Search results for: design parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19138

Search results for: design parameters

15148 The Material-Process Perspective: Design and Engineering

Authors: Lars Andersen

Abstract:

The development of design and engineering in large construction projects are characterized by an increased degree of flattening out of formal structures, extended use of parallel and integrated processes (‘Integrated Concurrent Engineering’) and an increased number of expert disciplines. The integration process is based on ongoing collaborations, dialogues, intercommunication and comments on each other’s work (iterations). This process based on reciprocal communication between actors and disciplines triggers value creation. However, communication between equals is not in itself sufficient to create effective decision making. The complexity of the process and time pressure contribute to an increased risk of a deficit of decisions and loss of process control. The paper refers to a study that aims at developing a resilient decision-making system that does not come in conflict with communication processes based on equality between the disciplines in the process. The study includes the construction of a hospital, following the phases design, engineering and physical building. The Research method is a combination of formative process research, process tracking and phenomenological analyses. The study tracked challenges and problems in the building process to the projection substrates (drawing and models) and further to the organization of the engineering and design phase. A comparative analysis of traditional and new ways of organizing the projecting made it possible to uncover an implicit material order or structure in the process. This uncovering implied a development of a material process perspective. According to this perspective the complexity of the process is rooted in material-functional differentiation. This differentiation presupposes a structuring material (the skeleton of the building) that coordinates the other types of material. Each expert discipline´s competence is related to one or a set of materials. The architect, consulting engineer construction etc. have their competencies related to structuring material, and inherent in this; coordination competence. When dialogues between the disciplines concerning the coordination between them do not result in agreement, the disciplines with responsibility for the structuring material decide the interface issues. Based on these premises, this paper develops a self-organized expert-driven interdisciplinary decision-making system.

Keywords: collaboration, complexity, design, engineering, materiality

Procedia PDF Downloads 204
15147 An Improved Method on Static Binary Analysis to Enhance the Context-Sensitive CFI

Authors: Qintao Shen, Lei Luo, Jun Ma, Jie Yu, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Control Flow Integrity (CFI) is one of the most promising technique to defend Code-Reuse Attacks (CRAs). Traditional CFI Systems and recent Context-Sensitive CFI use coarse control flow graphs (CFGs) to analyze whether the control flow hijack occurs, left vast space for attackers at indirect call-sites. Coarse CFGs make it difficult to decide which target to execute at indirect control-flow transfers, and weaken the existing CFI systems actually. It is an unsolved problem to extract CFGs precisely and perfectly from binaries now. In this paper, we present an algorithm to get a more precise CFG from binaries. Parameters are analyzed at indirect call-sites and functions firstly. By comparing counts of parameters prepared before call-sites and consumed by functions, targets of indirect calls are reduced. Then the control flow would be more constrained at indirect call-sites in runtime. Combined with CCFI, we implement our policy. Experimental results on some popular programs show that our approach is efficient. Further analysis show that it can mitigate COOP and other advanced attacks.

Keywords: contex-sensitive, CFI, binary analysis, code reuse attack

Procedia PDF Downloads 304
15146 A Simple Design Procedure for Calculating the Column Ultimate Load of Steel Frame Structures

Authors: Abdul Hakim Chikho

Abstract:

Calculating the ultimate load of a column in a sway framed structure involves, in the currently used design method, the calculation of the column effective length and utilizing the interaction formulas or tables. Therefore, no allowance is usually made for the effects of the presence of semi rigid connections or the presence of infill panels. In this paper, a new and simple design procedure is recommend to calculate the ultimate load of a framed Column allowing for the presence of rotational end restraints, semi rigid connections, the column end moments resulted from the applied vertical and horizontal loading and infill panels in real steel structure. In order to verify the accuracy of the recommended method to predict good and safe estimations of framed column ultimate loads, several examples have been solved utilizing the recommended procedure, and the results were compared to those obtained using a second order computer program, and good correlation had been obtained. Therefore, the accuracy of the proposed method to predict the Behaviour of practical steel columns in framed structures has been verified.

Keywords: column ultimate load, semi rigid connections, steel column, infill panel, steel structure

Procedia PDF Downloads 162
15145 A Study of The STEAM Toy Pedagogy Plan Evaluation for Elementary School

Authors: Wen-Te Chang, Yun-Hsin Pai

Abstract:

Purpose: Based on the interdisciplinary of lower grade Elementary School with the integration of STEAM concept, related wooden toy and pedagogy plans were developed and evaluated. The research goal was to benefit elementary school education. Design/methodology/approach: The subjects were teachers from two primary school teachers and students from the department of design of universities in Taipei. Amount of 103participants (Male: 34, Female: 69) were invited to participate in the research. The research tools are “STEAM toy design” and “questionnaire of STEAM toy Pedagogy plan.” The STEAM toy pedagogy plans were evaluated after the activity of “The interdisciplinary literacy discipline guiding study program--STEAM wooden workshop,” Finding/results: The study results: (1) As factors analyzing of the questionnaire indicated the percentage on the major factors were cognition teaching 68.61%, affection 80.18% and technique 80.14%, with α=.936 of validity. The assessment tools were proved to be valid for STEAM pedagogy plan evaluation; (2) The analysis of the questionnaires investigation confirmed that the main effect of the teaching factors was not significant (affection = technique = cognition); however, the interaction between STEAM factors revealed to be significant (F (8, 1164) =5.51, p < .01); (3) The main effect of the six pedagogy plans was significant (climbing toy > bird toy = gondola toy > frog castanets > train toy > balancing toy), and an interactive effect between STEAM factors also reached a significant level, (F (8, 1164) =5.51, p < .01), especially on the artistic (A/ Art) aspect. Originality/value: The main achievement of research: (1) A pedagogy plan evaluation was successfully developed. (2) The interactive effect between the STEAM and the teaching factors reached a significant level. (3) An interactive effect between the STEAM factors and the pedagogy plans reached a significant level too.

Keywords: STEAM, toy design, pedagogy plans, evaluation

Procedia PDF Downloads 266
15144 Practical Guide To Design Dynamic Block-Type Shallow Foundation Supporting Vibrating Machine

Authors: Dodi Ikhsanshaleh

Abstract:

When subjected to dynamic load, foundation oscillates in the way that depends on the soil behaviour, the geometry and inertia of the foundation and the dynamic exctation. The practical guideline to analysis block-type foundation excitated by dynamic load from vibrating machine is presented. The analysis use Lumped Mass Parameter Method to express dynamic properties such as stiffness and damping of soil. The numerical examples are performed on design block-type foundation supporting gas turbine compressor which is important equipment package in gas processing plant

Keywords: block foundation, dynamic load, lumped mass parameter

Procedia PDF Downloads 474
15143 The Research of Reliability of MEMS Device under Thermal Shock Test in Space Mission

Authors: Liu Ziyu, Gao Yongfeng, Li Muhua, Zhao Jiahao, Meng Song

Abstract:

The effect of thermal shock on the operation of micro electromechanical systems (MEMS) were examined. All MEMS device were tested before and after three different conditions of thermal shock (from -55℃ to 85℃, from -65℃ to 125℃, from -65℃ to 200℃). The micro lens showed no changes after thermal shock, which shows that the design of the micro lens can be well adapted to the application environment in the space. The design of the micro mirror can be well adapted to the space application environment. The micro-magnetometer, RF MEMS switch and the micro accelerometer exhibited degradation and parameter drift after thermal shock, potential mechanical was proposed.

Keywords: MEMS, thermal shock test, reliability, space environment

Procedia PDF Downloads 573
15142 Acoustics Barrier Design to Reduce Railway Noise by Using Maekawa's Method

Authors: Malinda Sabrina, Khoerul Anwar

Abstract:

Railway noise generated by pass-by train has been described as a form of environmental pollutants especially for the residential area near the railway. Many studies have shown, that environmental noise particularly transportation noise has negative effects on people which resulting in annoyance and specific health problems such as cardiovascular disease, cognitive impairment and sleep disturbance. Therefore, various attempts are made to reduce the noise. One method of reducing such noise to acceptable noise levels is to build acoustically barrier walls. The objective of this study was to review the method of reducing railway noise and obtain the preliminary design of the acoustics barrier on the edge of railway tracks close to the residential area. The design of this barrier is using the Maekawa's method. Measurements have been performed in residential areas around the railroads in the Karawang - Indonesia with the absence of an acoustical barrier. From the observation, it was found that the railway was passed by five trains within thirty minutes. With the limited distance between the railway tracks and the location of the residential area as well as the street of residents, then it was obtained that a reduction in sound pressure level is 25 dBA. Maximum sound pressure level obtained is 86.9 dBA then by setting the barrier as high as 4 m at a distance, 2.5 m from the railway, the noise level received by residents in the settlement around the railway line becomes 61.9 dBA.

Keywords: acoustics barrier, Maekawa's method, noise attenuation, railway noise

Procedia PDF Downloads 182
15141 Supply Network Design for Production-Distribution of Fish: A Sustainable Approach Using Mathematical Programming

Authors: Nicolás Clavijo Buriticá, Laura Viviana Triana Sanchez

Abstract:

This research develops a productive context associated with the aquaculture industry in northern Tolima-Colombia, specifically in the town of Lerida. Strategic aspects of chain of fish Production-Distribution, especially those related to supply network design of an association devoted to cultivating, farming, processing and marketing of fish are addressed. This research is addressed from a special approach of Supply Chain Management (SCM) which guides management objectives to the system sustainability; this approach is called Sustainable Supply Chain Management (SSCM). The network design of fish production-distribution system is obtained for the case study by two mathematical programming models that aims to maximize the economic benefits of the chain and minimize total supply chain costs, taking into account restrictions to protect the environment and its implications on system productivity. The results of the mathematical models validated in the productive situation of the partnership under study, called Asopiscinorte shows the variation in the number of open or closed locations in the supply network that determines the final network configuration. This proposed result generates for the case study an increase of 31.5% in the partial productivity of storage and processing, in addition to possible favorable long-term implications, such as attending an agile or not a consumer area, increase or not the level of sales in several areas, to meet in quantity, time and cost of work in progress and finished goods to various actors in the chain.

Keywords: Sustainable Supply Chain, mathematical programming, aquaculture industry, Supply Chain Design, Supply Chain Configuration

Procedia PDF Downloads 527
15140 Parametric Urbanism: A Climate Responsive Urban Form for the MENA Region

Authors: Norhan El Dallal

Abstract:

The MENA region is a challenging, rapid urbanizing region, with a special profile; culturally, socially, economically and environmentally. Despite the diversity between different countries of the MENA region they all share similar urban challenges where extensive interventions are crucial. A climate sensitive region as the MENA region requires special attention for development, adaptation and mitigation. Integrating climatic and environmental parameters into the planning process to create a responsive urban form is the aim of this research in which “Parametric Urbanism” as a trend serves as a tool to reach a more sustainable urban morphology. An attempt to parameterize the relation between the climate and the urban form in a detailed manner is the main objective of the thesis. The aim is relating the different passive approaches suitable for the MENA region with the design guidelines of each and every part of the planning phase. Various conceptual scenarios for the network pattern and block subdivision generation based on computational models are the next steps after the parameterization. These theoretical models could be applied on different climatic zones of the dense communities of the MENA region to achieve an energy efficient neighborhood or city with respect to the urban form, morphology, and urban planning pattern. A final criticism of the theoretical model is to be conducted showing the feasibility of the proposed solutions economically. Finally some push and pull policies are to be proposed to help integrate these solutions into the planning process.

Keywords: parametric urbanism, climate responsive, urban form, urban and regional studies

Procedia PDF Downloads 465
15139 Effects of Palm Waste Ash Residues on Acidic Soil in Relation to Physiological Responses of Habanero Chili Pepper (Capsicum chinense jacq.)

Authors: Kalu Samuel Ukanwa, Kumar Patchigolla, Ruben Sakrabani

Abstract:

The use of biosolids from thermal conversion of palm waste for soil fertility enhancement was tested in acidic soil of Southern Nigeria for the growing of Habanero chili pepper (Capsicum chinense jacq.). Soil samples from the two sites, showed pH 4.8 and 4.8 for site A and B respectively, below 5.6-6.8 optimum range and other fertility parameters indicating a low threshold for pepper growth. Nursery planting was done at different weeks to determine the optimum planting period. Ash analysis showed that it contains 26% of total K, 20% of total Ca, 0.27% of total P, and pH 11. The two sites were laid for an experiment in randomized complete block design and setup with three replications side by side. Each plot measured 3 x 2 m and a total of 15 plots for each site, four treatments, and one control. Outlined as control, 2, 4, 6 and 8 tonnes/hectare of palm waste ash, the combined average for both sites with correspondent yield after six harvests in one season are; 0, 5.8, 6, 6, 14.5 tonnes/hectare respectively to treatments. Optimum nursery survival rate was high in July; the crop yield was linear to the ash application. Site A had 6% yield higher than site B. Fruit development, weight, and total yield in relation to the control plot showed that palm waste ash is effective for soil amendment, nutrient delivery, and exchange.

Keywords: ash, palm waste, pepper, soil amendment

Procedia PDF Downloads 120
15138 Control of an Asymmetrical Design of a Pneumatically Actuated Ambidextrous Robot Hand

Authors: Emre Akyürek, Anthony Huynh, Tatiana Kalganova

Abstract:

The Ambidextrous Robot Hand is a robotic device with the purpose to mimic either the gestures of a right or a left hand. The symmetrical behavior of its fingers allows them to bend in one way or another keeping a compliant and anthropomorphic shape. However, in addition to gestures they can reproduce on both sides, an asymmetrical mechanical design with a three tendons routing has been engineered to reduce the number of actuators. As a consequence, control algorithms must be adapted to drive efficiently the ambidextrous fingers from one position to another and to include grasping features. These movements are controlled by pneumatic muscles, which are nonlinear actuators. As their elasticity constantly varies when they are under actuation, the length of pneumatic muscles and the force they provide may differ for a same value of pressurized air. The control algorithms introduced in this paper take both the fingers asymmetrical design and the pneumatic muscles nonlinearity into account to permit an accurate control of the Ambidextrous Robot Hand. The finger motion is achieved by combining a classic PID controller with a phase plane switching control that turns the gain constants into dynamic values. The grasping ability is made possible because of a sliding mode control that makes the fingers adapt to the shape of an object before strengthening their positions.

Keywords: ambidextrous hand, intelligent algorithms, nonlinear actuators, pneumatic muscles, robotics, sliding control

Procedia PDF Downloads 276
15137 Evaluation of Hybrid Viscoelastic Damper for Passive Energy Dissipation

Authors: S. S. Ghodsi, M. H. Mehrabi, Zainah Ibrahim, Meldi Suhatril

Abstract:

This research examines the performance of a hybrid passive control device for enhancing the seismic response of steel frame structures. The device design comprises a damper which employs a viscoelastic material to control both shear and axial strain. In the design, energy is dissipated through the shear strain of a two-layer system of viscoelastic pads which are located between steel plates. In addition, viscoelastic blocks have been included on either side of the main shear damper which obtains compressive strains in the viscoelastic blocks. These dampers not only dissipate energy but also increase the stiffness of the steel frame structure, and the degree to which they increase the stiffness may be controlled by the size and shape. In this research, the cyclical behavior of the damper was examined both experimentally and numerically with finite element modeling. Cyclic loading results of the finite element modeling reveal fundamental characteristics of this hybrid viscoelastic damper. The results indicate that incorporating a damper of the design can significantly improve the seismic performance of steel frame structures.

Keywords: cyclic loading, energy dissipation, hybrid damper, passive control system, viscoelastic damper

Procedia PDF Downloads 189
15136 Parametric Analysis of Syn-gas Fueled SOFC with Internal Reforming

Authors: Sanjay Tushar Choudhary

Abstract:

This paper focuses on the thermodynamic analysis of Solid Oxide Fuel Cell (SOFC). In the present work the SOFC has been modeled to work with internal reforming of fuel which takes place at high temperature and direct energy conversion from chemical energy to electrical energy takes place. The fuel-cell effluent is a high-temperature steam which can be used for co-generation purposes. Syn-gas has been used here as fuel which is essentially produced by steam reforming of methane in the internal reformer of the SOFC. A thermodynamic model of SOFC has been developed for planar cell configuration to evaluate various losses in the energy conversion process within the fuel cell. Cycle parameters like fuel utilization ratio and the air-recirculation ratio have been varied to evaluate the thermodynamic performance of the fuel cell. Output performance parameters like terminal voltage, cell-efficiency and power output have been evaluated for various values of current densities. It has been observed that a combination of a lower value of air-circulation ratio and higher values of fuel utilization efficiency gives a better overall thermodynamic performance.

Keywords: current density, SOFC, suel utilization factor, recirculation ratio

Procedia PDF Downloads 488
15135 Impact of Welding Wire Nickel Plating Process Parameters on Ni Layer Thickness

Authors: Sylwia Wiewiorowska, Zbigniew Muskalski

Abstract:

The article presents part of research on the development of nickel plated welding wire production technology, whose application will enable the elimination of the flaws of currently manufactured welding wires. The nickel plated welding wire will be distinguished by high quality, because the Ni layer which is deposited electrochemically onto it from acid baths is characterized by very good adhesion to the steel wire surface, while the ductile nickel well deforms plastically in the drawing process and the adhesion of the Ni layer increases in the drawing process due to the occurring process of diffusion between the Ni and the steel. The Ni layer obtained in the proposed technology, despite a smaller thickness than when the wire is coated with copper, is continuous and tight, thus ensuring high corrosion resistance, as well as unsusceptible to scaling, which should provide a product that meets requirements imposed by the market. The product will also reduce, to some extent, the amount of copper brought in to steel through recycling, while the wire coating nickel introduced to the weld in the welding process is expected, to a degree, to favorably influence its mechanical properties. The paper describes the tests of the process of nickel plating of f1.96 mm-diameter wires using various nickel plating baths with different process parameters.

Keywords: steel wire, properties, welding process, Ni layer

Procedia PDF Downloads 132
15134 Statistical Mechanical Approach in Modeling of Hybrid Solar Cells for Photovoltaic Applications

Authors: A. E. Kobryn

Abstract:

We present both descriptive and predictive modeling of structural properties of blends of PCBM or organic-inorganic hybrid perovskites of the type CH3NH3PbX3 (X=Cl, Br, I) with P3HT, P3BT or squaraine SQ2 dye sensitizer, including adsorption on TiO2 clusters having rutile (110) surface. In our study, we use a methodology that allows computing the microscopic structure of blends on the nanometer scale and getting insight on miscibility of its components at various thermodynamic conditions. The methodology is based on the integral equation theory of molecular liquids in the reference interaction site representation/model (RISM) and uses the universal force field. Input parameters for RISM, such as optimized molecular geometries and charge distribution of interaction sites, are derived with the use of the density functional theory methods. To compare the diffusivity of the PCBM in binary blends with P3HT and P3BT, respectively, the study is complemented with MD simulation. A very good agreement with experiment and the reports of alternative modeling or simulation is observed for PCBM in P3HT system. The performance of P3BT with perovskites, however, seems as expected. The calculated nanoscale morphologies of blends of P3HT, P3BT or SQ2 with perovskites, including adsorption on TiO2, are all new and serve as an instrument in rational design of organic/hybrid photovoltaics. They are used in collaboration with experts who actually make prototypes or devices for practical applications.

Keywords: multiscale theory and modeling, nanoscale morphology, organic-inorganic halide perovskites, three dimensional distribution

Procedia PDF Downloads 137
15133 Efficiency Improvement of Ternary Nanofluid Within a Solar Photovoltaic Unit Combined with Thermoelectric Considering Environmental Analysis

Authors: Mohsen Sheikholeslami, Zahra Khalili, Ladan Momayez

Abstract:

Impacts of environmental parameters and dust deposition on the efficiency of solar panel have been scrutinized in this article. To gain thermal output, trapezoidal cooling channel has been attached in the bottom of the panel incorporating ternary nanofluid. To produce working fluid, water has been mixed with Fe₃O₄-TiO₂-GO nanoparticles. Also, the arrangement of fins has been considered to grow the cooling rate of the silicon layer. The existence of a thermoelectric layer above the cooling channel leads to higher electrical output. Efficacy of ambient temperature (Ta), speed of wind (V𝓌ᵢₙ𝒹) and inlet temperature (Tᵢₙ) and velocity (Vin) of ternary nanofluid on performance of PVT has been assessed. As Tin increases, electrical efficiency declines about 3.63%. Increase of ambient temperature makes thermal performance enhance about 33.46%. The PVT efficiency decreases about 13.14% and 16.6% with augment of wind speed and dust deposition. CO₂ mitigation has been reduced about 15.49% in presence of dust while it increases about 17.38% with growth of ambient temperature.

Keywords: photovoltaic system, CO₂ mitigation, ternary nanofluid, thermoelectric generator, environmental parameters, trapezoidal cooling channel

Procedia PDF Downloads 63
15132 Design to Cryogenic System for Dilution Refrigerator with Cavity and Superconducting Magnet

Authors: Ki Woong Lee

Abstract:

The Center for Axion and Precision Physics Research is studying the search for dark matter using 12 tesla superconducting magnets. A dilution refrigerator is being used for search experiments, and superconducting magnets, superconducting cavities. The dilution refrigerator requires a stable cryogenic environment using liquid helium. Accordingly, a cryogenic system for a stable supply of liquid helium is to be established. This cryogenic system includes the liquefying, supply, storage, and purification of liquid helium. This article presents the basic design, construction, and operation plans for building cryogenic systems.

Keywords: cryogenic system, dilution refrigerator, superconducting magnet, helium recovery system

Procedia PDF Downloads 106
15131 Filler Elastomers Abrasion at Steady State: Optimal Use Conditions

Authors: Djeridi Rachid, Ould Ouali Mohand

Abstract:

The search of a mechanism for the elastomer abrasive wear study is an open issue. The practice difficulties are complex due to the complexity of deformation mechanism, to the complex mechanism of the material tearing and to the marked interactions between the tribological parameters. In this work, we present an experimental technique to study the elastomers abrasive wear. The interaction 'elastomer/indenter' implicate dependant ant temporary of different tribological parameters. Consequently, the phenomenon that governs this interaction is not easy to explain. An optimal elastomers compounding and an adequate utilization conditions of these materials that define its resistance at the abrasion is discussed. The results are confronted to theoretical models: the weight loss variation in function of blade angle or in function of cycle number is in agreement with rupture models and with the mechanism of fissures propagation during the material tearing in abrasive wear of filler elastomers. The weight loss in function of the sliding velocity shows the existence of a critical velocity that corresponds to the maximal wear. The adding of silica or black carbon influences in a different manner on wear abrasive behavior of filler elastomers.

Keywords: abrasion wear, filler elastomer, tribology, hyperelastic

Procedia PDF Downloads 302
15130 Analytical Study of the Structural Response to Near-Field Earthquakes

Authors: Isidro Perez, Maryam Nazari

Abstract:

Numerous earthquakes, which have taken place across the world, led to catastrophic damage and collapse of structures (e.g., 1971 San Fernando; 1995 Kobe-Japan; and 2010 Chile earthquakes). Engineers are constantly studying methods to moderate the effect this phenomenon has on structures to further reduce damage, costs, and ultimately to provide life safety to occupants. However, there are regions where structures, cities, or water reservoirs are built near fault lines. When an earthquake occurs near the fault lines, they can be categorized as near-field earthquakes. In contrary, a far-field earthquake occurs when the region is further away from the seismic source. A near-field earthquake generally has a higher initial peak resulting in a larger seismic response, when compared to a far-field earthquake ground motion. These larger responses may result in serious consequences in terms of structural damage which can result in a high risk for the public’s safety. Unfortunately, the response of structures subjected to near-field records are not properly reflected in the current building design specifications. For example, in ASCE 7-10, the design response spectrum is mostly based on the far-field design-level earthquakes. This may result in the catastrophic damage of structures that are not properly designed for near-field earthquakes. This research investigates the knowledge that the effect of near-field earthquakes has on the response of structures. To fully examine this topic, a structure was designed following the current seismic building design specifications, e.g. ASCE 7-10 and ACI 318-14, being analytically modeled, utilizing the SAP2000 software. Next, utilizing the FEMA P695 report, several near-field and far-field earthquakes were selected, and the near-field earthquake records were scaled to represent the design-level ground motions. Upon doing this, the prototype structural model, created using SAP2000, was subjected to the scaled ground motions. A Linear Time History Analysis and Pushover analysis were conducted on SAP2000 for evaluation of the structural seismic responses. On average, the structure experienced an 8% and 1% increase in story drift and absolute acceleration, respectively, when subjected to the near-field earthquake ground motions. The pushover analysis was ran to find and aid in properly defining the hinge formation in the structure when conducting the nonlinear time history analysis. A near-field ground motion is characterized by a high-energy pulse, making it unique to other earthquake ground motions. Therefore, pulse extraction methods were used in this research to estimate the maximum response of structures subjected to near-field motions. The results will be utilized in the generation of a design spectrum for the estimation of design forces for buildings subjected to NF ground motions.

Keywords: near-field, pulse, pushover, time-history

Procedia PDF Downloads 128
15129 CDM-Based Controller Design for High-Frequency Induction Heating System with LLC Tank

Authors: M. Helaimi, R. Taleb, D. Benyoucef, B. Belmadani

Abstract:

This paper presents the design of a polynomial controller with coefficient diagram method (CDM). This controller is used to control the output power of high frequency resonant inverter with LLC tank. One of the most important problems associated with the proposed inverter is achieving ZVS operating during the induction heating process. To overcome this problem, asymmetrical voltage cancellation (AVC) control technique is proposed. The phased look loop (PLL) is used to track the natural frequency of the system. The small signal model of the system with the proposed control is obtained using extending describing function method (EDM). The validity of the proposed control is verified by simulation results.

Keywords: induction heating, AVC control, CDM, PLL, resonant inverter

Procedia PDF Downloads 650
15128 The Amount of Information Processing and Balance Performance in Children: The Dual-Task Paradigm

Authors: Chin-Chih Chiou, Tai-Yuan Su, Ti-Yu Chen, Wen-Yu Chiu, Chungyu Chen

Abstract:

The purpose of this study was to investigate the effect of reaction time (RT) or balance performance as the number of stimulus-response choices increases, the amount of information processing of 0-bit and 1-bit conditions based on Hick’s law, using the dual-task design. Eighteen children (age: 9.38 ± 0.27 years old) were recruited as the participants for this study, and asked to assess RT and balance performance separately and simultaneously as following five conditions: simple RT (0-bit decision), choice RT (1-bit decision), single balance control, balance control with simple RT, and balance control with choice RT. Biodex 950-300 balance system and You-Shang response timer were used to record and analyze the postural stability and information processing speed (RT) respectively for the participants. Repeated measures one-way ANOVA with HSD post-hoc test and 2 (balance) × 2 (amount of information processing) repeated measures two-way ANOVA were used to test the parameters of balance performance and RT (α = .05). The results showed the overall stability index in the 1-bit decision was lower than in 0-bit decision, and the mean deflection in the 1-bit decision was lower than in single balance performance. Simple RTs were faster than choice RTs both in single task condition and dual task condition. It indicated that the chronometric approach of RT could use to infer the attention requirement of the secondary task. However, this study did not find that the balance performance is interfered for children by the increasing of the amount of information processing.

Keywords: capacity theory, reaction time, Hick’s law, balance

Procedia PDF Downloads 438
15127 Application Procedure for Optimized Placement of Buckling Restrained Braces in Reinforced Concrete Building Structures

Authors: S. A. Faizi, S. Yoshitomi

Abstract:

The optimal design procedure of buckling restrained braces (BRBs) in reinforced concrete (RC) building structures can provide the distribution of horizontal stiffness of BRBs at each story, which minimizes story drift response of the structure under the constraint of specified total stiffness of BRBs. In this paper, a simple rule is proposed to convert continuous horizontal stiffness of BRBs into sectional sizes of BRB which are available from standardized section list assuming realistic structural design stage.

Keywords: buckling restrained brace, building engineering, optimal damper placement, structural engineering

Procedia PDF Downloads 308
15126 Evaluation of Weather Risk Insurance for Agricultural Products Using a 3-Factor Pricing Model

Authors: O. Benabdeljelil, A. Karioun, S. Amami, R. Rouger, M. Hamidine

Abstract:

A model for preventing the risks related to climate conditions in the agricultural sector is presented. It will determine the yearly optimum premium to be paid by a producer in order to reach his required turnover. The model is based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, the main ones of which are daily average sunlight, rainfall and temperature. By simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is determined from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. The model also requires accurate pricing of commodity at N+1. Therefore, a pricing model is developed using 3 state variables, namely the spot price, the difference between the mean-term and the long-term forward price, and the long-term structure of the model. The use of historical data enables to calibrate the parameters of state variables, and allows the pricing of commodity. Application to beet sugar underlines pricer precision. Indeed, the percentage of accuracy between computed result and real world is 99,5%. Optimal premium is then deduced and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect its harvest. The application to beet production in French Oise department illustrates the reliability of present model with as low as 6% difference between predicted and real data. The model can be adapted to almost any agricultural field by changing state parameters and calibrating their associated coefficients.

Keywords: agriculture, production model, optimal price, meteorological factors, 3-factor model, parameter calibration, forward price

Procedia PDF Downloads 359
15125 Micro-Oculi Facades as a Sustainable Urban Facade

Authors: Ok-Kyun Im, Kyoung Hee Kim

Abstract:

We live in an era that faces global challenges of climate changes and resource depletion. With the rapid urbanization and growing energy consumption in the built environment, building facades become ever more important in architectural practice and environmental stewardship. Furthermore, building facade undergoes complex dynamics of social, cultural, environmental and technological changes. Kinetic facades have drawn attention of architects, designers, and engineers in the field of adaptable, responsive and interactive architecture since 1980’s. Materials and building technologies have gradually evolved to address the technical implications of kinetic facades. The kinetic façade is becoming an independent system of the building, transforming the design methodology to sustainable building solutions. Accordingly, there is a need for a new design methodology to guide the design of a kinetic façade and evaluate its sustainable performance. The research objectives are two-fold: First, to establish a new design methodology for kinetic facades and second, to develop a micro-oculi façade system and assess its performance using the established design method. The design approach to the micro-oculi facade is comprised of 1) façade geometry optimization and 2) dynamic building energy simulation. The façade geometry optimization utilizes multi-objective optimization process, aiming to balance the quantitative and qualitative performances to address the sustainability of the built environment. The dynamic building energy simulation was carried out using EnergyPlus and Radiance simulation engines with scripted interfaces. The micro-oculi office was compared with an office tower with a glass façade in accordance with ASHRAE 90.1 2013 to understand its energy efficiency. The micro-oculi facade is constructed with an array of circular frames attached to a pair of micro-shades called a micro-oculus. The micro-oculi are encapsulated between two glass panes to protect kinetic mechanisms with longevity. The micro-oculus incorporates rotating gears that transmit the power to adjacent micro-oculi to minimize the number of mechanical parts. The micro-oculus rotates around its center axis with a step size of 15deg depending on the sun’s position while maximizing daylighting potentials and view-outs. A 2 ft by 2ft prototyping was undertaken to identify operational challenges and material implications of the micro-oculi facade. In this research, a systematic design methodology was proposed, that integrates multi-objectives of kinetic façade design criteria and whole building energy performance simulation within a holistic design process. This design methodology is expected to encourage multidisciplinary collaborations between designers and engineers to collaborate issues of the energy efficiency, daylighting performance and user experience during design phases. The preliminary energy simulation indicated that compared to a glass façade, the micro-oculi façade showed energy savings due to its improved thermal properties, daylighting attributes, and dynamic solar performance across the day and seasons. It is expected that the micro oculi façade provides a cost-effective, environmentally-friendly, sustainable, and aesthetically pleasing alternative to glass facades. Recommendations for future studies include lab testing to validate the simulated data of energy and optical properties of the micro-oculi façade. A 1:1 performance mock-up of the micro-oculi façade can suggest in-depth understanding of long-term operability and new development opportunities applicable for urban façade applications.

Keywords: energy efficiency, kinetic facades, sustainable architecture, urban facades

Procedia PDF Downloads 242
15124 Evaluation and Control of Cracking for Bending Rein-forced One-way Concrete Voided Slab with Plastic Hollow Inserts

Authors: Mindaugas Zavalis

Abstract:

Analysis of experimental tests data of bending one-way reinforced concrete slabs from various articles of science revealed that voided slabs with a grid of hollow plastic inserts inside have smaller mechani-cal and physical parameters compared to continuous cross-section slabs (solid slabs). The negative influence of a reinforced concrete slab is impacted by hollow plastic inserts, which make a grid of voids in the middle of the cross-sectional area of the reinforced concrete slab. A formed grid of voids reduces the slab’s stiffness, which influences the slab’s parameters of serviceability, like deflection and cracking. Prima-ry investigation of data established during experiments illustrates that cracks occur faster in the tensile surface of the voided slab under bend-ing compared to bending solid slab. It means that the crack bending moment force for the voided slab is smaller than the solid slab and the reduction can variate in the range of 14 – 40 %. Reduce of resistance to cracking can be controlled by changing a lot of factors: the shape of the plastic hallow insert, plastic insert height, steps between plastic in-serts, usage of prestressed reinforcement, the diameter of reinforcement bar, slab effective depth, the bottom cover thickness of concrete, effec-tive cross-section of the concrete area about reinforcement and etc. Mentioned parameters are used to evaluate crack width and step of cracking, but existing analytical calculation methods for cracking eval-uation of voided slab with plastic inserts are not so exact and the re-sults of cracking evaluation in this paper are higher than the results of analyzed experiments. Therefore, it was made analytically calculations according to experimental bending tests of voided reinforced concrete slabs with hollow plastic inserts to find and propose corrections for the evaluation of cracking for reinforced concrete voided slabs with hollow plastic inserts.

Keywords: voided slab, cracking, hallow plastic insert, bending, one-way reinforced concrete, serviceability

Procedia PDF Downloads 58
15123 Embodied Empowerment: A Design Framework for Augmenting Human Agency in Assistive Technologies

Authors: Melina Kopke, Jelle Van Dijk

Abstract:

Persons with cognitive disabilities, such as Autism Spectrum Disorder (ASD) are often dependent on some form of professional support. Recent transformations in Dutch healthcare have spurred institutions to apply new, empowering methods and tools to enable their clients to cope (more) independently in daily life. Assistive Technologies (ATs) seem promising as empowering tools. While ATs can, functionally speaking, help people to perform certain activities without human assistance, we hold that, from a design-theoretical perspective, such technologies often fail to empower in a deeper sense. Most technologies serve either to prescribe or to monitor users’ actions, which in some sense objectifies them, rather than strengthening their agency. This paper proposes that theories of embodied interaction could help formulating a design vision in which interactive assistive devices augment, rather than replace, human agency and thereby add to a persons’ empowerment in daily life settings. It aims to close the gap between empowerment theory and the opportunities provided by assistive technologies, by showing how embodiment and empowerment theory can be applied in practice in the design of new, interactive assistive devices. Taking a Research-through-Design approach, we conducted a case study of designing to support independently living people with ASD with structuring daily activities. In three iterations we interlaced design action, active involvement and prototype evaluations with future end-users and healthcare professionals, and theoretical reflection. Our co-design sessions revealed the issue of handling daily activities being multidimensional. Not having the ability to self-manage one’s daily life has immense consequences on one’s self-image, and also has major effects on the relationship with professional caregivers. Over the course of the project relevant theoretical principles of both embodiment and empowerment theory together with user-insights, informed our design decisions. This resulted in a system of wireless light units that users can program as a reminder for tasks, but also to record and reflect on their actions. The iterative process helped to gradually refine and reframe our growing understanding of what it concretely means for a technology to empower a person in daily life. Drawing on the case study insights we propose a set of concrete design principles that together form what we call the embodied empowerment design framework. The framework includes four main principles: Enabling ‘reflection-in-action’; making information ‘publicly available’ in order to enable co-reflection and social coupling; enabling the implementation of shared reflections into an ‘endurable-external feedback loop’ embedded in the persons familiar ’lifeworld’; and nudging situated actions with self-created action-affordances. In essence, the framework aims for the self-development of a suitable routine, or ‘situated practice’, by building on a growing shared insight of what works for the person. The framework, we propose, may serve as a starting point for AT designers to create truly empowering interactive products. In a set of follow-up projects involving the participation of persons with ASD, Intellectual Disabilities, Dementia and Acquired Brain Injury, the framework will be applied, evaluated and further refined.

Keywords: assistive technology, design, embodiment, empowerment

Procedia PDF Downloads 262
15122 An Analysis of the Need of Training for Indian Textile Manufacturing Sector

Authors: Shipra Sharma, Jagat Jerath

Abstract:

Human resource training is an essential element of talent management in the current era of global competitiveness and dynamic trade in the manufacturing industry. Globally, India is behind only China as the largest textile manufacturer. The major challenges faced by the Indian textile manufacturing Industry are low technology levels, growing skill gaps, unorganized structure, lower efficiencies, etc. indicating the need for constant talent up-gradation. Assessment of training needs from a strategic perspective is an essential step for the formulation of effective training. The paper established the significance of training in the Indian textile industry and to determine the training needs on various parameters as presented. 40 HR personnel/s working in the textile and apparel companies based in the industrial region of Punjab, India, were the respondents for the study. The research tool used in this case was a structured questionnaire as per five-point Likert scale. Statistical analysis through descriptive statistics and chi-square test indicated the increased need for training whenever there were technical changes in the organizations. As per the data presented in this study, most of the HR personnel/s agreed that the variables associated with organizational analysis, task analysis, and individual analysis have a statistically significant role to play in determining the need for training in an organization.

Keywords: Indian textile manufacturing industry, significance of training, training needs analysis, parameters for training needs assessment

Procedia PDF Downloads 144
15121 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non Uniform Heat Source/Sink

Authors: Bandari Shankar, Yohannes Yirga

Abstract:

In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement

Keywords: unsteady, heat and mass transfer, manetohydrodynamics, nanofluid, non-uniform heat source/sink, stretching sheet

Procedia PDF Downloads 256
15120 Defining a Pathway to Zero Energy Building: A Case Study on Retrofitting an Old Office Building into a Net Zero Energy Building for Hot-Humid Climate

Authors: Kwame B. O. Amoah

Abstract:

This paper focuses on retrofitting an old existing office building to a net-zero energy building (NZEB). An existing small office building in Melbourne, Florida, was chosen as a case study to integrate state-of-the-art design strategies and energy-efficient building systems to improve building performance and reduce energy consumption. The study aimed to explore possible ways to maximize energy savings and renewable energy generation sources to cover the building's remaining energy needs necessary to achieve net-zero energy goals. A series of retrofit options were reviewed and adopted with some significant additional decision considerations. Detailed processes and considerations leading to zero energy are well documented in this study, with lessons learned adequately outlined. Based on building energy simulations, multiple design considerations were investigated, such as emerging state-of-the-art technologies, material selection, improvements to the building envelope, optimization of the HVAC, lighting systems, and occupancy loads analysis, as well as the application of renewable energy sources. The comparative analysis of simulation results was used to determine how specific techniques led to energy saving and cost reductions. The research results indicate this small office building can meet net-zero energy use after appropriate design manipulations and renewable energy sources.

Keywords: energy consumption, building energy analysis, energy retrofits, energy-efficiency

Procedia PDF Downloads 202
15119 The Concept of Female Beauty in Contemporary (2000-2020) Fine Arts and Design

Authors: Maria Ukolova

Abstract:

Social and cultural processes over the past decades have largely affected the understanding of conventional female beauty all over the world. Fine arts and design tendencies could not remain unchanged and show a dynamic interplay with female rights, gender equality, and other social processes. As of now, the area lacks comprehensive academic research on the tendencies of understanding female beauty in contemporary art. This article makes an attempt to outline and analyse the main tendencies of contemporary works of art that turn to the image of a woman, including photography, digital art, and various forms of design. The research bases itself on paintings, performing arts, photography, digital art, and various forms of design, mainly on the principle of the most broadly resonated in society, as an empirical basis, and on existing researches in the sphere. The results of the research show a general trend that the concept of female beauty in art is either challenged as such or its understanding has shifted to individuality, diversity, and the state of mental health. However, some categories of art, such as digital art in the gaming industry, remain resistant to change and retain the appearance-based understanding of beauty. Specific tendencies are, firstly, aestheticization of all types of appearances; secondly, a ubiquitous interest in mental health issues and understanding the state of mental health as a part of beauty; thirdly, a certain infantilization of the image of the woman is observed as compared to previous decades. The significance of the findings of the research is to contribute to a scientific understanding of the concept of beauty in contemporary art and to give ground for prospective further related research in sociology, phycology, etc. The findings might be perceived not only by academics but also by artists and practitioners in the spheres of art and society.

Keywords: fine arts, history of art, contemporary art, concept of beauty

Procedia PDF Downloads 75