Search results for: learning analytics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7424

Search results for: learning analytics

3464 An Analysis of Teacher Knowledge of Recognizing and Addressing the Needs of Traumatized Students

Authors: Tiffany Hollis

Abstract:

Childhood trauma is well documented in mental health research, yet has received little attention in urban schools. Child trauma affects brain development and impacts cognitive, emotional, and behavioral functioning. When educators understand that some of the behaviors that appear to be aggressive in nature might be the result of a hidden diagnosis of trauma, learning can take place, and the child can thrive in the classroom setting. Traumatized children, however, do not fit neatly into any single ‘box.’ Although many children enter school each day carrying with them the experience of exposure to violence in the home, the symptoms of their trauma can be multifaceted and complex, requiring individualized therapeutic attention. The purpose of this study was to examine how prepared educators are to address the unique challenges facing children who experience trauma. Given the vast number of traumatized children in our society, it is evident that our education system must investigate ways to create an optimal learning environment that accounts for trauma, addresses its impact on cognitive and behavioral development, and facilitates mental and emotional health and well-being. The researcher describes the knowledge, attitudes, dispositions, and skills relating to trauma-informed knowledge of induction level teachers in a diverse middle school. The data for this study were collected through interviews with teachers, who are in the induction phase (the first three years of their teaching career). The study findings paint a clear picture of how ill-prepared educators are to address the needs of students who have experienced trauma and the implications for the development of a professional development workshop or series of workshops that train teachers how to recognize and address and respond to the needs of students. The study shows how teachers often lack skills to meet the needs of students who have experienced trauma. Traumatized children regularly carry a heavy weight on their shoulders. Children who have experienced trauma may feel that the world is filled with unresponsive, threatening adults, and peers. Despite this, supportive interventions can provide traumatized children with places to go that are safe, stimulating, and even fun. Schools offer an environment that potentially meets these requirements by creating safe spaces where students can feel at ease and have fun while also learning via stimulating educational activities. This study highlights the lack of preparedness of educators to address the academic, behavioral, and cognitive needs of students who have experienced trauma. These findings provide implications for the creation of a professional development workshop that addresses how to recognize and address the needs of students who have experienced some type of trauma. They also provide implications for future research with a focus on specific interventions that enable the creation of optimal learning environments where students who have experienced trauma and all students can succeed, regardless of their life experiences.

Keywords: educator preparation, induction educators, professional development, trauma-informed

Procedia PDF Downloads 124
3463 Customized Design of Amorphous Solids by Generative Deep Learning

Authors: Yinghui Shang, Ziqing Zhou, Rong Han, Hang Wang, Xiaodi Liu, Yong Yang

Abstract:

The design of advanced amorphous solids, such as metallic glasses, with targeted properties through artificial intelligence signifies a paradigmatic shift in physical metallurgy and materials technology. Here, we developed a machine-learning architecture that facilitates the generation of metallic glasses with targeted multifunctional properties. Our architecture integrates the state-of-the-art unsupervised generative adversarial network model with supervised models, allowing the incorporation of general prior knowledge derived from thousands of data points across a vast range of alloy compositions, into the creation of data points for a specific type of composition, which overcame the common issue of data scarcity typically encountered in the design of a given type of metallic glasses. Using our generative model, we have successfully designed copper-based metallic glasses, which display exceptionally high hardness or a remarkably low modulus. Notably, our architecture can not only explore uncharted regions in the targeted compositional space but also permits self-improvement after experimentally validated data points are added to the initial dataset for subsequent cycles of data generation, hence paving the way for the customized design of amorphous solids without human intervention.

Keywords: metallic glass, artificial intelligence, mechanical property, automated generation

Procedia PDF Downloads 55
3462 Recommendations Using Online Water Quality Sensors for Chlorinated Drinking Water Monitoring at Drinking Water Distribution Systems Exposed to Glyphosate

Authors: Angela Maria Fasnacht

Abstract:

Detection of anomalies due to contaminants’ presence, also known as early detection systems in water treatment plants, has become a critical point that deserves an in-depth study for their improvement and adaptation to current requirements. The design of these systems requires a detailed analysis and processing of the data in real-time, so it is necessary to apply various statistical methods appropriate to the data generated, such as Spearman’s Correlation, Factor Analysis, Cross-Correlation, and k-fold Cross-validation. Statistical analysis and methods allow the evaluation of large data sets to model the behavior of variables; in this sense, statistical treatment or analysis could be considered a vital step to be able to develop advanced models focused on machine learning that allows optimized data management in real-time, applied to early detection systems in water treatment processes. These techniques facilitate the development of new technologies used in advanced sensors. In this work, these methods were applied to identify the possible correlations between the measured parameters and the presence of the glyphosate contaminant in the single-pass system. The interaction between the initial concentration of glyphosate and the location of the sensors on the reading of the reported parameters was studied.

Keywords: glyphosate, emergent contaminants, machine learning, probes, sensors, predictive

Procedia PDF Downloads 120
3461 Online Augmented Reality Mathematics Application

Authors: Farhaz Amyn Rajabali, Collins Odour

Abstract:

Mathematics has been there for over 4000 years and has been one of the very first educational topics explored by human civilization. Throughout the years, it has become a complex study and has derived so many other subjects. With advancements in ICT, most of the computation in mathematics is done using powerful computers. In many different countries, the children in primary and secondary schools face difficulties in learning mathematics, and this has many reasons behind it, one being the students don’t engage much with the mathematical concepts hence failing to understand them deeply. The objective of this system is to help the students understand this mathematical concept interactively, which in return will encourage the love for learning and increase thorough understanding of many concepts. Research was conducted among a group of samples and about 50% of respondents replied that they had never used an augmented reality application before. This means that the chances for this system to be accepted in the market are high due to its innovative idea. Around 60% of people did recommend the use of this system to learn mathematics. The study also showed several challenges in an educational system, including but not limited to lack of resources which was chosen by 30% of respondents, the challenge to read from textbooks (34.6%) and how hard it is to visualize concepts (46.2%). The survey question asked what benefits the users see using augmented reality to learn mathematics. The responses that were picked the most were increased student engagement and using real-world examples to understand concepts, both being 65.4% and followed by easy access to learning material at 61.5%, and increased knowledge retention at 50%. This shows that there are plenty of issues with an education system that can be addressed by software applications; now that the newer generation is so enthusiastic about electronic devices, it can actually be used to deliver good knowledge and skills to the upcoming students and mitigate most of the challenges faced currently. The study concludes that the implementation of the system is a best practice for the educational system especially leveraging a new technology that has the ability to attract the attention of many young students and use it to deliver information. It will also give rise to awareness of new technology and on multiple ways it can be implemented. Addressing the educational sector in developing countries using information technology is an imperative task since these kids studying now is the future of the country and will use what they learn and understand during their childhood will help them to make decisions about their lives in the future which will not only affect them personally but also affect the whole society in general.

Keywords: AR, mathematics, system development, augmented reality

Procedia PDF Downloads 82
3460 Loan Supply and Asset Price Volatility: An Experimental Study

Authors: Gabriele Iannotta

Abstract:

This paper investigates credit cycles by means of an experiment based on a Kiyotaki & Moore (1997) model with heterogeneous expectations. The aim is to examine how a credit squeeze caused by high lender-level risk perceptions affects the real prices of a collateralised asset, with a special focus on the macroeconomic implications of rising price volatility in terms of total welfare and the number of bankruptcies that occur. To do that, a learning-to-forecast experiment (LtFE) has been run where participants are asked to predict the future price of land and then rewarded based on the accuracy of their forecasts. The setting includes one lender and five borrowers in each of the twelve sessions split between six control groups (G1) and six treatment groups (G2). The only difference is that while in G1 the lender always satisfies borrowers’ loan demand (bankruptcies permitting), in G2 he/she closes the entire credit market in case three or more bankruptcies occur in the previous round. Experimental results show that negative risk-driven supply shocks amplify the volatility of collateral prices. This uncertainty worsens the agents’ ability to predict the future value of land and, as a consequence, the number of defaults increases and the total welfare deteriorates.

Keywords: Behavioural Macroeconomics, Credit Cycle, Experimental Economics, Heterogeneous Expectations, Learning-to-Forecast Experiment

Procedia PDF Downloads 123
3459 Exploring the Neural Mechanisms of Communication and Cooperation in Children and Adults

Authors: Sara Mosteller, Larissa K. Samuelson, Sobanawartiny Wijeakumar, John P. Spencer

Abstract:

This study was designed to examine how humans are able to teach and learn semantic information as well as cooperate in order to jointly achieve sophisticated goals. Specifically, we are measuring individual differences in how these abilities develop from foundational building blocks in early childhood. The current study adopts a paradigm for novel noun learning developed by Samuelson, Smith, Perry, and Spencer (2011) to a hyperscanning paradigm [Cui, Bryant and Reiss, 2012]. This project measures coordinated brain activity between a parent and child using simultaneous functional near infrared spectroscopy (fNIRS) in pairs of 2.5, 3.5 and 4.5-year-old children and their parents. We are also separately testing pairs of adult friends. Children and parents, or adult friends, are seated across from one another at a table. The parent (in the developmental study) then teaches their child the names of novel toys. An experimenter then tests the child by presenting the objects in pairs and asking the child to retrieve one object by name. Children are asked to choose from both pairs of familiar objects and pairs of novel objects. In order to explore individual differences in cooperation with the same participants, each dyad plays a cooperative game of Jenga, in which their joint score is based on how many blocks they can remove from the tower as a team. A preliminary analysis of the noun-learning task showed that, when presented with 6 word-object mappings, children learned an average of 3 new words (50%) and that the number of objects learned by each child ranged from 2-4. Adults initially learned all of the new words but were variable in their later retention of the mappings, which ranged from 50-100%. We are currently examining differences in cooperative behavior during the Jenga playing game, including time spent discussing each move before it is made. Ongoing analyses are examining the social dynamics that might underlie the differences between words that were successfully learned and unlearned words for each dyad, as well as the developmental differences observed in the study. Additionally, the Jenga game is being used to better understand individual and developmental differences in social coordination during a cooperative task. At a behavioral level, the analysis maps periods of joint visual attention between participants during the word learning and the Jenga game, using head-mounted eye trackers to assess each participant’s first-person viewpoint during the session. We are also analyzing the coherence in brain activity between participants during novel word-learning and Jenga playing. The first hypothesis is that visual joint attention during the session will be positively correlated with both the number of words learned and with the number of blocks moved during Jenga before the tower falls. The next hypothesis is that successful communication of new words and success in the game will each be positively correlated with synchronized brain activity between the parent and child/the adult friends in cortical regions underlying social cognition, semantic processing, and visual processing. This study probes both the neural and behavioral mechanisms of learning and cooperation in a naturalistic, interactive and developmental context.

Keywords: communication, cooperation, development, interaction, neuroscience

Procedia PDF Downloads 251
3458 Big Data Analysis on the Development of Jinan’s Consumption Centers under the Influence of E-Commerce

Authors: Hang Wang, Xiaoming Gao

Abstract:

The rapid development of e-commerce has significantly transformed consumer behavior and urban consumption patterns worldwide. This study explores the impact of e-commerce on the development and spatial distribution of consumption centers, with a particular focus on Jinan City, China. Traditionally, urban consumption centers are defined by physical commercial spaces, such as shopping malls and markets. However, the rise of e-commerce has introduced a shift towards virtual consumption hubs, with a corresponding impact on physical retail locations. Utilizing Gaode POI (Point of Interest) data, this research aims to provide a comprehensive analysis of the spatial distribution of consumption centers in Jinan, comparing e-commerce-driven virtual consumption hubs with traditional physical consumption centers. The study methodology involves gathering and analyzing POI data, focusing on logistics distribution for e-commerce activities and mobile charging point locations to represent offline consumption behavior. A spatial clustering technique is applied to examine the concentration of commercial activities and to identify emerging trends in consumption patterns. The findings reveal a clear differentiation between e-commerce and physical consumption centers in Jinan. E-commerce activities are dispersed across a wider geographic area, correlating closely with residential zones and logistics centers, while traditional consumption hubs remain concentrated around historical and commercial areas such as Honglou and the old city center. Additionally, the research identifies an ongoing transition within Jinan’s consumption landscape, with online and offline retail coexisting, though at different spatial and functional levels. This study contributes to urban planning by providing insights into how e-commerce is reshaping consumption behaviors and spatial structures in cities like Jinan. By leveraging big data analytics, the research offers a valuable tool for urban designers and planners to adapt to the evolving demands of digital commerce and to optimize the spatial layout of city infrastructure to better serve the needs of modern consumers.

Keywords: big data, consumption centers, e-commerce, urban planning, jinan

Procedia PDF Downloads 18
3457 Random Forest Classification for Population Segmentation

Authors: Regina Chua

Abstract:

To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.

Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling

Procedia PDF Downloads 91
3456 Emerging Technologies for Learning: In Need of a Pro-Active Educational Strategy

Authors: Pieter De Vries, Renate Klaassen, Maria Ioannides

Abstract:

This paper is about an explorative research into the use of emerging technologies for teaching and learning in higher engineering education. The assumption is that these technologies and applications, which are not yet widely adopted, will help to improve education and as such actively work on the ability to better deal with the mismatch of skills bothering our industries. Technologies such as 3D printing, the Internet of Things, Virtual Reality, and others, are in a dynamic state of development which makes it difficult to grasp the value for education. Also, the instruments in current educational research seem not appropriate to assess the value of such technologies. This explorative research aims to foster an approach to better deal with this new complexity. The need to find out is urgent, because these technologies will be dominantly present in the near future in all aspects of life, including education. The methodology used in this research comprised an inventory of emerging technologies and tools that potentially give way to innovation and are used or about to be used in technical universities. The inventory was based on both a literature review and a review of reports and web resources like blogs and others and included a series of interviews with stakeholders in engineering education and at representative industries. In addition, a number of small experiments were executed with the aim to analyze the requirements for the use of in this case Virtual Reality and the Internet of Things to better understanding the opportunities and limitations in the day-today learning environment. The major findings indicate that it is rather difficult to decide about the value of these technologies for education due to the dynamic state of change and therefor unpredictability and the lack of a coherent policy at the institutions. Most decisions are being made by teachers on an individual basis, who in their micro-environment are not equipped to select, test and ultimately decide about the use of these technologies. Most experiences are being made in the industry knowing that the skills to handle these technologies are in high demand. The industry though is worried about the inclination and the capability of education to help bridge the skills gap related to the emergence of new technologies. Due to the complexity, the diversity, the speed of development and the decay, education is challenged to develop an approach that can make these technologies work in an integrated fashion. For education to fully profit from the opportunities, these technologies offer it is eminent to develop a pro-active strategy and a sustainable approach to frame the emerging technologies development.

Keywords: emerging technologies, internet of things, pro-active strategy, virtual reality

Procedia PDF Downloads 190
3455 Practice of Developing EFL Coursebooks at Mongolian National University of Education

Authors: Nyamsuren Baljinnyam, Narmandakh Khaltar, Otgonbaatar Olzkhuu

Abstract:

Undergraduate students study English I (elective) and II (compulsory) courses which are included in the General foundation courses in the Teacher Education Curriculum Framework at the Mongolian National University of Education. Teachers at the English Department have designed and developed 2 levels (from pre-intermediate to upper-intermediate) English coursebooks since 2016 and published the second editions of each in 2018 and 2019. Developing coursebooks based on the students’ needs, satisfaction, and dissatisfaction with these instructional materials are essential phenomena in the delivery service of teaching English at the tertiary level. Thus, this study aims at findings from students’ views on English coursebooks which are studied mostly in the first and second semesters of the undergraduate academic program. The purpose of this research project was to determine the overall pedagogical value and suitability of the book to students’ needs and 21st-century teacher education concepts. We have designed a coursebook evaluation checklist with 28 questionnaires, including Morris’s English as a foreign language coursebook evaluation checklist (2017). The study is a 2 phased descriptive survey study that covered 572 and 519 undergraduate students who studied in the spring term of the 2021-2022 academic year and the fall term of the 2022-2023 academic year at 7 branch schools of Mongolian National University of Education (MNUE). Data analysis consists of student responses to each item. Coursebook evaluation data is classified into 3 main categories as “general attributes”, “learning content” and “task evaluation”. Some results of the study indicate the following findings: 97 percent of the total survey participants (in total 1091) have given positive responses to the coursebooks that these are fully aimed at acquiring the students’ language learning skills: reading, writing, listening, and speaking; 78 percent responded that the coursebooks were different from the English Textbooks that they learned in secondary schools; and 91 percent answered that the English coursebooks could give motivation to the students to achieve their self-study.

Keywords: coursebook evaluation, improving English, student satisfaction and dissatisfaction with coursebooks, language learning materials, language tasks, students’ needs

Procedia PDF Downloads 5
3454 Synergizing Additive Manufacturing and Artificial Intelligence: Analyzing and Predicting the Mechanical Behavior of 3D-Printed CF-PETG Composites

Authors: Sirine Sayed, Mostapha Tarfaoui, Abdelmalek Toumi, Youssef Qarssis, Mohamed Daly, Chokri Bouraoui

Abstract:

This paper delves into the combination of additive manufacturing (AM) and artificial intelligence (AI) to solve challenges related to the mechanical behavior of AM-produced parts. The article highlights the fundamentals and benefits of additive manufacturing, including creating complex geometries, optimizing material use, and streamlining manufacturing processes. The paper also addresses the challenges associated with additive manufacturing, such as ensuring stable mechanical performance and material properties. The role of AI in improving the static behavior of AM-produced parts, including machine learning, especially the neural network, is to make regression models to analyze the large amounts of data generated during experimental tests. It investigates the potential synergies between AM and AI to achieve enhanced functions and personalized mechanical properties. The mechanical behavior of parts produced using additive manufacturing methods can be further improved using design optimization, structural analysis, and AI-based adaptive manufacturing. The article concludes by emphasizing the importance of integrating AM and AI to enhance mechanical operations, increase reliability, and perform advanced functions, paving the way for innovative applications in different fields.

Keywords: additive manufacturing, mechanical behavior, artificial intelligence, machine learning, neural networks, reliability, advanced functionalities

Procedia PDF Downloads 8
3453 Characterizing Content Language Integrated Learning (CLIL) Teaching in an EFL Primary School: A Case Study

Authors: Alfia Sari

Abstract:

The implementation of the Content Language Integrated Learning (CLIL) approach in Indonesia has shown positive impacts in several educational institutions. Several studies have proven the benefits of implementing the CLIL approach, including the development of students’ language and content subject knowledge. Interestingly, one primary school in Surabaya, Indonesia, has been successfully implementing the CLIL approach. The students achieved high content and language subject scores, and the school was accredited A. A study on how the CLIL approach was practiced is important to investigate how teachers implemented it and how students benefited from it. Therefore, this present study attempted to investigate the implementation of the CLIL approach in this school to characterize good practices that can be implemented in other schools. A case study was conducted to observe its implementation in the third-grade classes (English, Science, and Math) by using the Protocol for Language Arts Teaching Observation (PLATO). The findings indicated that the CLIL teaching in this school accommodated the content and language well (scores 3-4). The content and language were clearly integrated, and the teachers successfully carried out the subjects in English. Teachers offered students opportunities to listen, speak, read, and write using the target language. This study described some characteristics of CLIL teaching in primary school that can be used as examples for future CLIL teachers to integrate the content and language in their teaching practices.

Keywords: CLIL, ELT, young learners, case study

Procedia PDF Downloads 46
3452 Utilizing Radio as a Resource Alternative for Disseminating Information to University Students in Ibadan, Nigeria: A Study of Lead City FM and Diamond FM Radio Stations

Authors: Olufemi Sunday Onabajo

Abstract:

Radio according to communication scholars is a veritable instrument of mass education. However, its full potentials in boosting higher education have not been realized because of the commercial nature of radio stations in Nigeria. The licensing of campus radio for disseminating information on university curricular is aimed at reinforcing information shared during face to face teaching. This study anchored on Agenda Setting and Technology determinism theories seeks to find out the extent to which university students in Lead City University and University of Ibadan, Nigeria have keyed-in to the philosophy of their campus radio – Lead City FM and Diamond FM in making information dissemination in their domiciled universities less cumbersome. The study employs both qualitative and quantitative methods though the use of depth interview for ten (10) academic staff and five (5) radio personnel of both radio stations; and a questionnaire addressed to 200 students of both institutions using the systematic random sampling technique. The data collected was analyzed using simple percentage and chi-square one tail test, and it was discovered that students of both universities and their radio personnel are yet to realize the potentials of campus radio as a resource alternative to effective learning, and recommends the coming together of all stakeholders to articulate the way forward.

Keywords: disseminating information, effective learning, resource alternative, utilizing radio

Procedia PDF Downloads 296
3451 Fostering Non-Traditional Student Success in an Online Music Appreciation Course

Authors: Linda Fellag, Arlene Caney

Abstract:

E-learning has earned an essential place in academia because it promotes learner autonomy, student engagement, and technological aptitude, and allows for flexible learning. However, despite advantages, educators have been slower to embrace e-learning for ESL and other non-traditional students for fear that such students will not succeed without the direct faculty contact and academic support of face-to-face classrooms. This study aims to determine if a non-traditional student-friendly online course can produce student retention and performance rates that compare favorably with those of students in standard online sections of the same course aimed at traditional college-level students. One Music faculty member is currently collaborating with an English instructor to redesign an online college-level Music Appreciation course for non-traditional college students. At Community College of Philadelphia, Introduction to Music Appreciation was recently designated as one of the few college-level courses that advanced ESL, and developmental English students can take while completing their language studies. Beginning in Fall 2017, the course will be critical for international students who must maintain full-time student status under visa requirements. In its current online format, however, Music Appreciation is designed for traditional college students, and faculty who teach these sections have been reluctant to revise the course to address the needs of non-traditional students. Interestingly, presenters maintain that the online platform is the ideal place to develop language and college readiness skills in at-risk students while maintaining the course's curricular integrity. The two faculty presenters describe how curriculum rather than technology drives the redesign of the digitized music course, and self-study materials, guided assignments, and periodic assessments promote independent learning and comprehension of material. The 'scaffolded' modules allow ESL and developmental English students to build on prior knowledge, preview key vocabulary, discuss content, and complete graded tasks that demonstrate comprehension. Activities and assignments, in turn, enhance college success by allowing students to practice academic reading strategies, writing, speaking, and student-faculty and peer-peer communication and collaboration. The course components facilitate a comparison of student performance and retention in sections of the redesigned and existing online sections of Music Appreciation as well as in previous sections with at-risk students. Indirect, qualitative measures include student attitudinal surveys and evaluations. Direct, quantitative measures include withdrawal rates, tests of disciplinary knowledge, and final grades. The study will compare the outcomes of three cohorts in the two versions of the online course: ESL students, at-risk developmental students, and college-level students. These data will also be compared with retention and student outcomes data of the three cohorts in f2f Music Appreciation, which permitted non-traditional student enrollment from 1998-2005. During this eight-year period, the presenter addressed the problems of at-risk students by adding language and college success support, which resulted in strong retention and outcomes. The presenters contend that the redesigned course will produce favorable outcomes among all three cohorts because it contains components which proved successful with at-risk learners in f2f sections of the course. Results of their study will be published in 2019 after the redesigned online course has met for two semesters.

Keywords: college readiness, e-learning, music appreciation, online courses

Procedia PDF Downloads 173
3450 The Transformative Landscape of the University of the Western Cape’s Elearning Center: Institutionalizing ELearning

Authors: Paul Dankers, Juliet Stoltenkamp, Carolynne Kies

Abstract:

In May 2005, the University of the Western Cape (UWC) established an eLearning Division (ED) that, over the past 18 years, accelerated into the institutionalization of an efficient eLearning Centre. The initial objective of the ED was to incessantly align itself with emerging technologies caused by digital transformation, which progressively impacted Higher Education Institutions (HEIs) globally. In this paper, we present how the UWC eLearning Division (ED) first evolved into the eLearning Development and Support Unit (EDUS), currently called the ‘Centre for Innovative Education and Communication Technologies (CIECT). CIECT was strategically separated from the Department of Information and Communication Services (ICS) in 2009 and repositioned as an independent structure at UWC. Using a comparative research method, we highlight the transformative eLearning landscape at UWC by doing a detailed account of the shift in practices. Our research method will determine the initial vision and outcomes of institutionalizing an eLearning division. The study aims to compare across space or time the eLearning division’s rate of growth. By comparing the progressive growth of the UWCs eLearning division over the years, we will be able to document the successes and achievements of the eLearning division precisely. This study’s outcomes will act as a reference for novel research subjects on formalising eLearning. More research that delves into the effectiveness of having an eLearning division at HEIs in support of students’ teaching and learning is needed.

Keywords: eLearning, institutionalization, teaching and learning, transformation

Procedia PDF Downloads 39
3449 Virtual Science Laboratory (ViSLab): The Effects of Visual Signalling Principles towards Students with Different Spatial Ability

Authors: Ai Chin Wong, Wan Ahmad Jaafar Wan Yahaya, Balakrishnan Muniandy

Abstract:

This study aims to explore the impact of Virtual Reality (VR) using visual signaling principles in learning about the science laboratory safety guide; this study involves students with different spatial ability. There are two types of science laboratory safety lessons, which are Virtual Reality with Signaling (VRS) and Virtual Reality Non Signaling (VRNS). This research has adopted a 2 x 2 quasi-experimental factorial design. There are two types of variables involved in this research. The two modes of courseware form the independent variables with the spatial ability as the moderator variable. The dependent variable is the students’ performance. This study sample consisted of 141 students. Descriptive and inferential statistics were conducted to analyze the collected data. The major effects and the interaction effects of the independent variables on the independent variable were explored using the Analyses of Covariance (ANCOVA). Based on the findings of this research, the results exhibited low spatial ability students in VRS outperformed their counterparts in VRNS. However, there was no significant difference in students with high spatial ability using VRS and VRNS. Effective learning in students with different spatial ability can be boosted by implementing the Virtual Reality with Signaling (VRS) in the design as well as the development of Virtual Science Laboratory (ViSLab).

Keywords: spatial ability, science laboratory safety, visual signaling principles, virtual reality

Procedia PDF Downloads 253
3448 Online Bakery Management System Proposal

Authors: Alexander Musyoki, Collins Odour

Abstract:

Over the past few years, the bakery industry in Kenya has experienced significant growth largely in part to the increased adoption of technology and automation in their processes; more specifically due to the adoption of bakery management systems to help in running bakeries. While they have been largely responsible for the improved productivity and efficiency in bakeries, most of them are now outdated and pose more challenges than benefits. The proposed online bakery management system mentioned in this paper aims to address this by allowing bakery owners to track inventory, budget, job progress, and data analytics on each job and in doing so, promote the Sustainable Development Goals 3 and 12, which aim to ensure healthy lives and promote sustainable economic growth as the proposed benefits of these features include scalability, easy accessibility, reduced acquisition costs, better reliability, and improved functionality that will allow bakeries to become more competitive, reduce waste and track inventory more efficiently. To better understand the challenges, a comprehensive study has been performed to assess these traditional systems and try to understand if an online bakery management system can prove to be advantageous to bakery owners. The study conducted gathered feedback from bakery owners and employees in Nairobi County, Kenya using an online survey with a response rate of about 86% from the target population. The responses cited complex and hard to use bakery management systems (59.7%), lack of portability from one device to the other (58.1%) and high acquisition costs (51.6%) as the top challenges of traditional bakery management systems. On the other hand, some of the top benefits that most of the respondents would realize from the online bakery management system was better reliability (58.1%) and reduced acquisition costs (58.1%). Overall, the findings suggest that an online bakery management system has a lot of advantages over traditional systems and is likely to be well-received in the market. In conclusion, the proposed online bakery management system has the potential to improve the efficiency and competitiveness of small-sized bakeries in Nairobi County. Further research is recommended to expand the sample size and diversity of respondents and to conduct more in-depth analyses of the data collected.

Keywords: ICT, technology and automation, bakery management systems, food innovation

Procedia PDF Downloads 76
3447 Aromatic Medicinal Plant Classification Using Deep Learning

Authors: Tsega Asresa Mengistu, Getahun Tigistu

Abstract:

Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.

Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network

Procedia PDF Downloads 438
3446 Introduction of Integrated Image Deep Learning Solution and How It Brought Laboratorial Level Heart Rate and Blood Oxygen Results to Everyone

Authors: Zhuang Hou, Xiaolei Cao

Abstract:

The general public and medical professionals recognized the importance of accurately measuring and storing blood oxygen levels and heart rate during the COVID-19 pandemic. The demand for accurate contactless devices was motivated by the need for cross-infection reduction and the shortage of conventional oximeters, partially due to the global supply chain issue. This paper evaluated a contactless mini program HealthyPai’s heart rate (HR) and oxygen saturation (SpO2) measurements compared with other wearable devices. In the HR study of 185 samples (81 in the laboratory environment, 104 in the real-life environment), the mean absolute error (MAE) ± standard deviation was 1.4827 ± 1.7452 in the lab, 6.9231 ± 5.6426 in the real-life setting. In the SpO2 study of 24 samples, the MAE ± standard deviation of the measurement was 1.0375 ± 0.7745. Our results validated that HealthyPai utilizing the Integrated Image Deep Learning Solution (IIDLS) framework, can accurately measure HR and SpO2, providing the test quality at least comparable to other FDA-approved wearable devices in the market and surpassing the consumer-grade and research-grade wearable standards.

Keywords: remote photoplethysmography, heart rate, oxygen saturation, contactless measurement, mini program

Procedia PDF Downloads 133
3445 Using Computer Vision to Detect and Localize Fractures in Wrist X-ray Images

Authors: John Paul Q. Tomas, Mark Wilson L. de los Reyes, Kirsten Joyce P. Vasquez

Abstract:

The most frequent type of fracture is a wrist fracture, which often makes it difficult for medical professionals to find and locate. In this study, fractures in wrist x-ray pictures were located and identified using deep learning and computer vision. The researchers used image filtering, masking, morphological operations, and data augmentation for the image preprocessing and trained the RetinaNet and Faster R-CNN models with ResNet50 backbones and Adam optimizers separately for each image filtering technique and projection. The RetinaNet model with Anisotropic Diffusion Smoothing filter trained with 50 epochs has obtained the greatest accuracy of 99.14%, precision of 100%, sensitivity/recall of 98.41%, specificity of 100%, and an IoU score of 56.44% for the Posteroanterior projection utilizing augmented data. For the Lateral projection using augmented data, the RetinaNet model with an Anisotropic Diffusion filter trained with 50 epochs has produced the highest accuracy of 98.40%, precision of 98.36%, sensitivity/recall of 98.36%, specificity of 98.43%, and an IoU score of 58.69%. When comparing the test results of the different individual projections, models, and image filtering techniques, the Anisotropic Diffusion filter trained with 50 epochs has produced the best classification and regression scores for both projections.

Keywords: Artificial Intelligence, Computer Vision, Wrist Fracture, Deep Learning

Procedia PDF Downloads 72
3444 Semantic Differences between Bug Labeling of Different Repositories via Machine Learning

Authors: Pooja Khanal, Huaming Zhang

Abstract:

Labeling of issues/bugs, also known as bug classification, plays a vital role in software engineering. Some known labels/classes of bugs are 'User Interface', 'Security', and 'API'. Most of the time, when a reporter reports a bug, they try to assign some predefined label to it. Those issues are reported for a project, and each project is a repository in GitHub/GitLab, which contains multiple issues. There are many software project repositories -ranging from individual projects to commercial projects. The labels assigned for different repositories may be dependent on various factors like human instinct, generalization of labels, label assignment policy followed by the reporter, etc. While the reporter of the issue may instinctively give that issue a label, another person reporting the same issue may label it differently. This way, it is not known mathematically if a label in one repository is similar or different to the label in another repository. Hence, the primary goal of this research is to find the semantic differences between bug labeling of different repositories via machine learning. Independent optimal classifiers for individual repositories are built first using the text features from the reported issues. The optimal classifiers may include a combination of multiple classifiers stacked together. Then, those classifiers are used to cross-test other repositories which leads the result to be deduced mathematically. The produce of this ongoing research includes a formalized open-source GitHub issues database that is used to deduce the similarity of the labels pertaining to the different repositories.

Keywords: bug classification, bug labels, GitHub issues, semantic differences

Procedia PDF Downloads 198
3443 Students With Special Educational Needs in Regular Classrooms and their Peer Effects on Learning Achievement

Authors: José María Renteria, Vania Salas

Abstract:

This study explores the impact of inclusive education on the educational outcomes of students without Special Educational Needs (non-SEN) in Peru, utilizing official Ministry of Education data and implementing cross-sectional regression analyses. Inclusive education is a complex issue that, without appropriate adaptations and comprehensive understanding, can present substantial challenges to the educational community. While prior research from developed nations offers diverse perspectives on the effects of inclusive education on non-SEN students, limited evidence exists regarding its impact in developing countries. Our study addresses this gap by examining inclusive education in Peru and its effects on non-SEN students, thereby contributing to the existing literature. the findings reveal that, on average, the presence of SEN students in regular classrooms does not significantly affect their non-SEN counterparts. However, we uncover heterogeneous effects contingent on the specific type of SEN and students’ academic placement. These results emphasize the importance of targeted resources, specialized teachers, and parental involvement in facilitating successful inclusive education, particularly for specific SEN types and students positioned at the lower end of the academic achievement spectrum. In summary, this study underscores the need for tailored strategies and additional resources to foster the success of inclusive education and calls for further research in this field to expand our understanding and enhance educational policy.

Keywords: inclusive education, special educational needs, learning achievement, Peru, Basic education

Procedia PDF Downloads 79
3442 Locally Crafted Sustainability: A Scoping Review for Nesting Social-Ecological and Socio-Technical Systems Towards Action Research in Agriculture

Authors: Marcia Figueira

Abstract:

Context: Positivist transformations in agriculture were responsible for top-down – often coercive – mechanisms of uniformed modernization that weathered local diversities and agency. New development pathways need to now shift according to comprehensive integrations of knowledge - scientific, indigenous, and local, and to be sustained on political interventions, bottom-up change, and social learning if climate goals are to be met – both in mitigation and adaptation. Objectives The objectives of this research are to understand how social-ecological and socio-technical systems characterisation can be nested to bridge scientific research/knowledge into a local context and knowledge system; and, with it, stem sustainable innovation. Methods To do so, we conducted a scoping review to explore theoretical and empirical works linked to Ostrom’s Social-Ecological Systems framework and Geels’ multi-level perspective of socio-technical systems transformations in the context of agriculture. Results As a result, we were able to identify key variables and connections to 1- understand the rules in use and the community attributes influencing resource management; and 2- how they are and have been shaped and shaping systems innovations. Conclusion Based on these results, we discuss how to leverage action research for mutual learning toward a replicable but highly place-based agriculture transformation frame.

Keywords: agriculture systems innovations, social-ecological systems, socio-technical systems, action research

Procedia PDF Downloads 93
3441 Machine Learning in Gravity Models: An Application to International Recycling Trade Flow

Authors: Shan Zhang, Peter Suechting

Abstract:

Predicting trade patterns is critical to decision-making in public and private domains, especially in the current context of trade disputes among major economies. In the past, U.S. recycling has relied heavily on strong demand for recyclable materials overseas. However, starting in 2017, a series of new recycling policies (bans and higher inspection standards) was enacted by multiple countries that were the primary importers of recyclables from the U.S. prior to that point. As the global trade flow of recycling shifts, some new importers, mostly developing countries in South and Southeast Asia, have been overwhelmed by the sheer quantities of scrap materials they have received. As the leading exporter of recyclable materials, the U.S. now has a pressing need to build its recycling industry domestically. With respect to the global trade in scrap materials used for recycling, the interest in this paper is (1) predicting how the export of recyclable materials from the U.S. might vary over time, and (2) predicting how international trade flows for recyclables might change in the future. Focusing on three major recyclable materials with a history of trade, this study uses data-driven and machine learning (ML) algorithms---supervised (shrinkage and tree methods) and unsupervised (neural network method)---to decipher the international trade pattern of recycling. Forecasting the potential trade values of recyclables in the future could help importing countries, to which those materials will shift next, to prepare related trade policies. Such policies can assist policymakers in minimizing negative environmental externalities and in finding the optimal amount of recyclables needed by each country. Such forecasts can also help exporting countries, like the U.S understand the importance of healthy domestic recycling industry. The preliminary result suggests that gravity models---in addition to particular selection macroeconomic predictor variables--are appropriate predictors of the total export value of recyclables. With the inclusion of variables measuring aspects of the political conditions (trade tariffs and bans), predictions show that recyclable materials are shifting from more policy-restricted countries to less policy-restricted countries in international recycling trade. Those countries also tend to have high manufacturing activities as a percentage of their GDP.

Keywords: environmental economics, machine learning, recycling, international trade

Procedia PDF Downloads 167
3440 Assessing the Impacts of Folktales (Story Telling) On the Moral Advancement of Children Yoruba Communities in Ute-Owo, Nigeria

Authors: Felicia Titilayo Olanrewaju

Abstract:

Folktales are a subclass of folklores which are verbally told and passed down from one generation to another, from the elderly ones to their children, usually at moonlight. These tales are heavily laden with moral lessons of what should be done and what not within the society. Though these are oftentimes heavily embellished yet are related to guide, guard, train, and dishing out moral attributes and mores worthwhile for ethical progression of the young minds within our traditional settings. With the rapid advancement of technological know-how, the existence of most of these moral-inclined stories becomes questionable; hence this study appraised the influences of these traditional storytellings have in the upgrading of moral learning of ethical behavioral traits acceptable among the Yoruba people. Oral interviews couples with recording gadgets were used to collate both sample parents' and children’s responses within a particular community in Owo (ute) local government area of Owo Ondo State, Nigeria. Findings reveal that diverse tales told at moonlight periods have an untold impact on the speedy growth of the children intellectually than the modern happenings around them. These telltale stories become powerful aids in learning goodly traits and eschewing bad manners. It is recommended that folk stories be told within the household among the family after hard labour in the evenings as this would help develop human relationships and brings about a strong sense of community bindings.

Keywords: folktales, folklores, impact, advancement, ethical progression

Procedia PDF Downloads 175
3439 Competition as an Appropriate Instructional Practice in the Physical Education Environment: Reflective Experiences

Authors: David Barney, Francis Pleban, Muna Muday

Abstract:

The purpose of this study was to explore gender differences of former physical education students related to reflective experiences of competition in physical education learning environment. In the school environment, students are positioned in competitive situations, including in the physical education context. Therefore it is important to prepare future physical educators to address the role of competition in physical education. Participants for this study were 304 college-aged students and young adults (M = 1.53, SD = .500), from a private university and local community located in the western United States. When comparing gender, significant differences (p < .05) were reported for four (questions 5, 7, 12, and 14) of the nine scaling questions. Follow-up quantitative findings reported that males (41%) more than females (27%) witnessed fights in physical education environment during competitive games. Qualitative findings reported fighting were along the lines of verbal confrontation. Female participants tended to experience being excluded from games, when compared to male participants. Both male and female participants (total population; 95%, males; 98%; and females 92%) were in favor of including competition in physical education for students. Findings suggest that physical education teachers and physical education teacher education programs have a responsibility to develop gender neutral learning experiences that help students better appreciate the role competition plays, both in and out of the physical education classroom.

Keywords: competition, physical education, physical education teacher education, gender

Procedia PDF Downloads 496
3438 Advancing the Analysis of Physical Activity Behaviour in Diverse, Rapidly Evolving Populations: Using Unsupervised Machine Learning to Segment and Cluster Accelerometer Data

Authors: Christopher Thornton, Niina Kolehmainen, Kianoush Nazarpour

Abstract:

Background: Accelerometers are widely used to measure physical activity behavior, including in children. The traditional method for processing acceleration data uses cut points, relying on calibration studies that relate the quantity of acceleration to energy expenditure. As these relationships do not generalise across diverse populations, they must be parametrised for each subpopulation, including different age groups, which is costly and makes studies across diverse populations difficult. A data-driven approach that allows physical activity intensity states to emerge from the data under study without relying on parameters derived from external populations offers a new perspective on this problem and potentially improved results. We evaluated the data-driven approach in a diverse population with a range of rapidly evolving physical and mental capabilities, namely very young children (9-38 months old), where this new approach may be particularly appropriate. Methods: We applied an unsupervised machine learning approach (a hidden semi-Markov model - HSMM) to segment and cluster the accelerometer data recorded from 275 children with a diverse range of physical and cognitive abilities. The HSMM was configured to identify a maximum of six physical activity intensity states and the output of the model was the time spent by each child in each of the states. For comparison, we also processed the accelerometer data using published cut points with available thresholds for the population. This provided us with time estimates for each child’s sedentary (SED), light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA). Data on the children’s physical and cognitive abilities were collected using the Paediatric Evaluation of Disability Inventory (PEDI-CAT). Results: The HSMM identified two inactive states (INS, comparable to SED), two lightly active long duration states (LAS, comparable to LPA), and two short-duration high-intensity states (HIS, comparable to MVPA). Overall, the children spent on average 237/392 minutes per day in INS/SED, 211/129 minutes per day in LAS/LPA, and 178/168 minutes in HIS/MVPA. We found that INS overlapped with 53% of SED, LAS overlapped with 37% of LPA and HIS overlapped with 60% of MVPA. We also looked at the correlation between the time spent by a child in either HIS or MVPA and their physical and cognitive abilities. We found that HIS was more strongly correlated with physical mobility (R²HIS =0.5, R²MVPA= 0.28), cognitive ability (R²HIS =0.31, R²MVPA= 0.15), and age (R²HIS =0.15, R²MVPA= 0.09), indicating increased sensitivity to key attributes associated with a child’s mobility. Conclusion: An unsupervised machine learning technique can segment and cluster accelerometer data according to the intensity of movement at a given time. It provides a potentially more sensitive, appropriate, and cost-effective approach to analysing physical activity behavior in diverse populations, compared to the current cut points approach. This, in turn, supports research that is more inclusive across diverse populations.

Keywords: physical activity, machine learning, under 5s, disability, accelerometer

Procedia PDF Downloads 210
3437 Artificial Intelligence in Patient Involvement: A Comprehensive Review

Authors: Igor A. Bessmertny, Bidru C. Enkomaryam

Abstract:

Active involving patients and communities in health decisions can improve both people’s health and the healthcare system. Adopting artificial intelligence can lead to more accurate and complete patient record management. This review aims to identify the current state of researches conducted using artificial intelligence techniques to improve patient engagement and wellbeing, medical domains used in patient engagement context, and lastly, to assess opportunities and challenges for patient engagement in the wellness process. A search of peer-reviewed publications, reviews, conceptual analyses, white papers, author’s manuscripts and theses was undertaken. English language literature published in 2013– 2022 period and publications, report and guidelines of World Health Organization (WHO) were also assessed. About 281 papers were retrieved. Duplicate papers in the databases were removed. After application of the inclusion and exclusion criteria, 41 papers were included to the analysis. Patient counseling in preventing adverse drug events, in doctor-patient risk communication, surgical, drug development, mental healthcare, hypertension & diabetes, metabolic syndrome and non-communicable chronic diseases are implementation areas in healthcare where patient engagement can be implemented using artificial intelligence, particularly machine learning and deep learning techniques and tools. The five groups of factors that potentially affecting patient engagement in safety are related to: patient, health conditions, health care professionals, tasks and health care setting. Active involvement of patients and families can help accelerate the implementation of healthcare safety initiatives. In sub-Saharan Africa, using digital technologies like artificial intelligence in patient engagement context is low due to poor level of technological development and deployment. The opportunities and challenges available to implement patient engagement strategies vary greatly from country to country and from region to region. Thus, further investigation will be focused on methods and tools using the potential of artificial intelligence to support more simplified care that might be improve communication with patients and train health care professionals.

Keywords: artificial intelligence, patient engagement, machine learning, patient involvement

Procedia PDF Downloads 76
3436 Metal Ship and Robotic Car: A Hands-On Activity to Develop Scientific and Engineering Skills for High School Students

Authors: Jutharat Sunprasert, Ekapong Hirunsirisawat, Narongrit Waraporn, Somporn Peansukmanee

Abstract:

Metal Ship and Robotic Car is one of the hands-on activities in the course, the Fundamental of Engineering that can be divided into three parts. The first part, the metal ships, was made by using engineering drawings, physics and mathematics knowledge. The second part is where the students learned how to construct a robotic car and control it using computer programming. In the last part, the students had to combine the workings of these two objects in the final testing. This aim of study was to investigate the effectiveness of hands-on activity by integrating Science, Technology, Engineering and Mathematics (STEM) concepts to develop scientific and engineering skills. The results showed that the majority of students felt this hands-on activity lead to an increased confidence level in the integration of STEM. Moreover, 48% of all students engaged well with the STEM concepts. Students could obtain the knowledge of STEM through hands-on activities with the topics science and mathematics, engineering drawing, engineering workshop and computer programming; most students agree and strongly agree with this learning process. This indicated that the hands-on activity: “Metal Ship and Robotic Car” is a useful tool to integrate each aspect of STEM. Furthermore, hands-on activities positively influence a student’s interest which leads to increased learning achievement and also in developing scientific and engineering skills.

Keywords: hands-on activity, STEM education, computer programming, metal work

Procedia PDF Downloads 464
3435 Enhancing Emotional Regulation in Autistic Students with Intellectual Disabilities through Visual Dialogue: An Action Research Study

Authors: Tahmina Huq

Abstract:

This paper presents the findings of an action research study that aimed to investigate the efficacy of a visual dialogue strategy in assisting autistic students with intellectual disabilities in managing their immediate emotions and improving their academic achievements. The research sought to explore the effectiveness of teaching self-regulation techniques as an alternative to traditional approaches involving segregation. The study identified visual dialogue as a valuable tool for promoting self-regulation in this specific student population. Action research was chosen as the methodology due to its suitability for immediate implementation of the findings in the classroom. Autistic students with intellectual disabilities often face challenges in controlling their emotions, which can disrupt their learning and academic progress. Conventional methods of intervention, such as isolation and psychologist-assisted approaches, may result in missed classes and hindered academic development. This study introduces the utilization of visual dialogue between students and teachers as an effective self-regulation strategy, addressing the limitations of traditional approaches. Action research was employed as the methodology for this study, allowing for the direct application of the findings in the classroom. The study observed two 15-year-old autistic students with intellectual disabilities who exhibited difficulties in emotional regulation and displayed aggressive behaviors. The research question focused on the effectiveness of visual dialogue in managing the emotions of these students and its impact on their learning outcomes. Data collection methods included personal observations, log sheets, personal reflections, and visual documentation. The study revealed that the implementation of visual dialogue as a self-regulation strategy enabled the students to regulate their emotions within a short timeframe (10 to 30 minutes). Through visual dialogue, they were able to express their feelings and needs in socially appropriate ways. This finding underscores the significance of visual dialogue as a tool for promoting emotional regulation and facilitating active participation in classroom activities. As a result, the students' learning outcomes and social interactions were positively impacted. The findings of this study hold significant implications for educators working with autistic students with intellectual disabilities. The use of visual dialogue as a self-regulation strategy can enhance emotional regulation skills and improve overall academic progress. The action research approach outlined in this paper provides practical guidance for educators in effectively implementing self-regulation strategies within classroom settings. In conclusion, the study demonstrates that visual dialogue is an effective strategy for enhancing emotional regulation in autistic students with intellectual disabilities. By employing visual communication, students can successfully regulate their emotions and actively engage in classroom activities, leading to improved learning outcomes and social interactions. This paper underscores the importance of implementing self-regulation strategies in educational settings to cater to the unique needs of autistic students.

Keywords: action research, self-regulation, autism, visual communication

Procedia PDF Downloads 61