source of and preference for all food items and, (c) diversity of diet across socio-economic groups. A cross sectional survey covering 304 households selected through proportional stratified random sampling was conducted in six villages of Aligarh district of Uttar Pradesh, India. Information on amount of food consumed, source of consumption and expenditure on food (74 food items grouped into 10 major food groups) was collected with a recall period of seven days. Per capita per day food consumption/expenditure was calculated through dividing consumption/expenditure by household size and number seven. Food variety score was estimated by giving 0 values to those food groups/items which had not been eaten and 1 to those which had been taken by households in last seven days. Addition of all food group/item score gave result of food variety score. Diversity of diet was computed using Herfindahl-Hirschman index. Findings of the paper show that cereal, milk, roots and tuber food groups contribute a major share in total consumption/expenditure. Consumption of these food groups vary across socio-economic groups whereas fruit, vegetables, meat and other food consumption remain low and same. Estimation of dietary diversity show higher concentration of diet due to higher consumption of cereals, milk, root and tuber products and dietary diversity slightly varies across background groups. Muslims, Scheduled caste, small farmers, lower income class, food insecure, below poverty line and labour families show higher concentration of diet as compared to their counterpart groups. These groups also evince lower mean intake of number of food item in a week due to poor economic constraints and resultant lower accessibility to number of expensive food items. Results advocate to make a shift from cereal based diet to dietary diversity which not only includes cereal and milk products but also nutrition rich food items such as fruits, vegetables, meat and other products. Integrating a dietary diversity approach in food security programmes of the country would help to achieve nutrition security as hidden hunger is widespread among the Indian population.Keywords: dietary diversity, food Security, India, socio-economic groups
Procedia PDF Downloads 340134 Fiber Stiffness Detection of GFRP Using Combined ABAQUS and Genetic Algorithms
Authors: Gyu-Dong Kim, Wuk-Jae Yoo, Sang-Youl Lee
Abstract:
Composite structures offer numerous advantages over conventional structural systems in the form of higher specific stiffness and strength, lower life-cycle costs, and benefits such as easy installation and improved safety. Recently, there has been a considerable increase in the use of composites in engineering applications and as wraps for seismic upgrading and repairs. However, these composites deteriorate with time because of outdated materials, excessive use, repetitive loading, climatic conditions, manufacturing errors, and deficiencies in inspection methods. In particular, damaged fibers in a composite result in significant degradation of structural performance. In order to reduce the failure probability of composites in service, techniques to assess the condition of the composites to prevent continual growth of fiber damage are required. Condition assessment technology and nondestructive evaluation (NDE) techniques have provided various solutions for the safety of structures by means of detecting damage or defects from static or dynamic responses induced by external loading. A variety of techniques based on detecting the changes in static or dynamic behavior of isotropic structures has been developed in the last two decades. These methods, based on analytical approaches, are limited in their capabilities in dealing with complex systems, primarily because of their limitations in handling different loading and boundary conditions. Recently, investigators have introduced direct search methods based on metaheuristics techniques and artificial intelligence, such as genetic algorithms (GA), simulated annealing (SA) methods, and neural networks (NN), and have promisingly applied these methods to the field of structural identification. Among them, GAs attract our attention because they do not require a considerable amount of data in advance in dealing with complex problems and can make a global solution search possible as opposed to classical gradient-based optimization techniques. In this study, we propose an alternative damage-detection technique that can determine the degraded stiffness distribution of vibrating laminated composites made of Glass Fiber-reinforced Polymer (GFRP). The proposed method uses a modified form of the bivariate Gaussian distribution function to detect degraded stiffness characteristics. In addition, this study presents a method to detect the fiber property variation of laminated composite plates from the micromechanical point of view. The finite element model is used to study free vibrations of laminated composite plates for fiber stiffness degradation. In order to solve the inverse problem using the combined method, this study uses only first mode shapes in a structure for the measured frequency data. In particular, this study focuses on the effect of the interaction among various parameters, such as fiber angles, layup sequences, and damage distributions, on fiber-stiffness damage detection.Keywords: stiffness detection, fiber damage, genetic algorithm, layup sequences
Procedia PDF Downloads 272133 Investigation of Hydrate Formation of Associated Petroleum Gas from Promoter Solutions for the Purpose of Utilization and Reduction of Its Burning
Authors: M. E. Semenov, U. Zh. Mirzakimov, A. S. Stoporev, R. S. Pavelev, M. A. Varfolomeev
Abstract:
Gas hydrates are host-guest compounds. Guest molecules can be low molecular weight components of associated petroleum gas (C1-C4 hydrocarbons), carbon dioxide, hydrogen sulfide, nitrogen. Gas hydrates have a number of unique properties that make them interesting from a technological point of view, for example, for storing hydrocarbon gases in solid form under moderate thermobaric conditions. Currently, the possibility of storing and transporting hydrocarbon gases in the form of solid hydrate is being actively explored throughout the world. The hydrate form of gas has a number of advantages, including a significant gas content in the hydrate, relative safety and environmental friendliness of the process. Recently, new developments have been proposed that seek to reduce the number of steps to obtain the finished hydrate, for example, using a pressing device/screw inside the reactor. However, the energy consumption required for the hydrate formation process remains a challenge. Thus, the goal of the current work is to study the patterns and mechanisms of the hydrate formation process using small additions of hydrate formation promoters under static conditions. The study of these aspects will help solve the problem of accelerated production of gas hydrates with minimal energy consumption. New compounds have been developed at Kazan Federal University that can accelerate the formation of methane hydrate with a small amount of promoter in water, not exceeding 0.1% by weight. These promoters were synthesized based on available natural compounds and showed high efficiency in accelerating the growth of methane hydrate. To test the influence of promoters on the process of hydrate formation, standard experiments are carried out under dynamic conditions with stirring. During such experiments, the time at which hydrate formation begins (induction period), the temperature at which formation begins (supercooling), the rate of hydrate formation, and the degree of conversion of water to hydrate are assessed. This approach helps to determine the most effective compound in comparative experiments with different promoters and select their optimal concentration. These experimental studies made it possible to study the features of the formation of associated petroleum gas hydrate from promoter solutions under static conditions. Phase transformations were studied using high-pressure micro-differential scanning calorimetry under various experimental conditions. Visual studies of the growth mode of methane hydrate depending on the type of promoter were also carried out. The work is an extension of the methodology for studying the effect of promoters on the process of associated petroleum gas hydrate formation in order to identify new ways to accelerate the formation of gas hydrates without the use of mixing. This work presents the results of a study of the process of associated petroleum gas hydrate formation using high-pressure differential scanning micro-calorimetry, visual investigation, gas chromatography, autoclave study, and stability data. It was found that the synthesized compounds multiply the conversion of water into hydrate under static conditions up to 96% due to a change in the growth mechanism of associated petroleum gas hydrate. This work was carried out in the framework of the program Priority-2030.Keywords: gas hydrate, gas storage, promotor, associated petroleum gas
Procedia PDF Downloads 70132 Primary and Secondary Big Bangs Theory of Creation of Universe
Authors: Shyam Sunder Gupta
Abstract:
The current theory for the creation of the universe, the Big Bang theory, is widely accepted but leaves some unanswered questions. It does not explain the origin of the singularity or what causes the Big Bang. The theory of the Big Bang also does not explain why there is such a huge amount of dark energy and dark matter in our universe. Also, there is a question related to one universe or multiple universes which needs to be answered. This research addresses these questions using the Bhagvat Puran and other Vedic scriptures as the basis. There is a Unique Pure Energy Field that is eternal, infinite, and finest of all and never transforms when in its original form. The Carrier Particles of Unique Pure Energy are Param-anus- Fundamental Energy Particles. Param-anus and a combination of these particles create bigger particles from which the Universe gets created. For creation to initiate, Unique Pure Energy is represented in three phases: positive phase energy, neutral phase eternal time energy and negative phase energy. Positive phase energy further expands in three forms of creative energies (CE1, CE2andCE3). From CE1 energy, three energy modes, mode of activation, mode of action, and mode of darkness, were created. From these three modes, 16 Principles, subtlest forms of energies, namely Pradhan, Mahat-tattva, Time, Ego, Intellect, Mind, Sound, Space, Touch, Air, Form, Fire, Taste, Water, Smell, and Earth, get created. In the Mahat-tattva, dominant in the Mode of Darkness, CE1 energy creates innumerable primary singularities from seven principles: Pradhan, Mahat-tattva, Ego, Sky, Air, Fire, and Water. CE1 energy gets divided as CE2 and enters, along with three modes and time, in each singularity, and primary Big Bang takes place, and innumerable Invisible Universes get created. Each Universe has seven coverings of 7 principles, and each layer is 10 times thicker than the previous layer. By energy CE2, space in Invisible Universe under the coverings is divided into two halves. In the lower half, the process of evolution gets initiated, and seeds of 24 elements get created, out of which 5 fundamental elements, building blocks of matter, Sky, Air, Fire, Water and Earth, create seeds of stars, planets, galaxies and all other matter. Since 5 fundamental elements get created out of the mode of darkness, it explains why there is so much dark energy and dark matter in our Universe. This process of creation, in the lower half of Invisible universe continues for 2.16 billion years. Further, in the lower part of the energy field, exactly at the Centre of Invisible Universe, Secondary Singularity is created, through which, by force of Mode of Action, Secondary Big Bang takes place and Visible Universe gets created in the shape of Lotus Flower, expanding into upper part. Visible matter starts appearing after a gap of 360,000 years. Within the Visible Universe, a small part gets created known as the Phenomenal Material World, which is our Solar System, the sun being in the Centre. Diameter of Solar planetary system is 6.4 billion km.Keywords: invisible universe, phenomenal material world, primary Big Bang, secondary Big Bang, singularities, visible universe
Procedia PDF Downloads 89131 Wetland Community and Their Livelihood Opportunities in the Face of Changing Climatic Condition in Southwest Bangladesh
Authors: Mohsina Aktar, Bishawjit Mallick
Abstract:
Bangladesh faces the multidimensional manifestations of climate change e.g. flood, cyclone, sea level rise, drainage congestion, salinity, etc. This study aimed at to find out the community’s perception of the perceived impact of climate change on their wetland resource based livelihood, to analyze their present livelihood scenario and to find out required institutional setup to strengthen present livelihood scenario. Therefore, this study required both quantitative analysis like quantification of wetland resources, occupation, etc. and also exploratory information like policy and institutional reform. For quantitative information 200 questionnaire survey and in some cases observation survey and for socially shareable qualitative and quantitative issues case study and focus group discussion were conducted. In-Depth interview was conducted for socially non-shareable qualitative issues. The overall findings of this study have been presented maintaining a sequence- perception about climate change effect, livelihood scenario and required institutional support of the wetland community. Flood has been ranked where cyclone effect is comparatively less disastrous in this area. Heavy rainfall comes after the cyclone. Female members responded almost same about the ranking and effects of frequently occurred and devastating effects of climate change. People are much more aware of the impact of climate change. Training of Care in RVCC project helps to increase their knowledge level. If the level of education can be increased, people can fight against calamity and poverty with more confidence. People seem to overcome the problems of water logging and thus besides involving in Hydroponics (33.3%) as prime occupation in monsoon; they are also engaged in other business related activities. January to May is the low-income season for the farmers. But some people don’t want to change their traditional occupation and their age is above 45. The young earning member wants to utilize their lean income period by alternative occupation. People who do not have own land and performing water transportation or other types of occupation are now interested about Hydroponics. People who give their land on rent are now thinking about renting their land in monsoon as through that they can earn a sound amount rather than get nothing. What they require is just seed, training, and capital. Present marketing system faces the problem of communication. So this sector needed to be developed. Involvement of women in income earning activity is very low (5.1%), and 100% women are housewives. They became inferior due to their educational level and dominance of their husband. Only one NGO named BCAS (Bangladesh Center for Advanced Studies) has been found engage training facilities and advocacy for this purpose. Upazilla agricultural extension office like other GO remains inactive to give support the community for extension and improvement of Hydroponics agriculture. If the community gets proper support and inspiration, they can fight against crisis of low-income and climate change, with the Hydroponics cultivation system successfully.Keywords: wetland community, hydroponics, climate change adaptation, livelihood
Procedia PDF Downloads 274130 Respiratory Health and Air Movement Within Equine Indoor Arenas
Authors: Staci McGill, Morgan Hayes, Robert Coleman, Kimberly Tumlin
Abstract:
The interaction and relationships between horses and humans have been shown to be positive for physical, mental, and emotional wellbeing, however equine spaces where these interactions occur do include some environmental risks. There are 1.7 million jobs associated with the equine industry in the United States in addition to recreational riders, owners, and volunteers who interact with horses for substantial amounts of time daily inside built structures. One specialized facility, an “indoor arena” is a semi-indoor structure used for exercising horses and exhibiting skills during competitive events. Typically, indoor arenas have a sand or sand mixture as the footing or surface over which the horse travels, and increasingly, silica sand is being recommended due to its durable nature. It was previously identified in a semi-qualitative survey that the majority of individuals using indoor arenas have environmental concerns with dust. 27% (90/333) of respondents reported respiratory issues or allergy-like symptoms while riding with 21.6% (71/329) of respondents reporting these issues while standing on the ground observing or teaching. Frequent headaches and/or lightheadedness was reported in 9.9% (33/333) of respondents while riding and in 4.3% 14/329 while on the ground. Horse respiratory health is also negatively impacted with 58% (194/333) of respondents indicating horses cough during or after time in the indoor arena. Instructors who spent time in indoor arenas self-reported more respiratory issues than those individuals who identified as smokers, highlighting the health relevance of understanding these unique structures. To further elucidate environmental concerns and self-reported health issues, 35 facility assessments were conducted in a cross-sectional sampling design in the states of Kentucky and Ohio (USA). Data, including air speeds, were collected in a grid fashion at 15 points within the indoor arenas and then mapped spatially using krigging in ARCGIS. From the spatial maps, standard variances were obtained and differences were analyzed using multivariant analysis of variances (MANOVA) and analysis of variances (ANOVA). There were no differences for the variance of the air speeds in the spaces for facility orientation, presence and type of roof ventilation, climate control systems, amount of openings, or use of fans. Variability of the air speeds in the indoor arenas was 0.25 or less. Further analysis yielded that average air speeds within the indoor arenas were lower than 100 ft/min (0.51 m/s) which is considered still air in other animal facilities. The lack of air movement means that dust clearance is reliant on particle size and weight rather than ventilation. While further work on respirable dust is necessary, this characterization of the semi-indoor environment where animals and humans interact indicates insufficient air flow to eliminate or reduce respiratory hazards. Finally, engineering solutions to address air movement deficiencies within indoor arenas or mitigate particulate matter are critical to ensuring exposures do not lead to adverse health outcomes for equine professionals, volunteers, participants, and horses within these spaces.Keywords: equine, indoor arena, ventilation, particulate matter, respiratory health
Procedia PDF Downloads 116129 Monitoring of Formaldehyde over Punjab Pakistan Using Car Max-Doas and Satellite Observation
Authors: Waqas Ahmed Khan, Faheem Khokhaar
Abstract:
Air pollution is one of the main perpetrators of climate change. GHGs cause melting of glaciers and cause change in temperature and heavy rain fall many gasses like Formaldehyde is not direct precursor that damage ozone like CO2 or Methane but Formaldehyde (HCHO) form glyoxal (CHOCHO) that has effect on ozone. Countries around the globe have unique air quality monitoring protocols to describe local air pollution. Formaldehyde is a colorless, flammable, strong-smelling chemical that is used in building materials and to produce many household products and medical preservatives. Formaldehyde also occurs naturally in the environment. It is produced in small amounts by most living organisms as part of normal metabolic processes. Pakistan lacks the monitoring facilities on larger scale to measure the atmospheric gasses on regular bases. Formaldehyde is formed from Glyoxal and effect mountain biodiversity and livelihood. So its monitoring is necessary in order to maintain and preserve biodiversity. Objective: Present study is aimed to measure atmospheric HCHO vertical column densities (VCDs) obtained from ground-base and compute HCHO data in Punjab and elevated areas (Rawalpindi & Islamabad) by satellite observation during the time period of 2014-2015. Methodology: In order to explore the spatial distributing of H2CO, various fields campaigns including international scientist by using car Max-Doas. Major focus was on the cities along national highways and industrial region of Punjab Pakistan. Level 2 data product of satellite instruments OMI retrieved by differential optical absorption spectroscopy (DOAS) technique are used. Spatio-temporal distribution of HCHO column densities over main cities and region of Pakistan has been discussed. Results: Results show the High HCHO column densities exceeding permissible limit over the main cities of Pakistan particularly the areas with rapid urbanization and enhanced economic growth. The VCDs value over elevated areas of Pakistan like Islamabad, Rawalpindi is around 1.0×1016 to 34.01×1016 Molecules’/cm2. While Punjab has values revolving around the figure 34.01×1016. Similarly areas with major industrial activity showed high amount of HCHO concentrations. Tropospheric glyoxal VCDs were found to be 4.75 × 1015 molecules/cm2. Conclusion: Results shows that monitoring site surrounded by Margalla hills (Islamabad) have higher concentrations of Formaldehyde. Wind data shows that industrial areas and areas having high economic growth have high values as they provide pathways for transmission of HCHO. Results obtained from this study would help EPA, WHO and air protection departments in order to monitor air quality and further preservation and restoration of mountain biodiversity.Keywords: air quality, formaldehyde, Max-Doas, vertical column densities (VCDs), satellite instrument, climate change
Procedia PDF Downloads 212128 Scientific and Regulatory Challenges of Advanced Therapy Medicinal Products
Authors: Alaa Abdellatif, Gabrièle Breda
Abstract:
Background. Advanced therapy medicinal products (ATMPs) are innovative therapies that mainly target orphan diseases and high unmet medical needs. ATMP includes gene therapy medicinal products (GTMP), somatic cell therapy medicinal products (CTMP), and tissue-engineered therapies (TEP). Since legislation opened the way in 2007, 25 ATMPs have been approved in the EU, which is about the same amount as the U.S. Food and Drug Administration. However, not all of the ATMPs that have been approved have successfully reached the market and retained their approval. Objectives. We aim to understand all the factors limiting the market access to very promising therapies in a systemic approach, to be able to overcome these problems, in the future, with scientific, regulatory and commercial innovations. Further to recent reviews that focus either on specific countries, products, or dimensions, we will address all the challenges faced by ATMP development today. Methodology. We used mixed methods and a multi-level approach for data collection. First, we performed an updated academic literature review on ATMP development and their scientific and market access challenges (papers published between 2018 and April 2023). Second, we analyzed industry feedback from cell and gene therapy webinars and white papers published by providers and pharmaceutical industries. Finally, we established a comparative analysis of the regulatory guidelines published by EMA and the FDA for ATMP approval. Results: The main challenges in bringing these therapies to market are the high development costs. Developing ATMPs is expensive due to the need for specialized manufacturing processes. Furthermore, the regulatory pathways for ATMPs are often complex and can vary between countries, making it challenging to obtain approval and ensure compliance with different regulations. As a result of the high costs associated with ATMPs, challenges in obtaining reimbursement from healthcare payers lead to limited patient access to these treatments. ATMPs are often developed for orphan diseases, which means that the patient population is limited for clinical trials which can make it challenging to demonstrate their safety and efficacy. In addition, the complex manufacturing processes required for ATMPs can make it challenging to scale up production to meet demand, which can limit their availability and increase costs. Finally, ATMPs face safety and efficacy challenges: dangerous adverse events of these therapies like toxicity related to the use of viral vectors or cell therapy, starting material and donor-related aspects. Conclusion. As a result of our mixed method analysis, we found that ATMPs face a number of challenges in their development, regulatory approval, and commercialization and that addressing these challenges requires collaboration between industry, regulators, healthcare providers, and patient groups. This first analysis will help us to address, for each challenge, proper and innovative solution(s) in order to increase the number of ATMPs approved and reach the patientsKeywords: advanced therapy medicinal products (ATMPs), product development, market access, innovation
Procedia PDF Downloads 76