Search results for: child-led learning
3230 Predictive Analytics Algorithms: Mitigating Elementary School Drop Out Rates
Authors: Bongs Lainjo
Abstract:
Educational institutions and authorities that are mandated to run education systems in various countries need to implement a curriculum that considers the possibility and existence of elementary school dropouts. This research focuses on elementary school dropout rates and the ability to replicate various predictive models carried out globally on selected Elementary Schools. The study was carried out by comparing the classical case studies in Africa, North America, South America, Asia and Europe. Some of the reasons put forward for children dropping out include the notion of being successful in life without necessarily going through the education process. Such mentality is coupled with a tough curriculum that does not take care of all students. The system has completely led to poor school attendance - truancy which continuously leads to dropouts. In this study, the focus is on developing a model that can systematically be implemented by school administrations to prevent possible dropout scenarios. At the elementary level, especially the lower grades, a child's perception of education can be easily changed so that they focus on the better future that their parents desire. To deal effectively with the elementary school dropout problem, strategies that are put in place need to be studied and predictive models are installed in every educational system with a view to helping prevent an imminent school dropout just before it happens. In a competency-based curriculum that most advanced nations are trying to implement, the education systems have wholesome ideas of learning that reduce the rate of dropout.Keywords: elementary school, predictive models, machine learning, risk factors, data mining, classifiers, dropout rates, education system, competency-based curriculum
Procedia PDF Downloads 1753229 Biofilm Text Classifiers Developed Using Natural Language Processing and Unsupervised Learning Approach
Authors: Kanika Gupta, Ashok Kumar
Abstract:
Biofilms are dense, highly hydrated cell clusters that are irreversibly attached to a substratum, to an interface or to each other, and are embedded in a self-produced gelatinous matrix composed of extracellular polymeric substances. Research in biofilm field has become very significant, as biofilm has shown high mechanical resilience and resistance to antibiotic treatment and constituted as a significant problem in both healthcare and other industry related to microorganisms. The massive information both stated and hidden in the biofilm literature are growing exponentially therefore it is not possible for researchers and practitioners to automatically extract and relate information from different written resources. So, the current work proposes and discusses the use of text mining techniques for the extraction of information from biofilm literature corpora containing 34306 documents. It is very difficult and expensive to obtain annotated material for biomedical literature as the literature is unstructured i.e. free-text. Therefore, we considered unsupervised approach, where no annotated training is necessary and using this approach we developed a system that will classify the text on the basis of growth and development, drug effects, radiation effects, classification and physiology of biofilms. For this, a two-step structure was used where the first step is to extract keywords from the biofilm literature using a metathesaurus and standard natural language processing tools like Rapid Miner_v5.3 and the second step is to discover relations between the genes extracted from the whole set of biofilm literature using pubmed.mineR_v1.0.11. We used unsupervised approach, which is the machine learning task of inferring a function to describe hidden structure from 'unlabeled' data, in the above-extracted datasets to develop classifiers using WinPython-64 bit_v3.5.4.0Qt5 and R studio_v0.99.467 packages which will automatically classify the text by using the mentioned sets. The developed classifiers were tested on a large data set of biofilm literature which showed that the unsupervised approach proposed is promising as well as suited for a semi-automatic labeling of the extracted relations. The entire information was stored in the relational database which was hosted locally on the server. The generated biofilm vocabulary and genes relations will be significant for researchers dealing with biofilm research, making their search easy and efficient as the keywords and genes could be directly mapped with the documents used for database development.Keywords: biofilms literature, classifiers development, text mining, unsupervised learning approach, unstructured data, relational database
Procedia PDF Downloads 1703228 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.Keywords: deep learning, artificial neural networks, energy price forecasting, turkey
Procedia PDF Downloads 2923227 Communication Tools Used in Teaching and Their Effects: An Empirical Study on the T. C. Selcuk University Samples
Authors: Sedat Simsek, Tugay Arat
Abstract:
Today's communication concept, which has a great revolution with the printing press which has been found by Gutenberg, has no boundary thanks to advanced communication devices and the internet. It is possible to take advantage in many areas, such as from medicine to social sciences or from mathematics to education, from the computers that was first produced for the purpose of military services. The use of these developing technologies in the field of education has created a great vision changes in both training and having education. Materials, which can be considered as basic communication resources and used in traditional education has begun to lose its significance, and some technologies have begun to replace them such as internet, computers, smart boards, projection devices and mobile phone. On the other hand, the programs and applications used in these technologies have also been developed. University students use virtual books instead of the traditional printed book, use cell phones instead of note books, use the internet and virtual databases instead of the library to research. They even submit their homework with interactive methods rather than printed materials. The traditional education system, these technologies, which increase productivity, have brought a new dimension to education. The aim of this study is to determine the influence of technologies in the learning process of students and to find whether is there any similarities and differences that arise from the their faculty that they have been educated and and their learning process. In addition to this, it is aimed to determine the level of ICT usage of students studying at the university level. In this context, the advantages and conveniences of the technology used by students are also scrutinized. In this study, we used surveys to collect data. The data were analyzed by using SPSS 16 statistical program with the appropriate testing.Keywords: education, communication technologies, role of technology, teaching
Procedia PDF Downloads 3033226 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data
Authors: M. Kharrat, G. Moreau, Z. Aboura
Abstract:
The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition
Procedia PDF Downloads 1553225 When Ideological Intervention Backfires: The Case of the Iranian Clerical System’s Intervention in the Pandemic-Era Elementary Education
Authors: Hasti Ebrahimi
Abstract:
This study sheds light on the challenges and difficulties caused by the Iranian clerical system’s intervention in the country’s school education during the COVID-19 pandemic, when schools remained closed for almost two years. The pandemic brought Iranian elementary school education to a standstill for almost 6 months before the country developed a nationwide learning platform – a customized television network. While the initiative seemed to have been welcomed by the majority of Iranian parents, it resented some of the more traditional strata of the society, including the influential Friday Prayer Leaders who found the televised version of the elementary education ‘less spiritual’ and ‘more ‘material’ or science-based. That prompted the Iranian Channel of Education, the specialized television network that had been chosen to serve as a nationally televised school during the pandemic, to try to redefine much of its online elementary school educational content within the religious ideology of the Islamic Republic of Iran. As a result, young clergies appeared on the television screen as preachers of Islamic morality, religious themes and even sociology, history, and arts. The present research delves into the consequences of such an intervention, how it might have impacted the infrastructure of Iranian elementary education and whether or not the new ideology-infused curricula would withstand the opposition of students and mainstream teachers. The main methodology used in this study is Critical Discourse Analysis with a cognitive approach. It systematically finds and analyzes the alternative ideological structures of discourse in the Iranian Channel of Education from September 2021 to July 2022, when the clergy ‘teachers’ replaced ‘regular’ history and arts teachers on the television screen for the first time. It has aimed to assess how the various uses of the alternative ideological discourse in elementary school content have influenced the processes of learning: the acquisition of knowledge, beliefs, opinions, attitudes, abilities, and other cognitive and emotional changes, which are the goals of institutional education. This study has been an effort aimed at understanding and perhaps clarifying the relationships between the traditional textual structures and processing on the one hand and socio-cultural contexts created by the clergy teachers on the other. This analysis shows how the clerical portion of elementary education on the Channel of Education that seemed to have dominated the entire televised teaching and learning process faded away as the pandemic was contained and mainstream classes were restored. It nevertheless reflects the deep ideological rifts between the clerical approach to school education and the mainstream teaching process in Iranian schools. The semantic macrostructures of social content in the current Iranian elementary school education, this study suggests, have remained intact despite the temporary ideological intervention of the ruling clerical elite in their formulation and presentation. Finally, using thematic and schematic frameworks, the essay suggests that the ‘clerical’ social content taught on the Channel of Education during the pandemic cannot have been accepted cognitively by the channel’s target audience, including students and mainstream teachers.Keywords: televised elementary school learning, Covid 19, critical discourse analysis, Iranian clerical ideology
Procedia PDF Downloads 543224 Linking Supervisor’s Goal Orientation to Post-Training Supportive Behaviors: The Mediating Role of Interest in the Development of Subordinates Skills
Authors: Martin Lauzier, Benjamin Lafreniere-Carrier, Nathalie Delobbe
Abstract:
Supervisor support is one of the main levers to foster transfer of training. Although past and current studies voice its effects, few have sought to identify the factors that may explain why supervisors offer support to their subordinates when they return from training. Based on Goal Orientation Theory and following the principles of supportive supervision, this study aims to improve our understanding of the factors that influence supervisors’ involvement in the transfer process. More specifically, this research seeks to verify the influence of supervisors’ goal orientation on the adoption of post-training support behaviors. This study also assesses the mediating role of the supervisors’ interest in subordinates’ development on this first relationship. Conducted in two organizations (Canadian: N₁ = 292; Belgian: N₂ = 80), the results of this study revealed three main findings. First, supervisors’ who adopt learning mastery goal orientation also tend to adopt more post-training supportive behaviors. Secondly, regression analyses (using the bootstrap method) show that supervisors' interest in developing their subordinates’ skills mediate the relationship between supervisors’ goal orientation and post-training supportive behaviors. Thirdly, the observed mediation effects are consistent in both samples, regardless of supervisors’ gender or age. Overall, this research is part of the limited number of studies that have focused on the determining factors supervisors’ involvement in the learning transfer process.Keywords: supervisor support, transfer of training, goal orientation, interest in the development of subordinates’ skills
Procedia PDF Downloads 1873223 Blended Cloud Based Learning Approach in Information Technology Skills Training and Paperless Assessment: Case Study of University of Cape Coast
Authors: David Ofosu-Hamilton, John K. E. Edumadze
Abstract:
Universities have come to recognize the role Information and Communication Technology (ICT) skills plays in the daily activities of tertiary students. The ability to use ICT – essentially, computers and their diverse applications – are important resources that influence an individual’s economic and social participation and human capital development. Our society now increasingly relies on the Internet, and the Cloud as a means to communicate and disseminate information. The educated individual should, therefore, be able to use ICT to create and share knowledge that will improve society. It is, therefore, important that universities require incoming students to demonstrate a level of computer proficiency or trained to do so at a minimal cost by deploying advanced educational technologies. The training and standardized assessment of all in-coming first-year students of the University of Cape Coast in Information Technology Skills (ITS) have become a necessity as students’ most often than not highly overestimate their digital skill and digital ignorance is costly to any economy. The one-semester course is targeted at fresh students and aimed at enhancing the productivity and software skills of students. In this respect, emphasis is placed on skills that will enable students to be proficient in using Microsoft Office and Google Apps for Education for their academic work and future professional work whiles using emerging digital multimedia technologies in a safe, ethical, responsible, and legal manner. The course is delivered in blended mode - online and self-paced (student centered) using Alison’s free cloud-based tutorial (Moodle) of Microsoft Office videos. Online support is provided via discussion forums on the University’s Moodle platform and tutor-directed and assisted at the ICT Centre and Google E-learning laboratory. All students are required to register for the ITS course during either the first or second semester of the first year and must participate and complete it within a semester. Assessment focuses on Alison online assessment on Microsoft Office, Alison online assessment on ALISON ABC IT, Peer assessment on e-portfolio created using Google Apps/Office 365 and an End of Semester’s online assessment at the ICT Centre whenever the student was ready in the cause of the semester. This paper, therefore, focuses on the digital culture approach of hybrid teaching, learning and paperless examinations and the possible adoption by other courses or programs at the University of Cape Coast.Keywords: assessment, blended, cloud, paperless
Procedia PDF Downloads 2483222 Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries
Authors: Gaurav Kumar Sinha
Abstract:
The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance
Procedia PDF Downloads 313221 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text
Authors: Duncan Wallace, M-Tahar Kechadi
Abstract:
In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.Keywords: artificial neural networks, data-mining, machine learning, medical informatics
Procedia PDF Downloads 1313220 Influence of Intelligence and Failure Mindsets on Parent's Failure Feedback
Authors: Sarah Kalaouze, Maxine Iannucelli, Kristen Dunfield
Abstract:
Children’s implicit beliefs regarding intelligence (i.e., intelligence mindsets) influence their motivation, perseverance, and success. Previous research suggests that the way parents perceive failure influences the development of their child’s intelligence mindsets. We invited 151 children-parent dyads (Age= 5–6 years) to complete a series of difficult puzzles over zoom. We assessed parents’ intelligence and failure mindsets using questionnaires and recorded parents’ person/performance-oriented (e.g., “you are smart” or "you were almost able to complete that one) and process-oriented (e.g., “you are trying really hard” or "maybe if you place the bigger pieces first") failure feedback. We were interested in observing the relation between parental mindsets and the type of feedback provided. We found that parents’ intelligence mindsets were not predictive of the feedback they provided children. Failure mindsets, on the other hand, were predictive of failure feedback. Parents who view failure-as-debilitating provided more person-oriented feedback, focusing on performance and personal ability. Whereas parents who view failure-as-enhancing provided process-oriented feedback, focusing on effort and strategies. Taken all together, our results allow us to determine that although parents might already have a growth intelligence mindset, they don’t necessarily have a failure-as-enhancing mindset. Parents adopting a failure-as-enhancing mindset would influence their children to view failure as a learning opportunity, further promoting practice, effort, and perseverance during challenging tasks. The focus placed on a child’s learning, rather than their performance, encourages them to perceive intelligence as malleable (growth mindset) rather than fix (fixed mindset). This implies that parents should not only hold a growth mindset but thoroughly understand their role in the transmission of intelligence beliefs.Keywords: mindset(s), failure, intelligence, parental feedback, parents
Procedia PDF Downloads 1403219 Yawning Computing Using Bayesian Networks
Authors: Serge Tshibangu, Turgay Celik, Zenzo Ncube
Abstract:
Road crashes kill nearly over a million people every year, and leave millions more injured or permanently disabled. Various annual reports reveal that the percentage of fatal crashes due to fatigue/driver falling asleep comes directly after the percentage of fatal crashes due to intoxicated drivers. This percentage is higher than the combined percentage of fatal crashes due to illegal/Un-Safe U-turn and illegal/Un-Safe reversing. Although a relatively small percentage of police reports on road accidents highlights drowsiness and fatigue, the importance of these factors is greater than we might think, hidden by the undercounting of their events. Some scenarios show that these factors are significant in accidents with killed and injured people. Thus the need for an automatic drivers fatigue detection system in order to considerably reduce the number of accidents owing to fatigue.This research approaches the drivers fatigue detection problem in an innovative way by combining cues collected from both temporal analysis of drivers’ faces and environment. Monotony in driving environment is inter-related with visual symptoms of fatigue on drivers’ faces to achieve fatigue detection. Optical and infrared (IR) sensors are used to analyse the monotony in driving environment and to detect the visual symptoms of fatigue on human face. Internal cues from drivers faces and external cues from environment are combined together using machine learning algorithms to automatically detect fatigue.Keywords: intelligent transportation systems, bayesian networks, yawning computing, machine learning algorithms
Procedia PDF Downloads 4553218 Factors Affecting Internet Behavior and Life Satisfaction of Older Adult Learners with Use of Smartphone
Authors: Horng-Ji Lai
Abstract:
The intuitive design features and friendly interface of smartphone attract older adults. In Taiwan, many senior education institutes offer smartphone training courses for older adult learners who are interested in learning this innovative technology. It is expected that the training courses can help them to enjoy the benefits of using smartphone and increase their life satisfaction. Therefore, it is important to investigate the factors that influence older adults’ behavior of using smartphone. The purpose of the research was to develop and test a research model that investigates the factors (self-efficacy, social connection, the need to seek health information, and the need to seek financial information) affecting older adult learners’ Internet behaviour and their life satisfaction with use of smartphone. Also, this research sought to identify the relationship between the proposed variables. Survey method was used to collect research data. A Structural Equation Modeling was performed using Partial Least Squares (PLS) regression for data exploration and model estimation. The participants were 394 older adult learners from smartphone training courses in active aging learning centers located in central Taiwan. The research results revealed that self-efficacy significantly affected older adult learner’ social connection, the need to seek health information, and the need to seek financial information. The construct of social connection yielded a positive influence in respondents’ life satisfaction. The implications of these results for practice and future research are also discussed.Keywords: older adults, smartphone, internet behaviour, life satisfaction
Procedia PDF Downloads 1903217 An Evaluation of the Auxiliary Instructional App Amid Learning Chinese Characters for Children with Specific Learning Disorders
Authors: Chieh-Ning Lan, Tzu-Shin Lin, Kun-Hao Lin
Abstract:
Chinese handwriting skill is one of the basic skills of school-age children in Taiwan, which helps them to learn most academic subjects. Differ from the alphabetic language system, Chinese written language is a logographic script with a complicated 2-dimensional character structure as a morpheme. Visuospatial ability places a great role in Chinese handwriting to maintain good proportion and alignment of these interwoven strokes. In Taiwan, school-age students faced the challenge to recognize and write down Chinese characters, especially in children with written expression difficulties (CWWDs). In this study, we developed an instructional app to help CWWDs practice Chinese handwriting skills, and we aimed to apply the mobile assisted language learning (MALL) system in clinical writing strategies. To understand the feasibility and satisfaction of this auxiliary instructional writing app, we investigated the perceive and value both from school-age students and the clinic therapists, who were the target users and the experts. A group of 8 elementary school children, as well as 8 clinic therapists, were recruited. The school-age students were asked to go through a paper-based instruction and were asked to score the visual expression based on their graphic preference; the clinic therapists were asked to watch an introductive video of this instructional app and complete the online formative questionnaire. In the results of our study, from the perspective of user interface design, school-age students were more attracted to cartoon-liked pictures rather than line drawings or vivid photos. Moreover, compared to text, pictures which have higher semantic transparency were more commonly chosen by children. In terms of the quantitative survey from clinic therapists, they were highly satisfied with this auxiliary instructional writing app, including the concepts such as visual design, teaching contents, and positive reinforcement system. Furthermore, the qualitative results also suggested comprehensive positive feedbacks on the teaching contents and the feasibility of integrating the app into clinical treatments. Interestingly, we found that clinic therapists showed high agreement in approving CWWDs’ writing ability with using orthographic knowledge; however, in the qualitative section, clinic therapists pointed out that CWWDs usually have relative insufficient background knowledge in Chinese character orthographic rules, which because it is not a key-point in conventional handwriting instruction. Also, previous studies indicated that conventional Chinese reading and writing instructions were lacked of utilizing visual-spatial arrangement strategies. Based on the sharing experiences from all participants, we concluded several interesting topics that are worth to dedicate to in the future. In this undergoing app system, improvement and revision will be applied into the system design, and will establish a better and more useful instructional system for CWWDs within their treatments; enlightened by the opinions related to learning content, the importance of orthographic knowledge in Chinese character recognition should be well discussed and involved in CWWDs’ intervention in the future.Keywords: auxiliary instructional app, children with writing difficulties, Chinese handwriting, orthographic knowledge
Procedia PDF Downloads 1733216 Reconceptualising Faculty Teaching Competence: The Role of Agency during the Pandemic
Authors: Ida Fatimawati Adi Badiozaman, Augustus Raymond Segar
Abstract:
The Covid-19 pandemic transformed teaching contexts at an unprecedented level. Although studies have focused mainly on its impact on students, little is known about how emergency online teaching affects faculty members in higher education. Given that the pandemic has robbed teachers of opportunities for adequate preparation, it is vital to understand how teaching competencies were perceived in the crisis-response transition to online teaching and learning (OTL). Therefore, the study explores how academics perceive their readiness for OTL and what competencies were perceived to be central. Therefore, through a mixed-methods design, the study first explores through a survey how academics perceive their readiness for OTL and what competencies were perceived to be central. Emerging trends from the quantitative data of 330 academics (three public and three private Higher learning institutions) led to the formulation of interview guides for the subsequent qualitative phase. The authors use critical sensemaking (CSM) to analyse interviews with twenty-two teachers (n = 22) (three public; three private HEs) toward understanding the interconnected layers of influences they draw from as they make sense of their teaching competence. The sensemaking process reframed competence and readiness in that agentic competency emerged as crucial in shaping resilience and adaptability during the transition to OTL. The findings also highlight professional learningcriticalto teacher competence: course design, communication, time management, technological competence, and identity (re)construction. The findings highlight opportunities for strategic orientation to change during crisis. Implications for pedagogy and policy are discussed.Keywords: online teaching, pedagogical competence, agentic competence, agency, technological competence
Procedia PDF Downloads 813215 Reading Strategies of Generation X and Y: A Survey on Learners' Skills and Preferences
Authors: Kateriina Rannula, Elle Sõrmus, Siret Piirsalu
Abstract:
Mixed generation classroom is a phenomenon that current higher education establishments are faced with daily trying to meet the needs of modern labor market with its emphasis on lifelong learning and retraining. Representatives of mainly X and Y generations in one classroom acquiring higher education is a challenge to lecturers considering all the characteristics that differ one generation from another. The importance of outlining different strategies and considering the needs of the students lies in the necessity for everyone to acquire the maximum of the provided knowledge as well as to understand each other to study together in one classroom and successfully cooperate in future workplaces. In addition to different generations, there are also learners with different native languages which have an impact on reading and understanding texts in third languages, including possible translation. Current research aims to investigate, describe and compare reading strategies among the representatives of generation X and Y. Hypotheses were formulated - representatives of generation X and Y use different reading strategies which is also different among first and third year students of the before mentioned generations. Current study is an empirical, qualitative study. To achieve the aim of the research, relevant literature was analyzed and a semi-structured questionnaire conducted among the first and third year students of Tallinn Health Care College. Questionnaire consisted of 25 statements on the text reading strategies, 3 multiple choice questions on preferences considering the design and medium of the text, and three open questions on the translation process when working with a text in student’s third language. The results of the questionnaire were categorized, analyzed and compared. Both, generation X and Y described their reading strategies to be 'scanning' and 'surfing'. Compared to generation X, first year generation Y learners valued interactivity and nonlinear texts. Students frequently used strategies of skimming, scanning, translating and highlighting together with relevant-thinking and assistance-seeking. Meanwhile, the third-year generation Y students no longer frequently used translating, resourcing and highlighting while Generation X learners still incorporated these strategies. Knowing about different needs of the generations currently inside the classrooms and on the labor market enables us with tools to provide sustainable education and grants the society a work force that is more flexible and able to move between professions. Future research should be conducted in order to investigate the amount of learning and strategy- adoption between generations. As for reading, main suggestions arising from the research are as follows: make a variety of materials available to students; allow them to select what they want to read and try to make those materials visually attractive, relevant, and appropriately challenging for learners considering the differences of generations.Keywords: generation X, generation Y, learning strategies, reading strategies
Procedia PDF Downloads 1803214 A Study of Transferable Skills for Work-Based Learning (WBL) Assessment
Authors: Abdool Qaiyum Mohabuth
Abstract:
Transferrable skills are learnt abilities which are mainly acquired when experiencing work. University students have the opportunities to develop the knowledge and aptitude at work when they undertake WBL placement during their studies. There is a range of transferrable skills which students may acquire at their placement settings. Several studies have tried to identify a core set of transferrable skills which students can acquire at their placement settings. However, the different lists proposed have often been criticised for being exhaustive and duplicative. In addition, assessing the achievement of students on practice learning based on the transferrable skills is regarded as being complex and tedious due to the variability of placement settings. No attempt has been made in investigating whether these skills are assessable at practice settings. This study seeks to define a set of generic transferrable skills that can be assessed during WBL practice. Quantitative technique was used involving the design of two questionnaires. One was administered to University of Mauritius students who have undertaken WBL practice and the other was slightly modified, destined to mentors who have supervised and assessed students at placement settings. To obtain a good representation of the student’s population, the sample considered was stratified over four Faculties. As for the mentors, probability sampling was considered. Findings revealed that transferrable skills may be subject to formal assessment at practice settings. Hypothesis tested indicate that there was no significant difference between students and mentors as regards to the application of transferrable skills for formal assessment. A list of core transferrable skills that are assessable at any practice settings has been defined after taking into account their degree of being generic, extent of acquisition at work settings and their consideration for formal assessment. Both students and mentors assert that these transferrable skills are accessible at work settings and require commitment and energy to be acquired successfully.Keywords: knowledge, skills, assessment, placement, mentors
Procedia PDF Downloads 2773213 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization
Authors: R. O. Osaseri, A. R. Usiobaifo
Abstract:
The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault
Procedia PDF Downloads 3223212 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance
Authors: Ammar Alali, Mahmoud Abughaban
Abstract:
Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe
Procedia PDF Downloads 2293211 Attracting European Youths to STEM Education and Careers: A Pedagogical Approach to a Hybrid Learning Environment
Authors: M. Assaad, J. Mäkiö, T. Mäkelä, M. Kankaanranta, N. Fachantidis, V. Dagdilelis, A. Reid, C. R. del Rio, E. V. Pavlysh, S. V. Piashkun
Abstract:
To bring science and society together in Europe, thus increasing the continent’s international competitiveness, STEM (science, technology, engineering and mathematics) education must be more relatable to European youths in their everyday life. STIMEY (Science, Technology, Innovation, Mathematics, Engineering for the Young) project researches and develops a hybrid educational environment with multi-level components that is being designed and developed based on a well-researched pedagogical framework, aiming to make STEM education more attractive to young people aged 10 to 18 years in this digital era. This environment combines social media components, robotic artefacts, and radio to educate, engage and increase students’ interest in STEM education and careers from a young age. Additionally, it offers educators the necessary modern tools to deliver STEM education in an attractive and engaging manner in or out of class. Moreover, it enables parents to keep track of their children’s education, and collaborate with their teachers on their development. Finally, the open platform allows businesses to invest in the growth of the youths’ talents and skills in line with the economic and labour market needs through entrepreneurial tools. Thus, universities, schools, teachers, students, parents, and businesses come together to complete a circle in which STEM becomes part of the daily life of youths through a hybrid educational environment that also prepares them for future careers.Keywords: e-learning, entrepreneurship, pedagogy, robotics, serious gaming, social media, STEM education
Procedia PDF Downloads 3733210 Development of Instructional Material Using Scientific Approach to Make the Nature of Science (NOS) and Critical Thinking Explicit on Chemical Bonding and Intermolecular Forces Topics
Authors: Ivan Ashif Ardhana, Intan Mahanani
Abstract:
Chemistry education tends to change from triplet representation among macroscopic, microscopic, and symbolic to tetrahedron shape. This change set the aspect of human element on the top of learning. Meaning that students are expected to solve the problems involving the ethic, morality, and humanity through the class. Ability to solve the problems connecting either theories or applications is called scientific literacy which have been implemented in curriculum 2013 implicitly. Scientific literacy has an aspect of nature science and critical thinking. Both can be integrated to learning using scientific approach and scientific inquiry. Unfortunately, students’ ability of scientific literacy in Indonesia is far from expectation. A survey from PISA had proven it. Scientific literacy of Indonesian students is always at bottom five position from 2002 till 2012. Improving a scientific literacy needs many efforts against them. Developing an instructional material based on scientific approach is one kind of that efforts. Instructional material contains both aspect of nature of science and critical thinking which is instructed explicitly to improve the students’ understanding about science. Developing goal is to produce a prototype and an instructional material using scientific approach whose chapter is chemical bonding and intermolecular forces for high school students grade ten. As usual, the material is subjected to get either quantitative mark or suggestion through validation process using validation sheet instrument. Development model is adapted from 4D model containing four steps. They are define, design, develop, and disseminate. Nevertheless, development of instructional material had only done until third step. The final step wasn’t done because of time, cost, and energy limitations. Developed instructional material had been validated by four validators. They are coming from chemistry lecture and high school’s teacher which two at each. The result of this development research shown the average of quantitative mark of students’ book is 92.75% with very proper in criteria. Given at same validation process, teacher’s guiding book got the average mark by 96.98%, similar criteria with students’ book. Qualitative mark including both comments and suggestions resulted from validation process were used as consideration for the revision. The result concluded us how the instructional materials using scientific approach to explicit nature of science and critical thinking on the topic of chemical bonding and intermolecular forces are very proper if they are used at learning activity.Keywords: critical thinking, instructional material, nature of science, scientific literacy
Procedia PDF Downloads 2653209 Factors Impacting Technology Integration in EFL Classrooms: A Study of Qatari Independent Schools
Authors: Youmen Chaaban, Maha Ellili-Cherif
Abstract:
The purpose of this study was to examine the effects of teachers’ individual characteristics and perceptions of environmental factors that impact their technology integration into their EFL (English as a Foreign Language) classrooms. To this end, a national survey examining EFL teachers’ perceptions was conducted at Qatari Independent schools. 263 EFL teachers responded to the survey which investigated several factors known to impact technology integration. These factors included technology availability and support, EFL teachers’ perceptions of importance, obstacles facing technology integration, competency with technology use, and formal technology preparation. The impact of these factors on teachers’ and students’ educational technology use was further measured. The analysis of the data included descriptive statistics and a chi-square analysis test in order to examine the relationship between these factors. The results revealed important cultural factors that impact teachers’ practices and attitudes towards technology in the Qatari context. EFL teachers were found to integrate technology most prominently for instructional delivery and preparation. The use of technology as a learning tool received less emphasis. Teachers further revealed consistent perceptions about obstacles to integration, high levels of confidence in using technology, and consistent beliefs about the importance of using technology as a learning tool. Further analyses of the factors impacting technology integration can assist with Qatar’s technology advancement and development efforts by indicating the areas of strength and areas where additional efforts are needed. The results will lay the foundation for conducting context-specific professional development suitable for the needs of EFL teachers in Qatari Independent Schools.Keywords: educational technology integration, Qatar, EFL, independent schools, ICT
Procedia PDF Downloads 3833208 What We Know About Effective Learning for Pupils with SEN: Results of 2 Systematic Reviews and of a Global Classroom
Authors: Claudia Mertens, Amanda Shufflebarger
Abstract:
Step one: What we know about effective learning for pupils with SEN: results of 2 systematic reviews: Before establishing principles and practices for teaching and learning of pupils with SEN, we need a good overview of the results of empirical studies conducted in the respective field. Therefore, two systematic reviews on the use of digital tools in inclusive and non-inclusive school settings were conducted - taking into consideration studies published in German: One systematic review included studies having undergone a peer review process, and the second included studies without peer review). The results (collaboration of two German universities) will be presented during the conference. Step two: Students’ results of a research lab on “inclusive media education”: On this basis, German students worked on “inclusive media education” in small research projects (duration: 1 year). They were “education majors” enrolled in a course on inclusive media education. They conducted research projects on topics ranging from smartboards in inclusive settings, digital media in gifted math education, Tik Tok in German as a Foreign Language education and many more. As part of their course, the German students created an academic conference poster. In the conference, the results of these research projects/papers are put into the context of the results of the systematic reviews. Step three: Global Classroom: The German students’ posters were critically discussed in a global classroom in cooperation with Indiana University East (USA) and Hamburg University (Germany) in the winter/spring term of 2022/2023. 15 students in Germany collaborated with 15 students at Indiana University East. The IU East student participants were enrolled in “Writing in the Arts and Sciences,” which is specifically designed for pre-service teachers. The joint work began at the beginning of the Spring 2023 semester in January 2023 and continued until the end of the Uni Hamburg semester in February 2023. Before January, Uni Hamburg students had been working on a research project individually or in pairs. Didactic Approach: Both groups of students posted a brief video or audio introduction to a shared Canvas discussion page. In the joint long synchronous session, the students discussed key content terms such as inclusion, inclusive, diversity, etc., with the help of prompt cards, and they compared how they understood or applied these terms differently. Uni Hamburg students presented drafts of academic posters. IU East students gave them specific feedback. After that, IU East students wrote brief reflections summarizing what they learned from the poster. After the class, small groups were expected to create a voice recording reflecting on their experiences. In their recordings, they examined critical incidents, highlighting what they learned from these incidents. Major results of the student research and of the global classroom collaboration can be highlighted during the conference. Results: The aggregated results of the two systematic reviews AND of the research lab/global classroom can now be a sound basis for 1) improving accessibility for students with SEN and 2) for adjusting teaching materials and concepts to the needs of the students with SEN - in order to create successful learning.Keywords: digitalization, inclusion, inclusive media education, global classroom, systematic review
Procedia PDF Downloads 823207 The Role of Teacher Candidates' Beliefs in Their Development of Inclusive Teaching Practices
Authors: Charlotte Brenner, Fisayo Latilo, McKenna Causey
Abstract:
This study explores the transformation of teacher candidates' beliefs regarding inclusion and inclusive teaching practices during their instructional and practicum experiences in the Canadian context. With the increasing diversity of schools, the study investigates how teacher candidates' beliefs impact their implementation of inclusive teaching practices, which are essential for meeting diverse student needs. The research examines the influence of teacher education programs, transformative learning experiences, and inclusive practicum placements on teacher candidates' beliefs about inclusion. Using a multiple case study approach, the study assesses teacher candidates' initial beliefs, documents changes in these beliefs after coursework on inclusion, and explores the supports and constraints affecting belief development in both university and practicum settings. Preliminary findings suggest that teacher candidates generally hold positive beliefs about inclusion at the outset of their teacher education programs. However, coursework and practicum experiences significantly shape their understanding of diversity, strategies for inclusion, and awareness of broader social issues related to inclusive classrooms. The research underscores the critical role of teacher education programs in shaping teacher candidates' beliefs about inclusion and highlights the value of transformative learning experiences and inclusive practicum placements in enhancing their understanding of equity and inclusion. Continued research is necessary to identify specific elements within courses and practicum experiences that promote positive beliefs about inclusive teaching practices, ultimately contributing to the creation of more equitable classrooms and improved student outcomes.Keywords: inclusion, beliefs, teacher candidates, inclusive teaching practices
Procedia PDF Downloads 713206 Magnetic Navigation in Underwater Networks
Authors: Kumar Divyendra
Abstract:
Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.Keywords: clustering, deep learning, network backbone, parallel computing
Procedia PDF Downloads 983205 A Retrospective Study to Evaluate Verbal Scores of Autistic Children Who Received Hyperbaric Oxygen Therapy
Authors: Tami Peterson
Abstract:
Hyperbaric oxygen therapy (HBOT) has been hypothesized as an effective treatment for increasing verbal language skills in individuals on the autism spectrum. A child’s ability to effectively communicate with peers, parents, and caregivers impacts their level of independence and quality of personal relationships. This retrospective study will compare the speech development of participants aged 2-17 years that received 40 sessions of HBOT at 2.0 ATA to those who had not. Both groups will have a verbal assessment every six months. There were 31 subjects in the HBO group and 32 subjects in the non-HBO group. The statistical analysis will focus on whether hyperbaric oxygen therapy made a significant difference in Verbal Behavior Milestones Assessment and Placement Program (VB-MAPP) or Assessment of Basic Language and Learning Skills (ABLLS) results. The evidence demonstrates a strong correlation between HBOT and an increased change from baseline verbal scores compared to the control group, even in difficult to grasp areas such as spontaneous vocalization. We suggest this is due to the anti-inflammatory effects of hyperbaric oxygen therapy. Neuroinflammation causes hypoperfusion of critical central nervous system areas responsible for the symptoms described within the autism spectrum, such as problems with thought processing, memory, and speech. Decreasing the inflammation allows the brain to function properly, which results in improved verbal scores for the participants that underwent HBOT.Keywords: assessment of basic language and learning skills, autism spectrum disorder, hyperbaric oxygen therapy, verbal behavior milestones assessment and placement program
Procedia PDF Downloads 2143204 Effectiveness of Simulation Resuscitation Training to Improve Self-Efficacy of Physicians and Nurses at Aga Khan University Hospital in Advanced Cardiac Life Support Courses Quasi-Experimental Study Design
Authors: Salima R. Rajwani, Tazeen Ali, Rubina Barolia, Yasmin Parpio, Nasreen Alwani, Salima B. Virani
Abstract:
Introduction: Nurses and physicians have a critical role in initiating lifesaving interventions during cardiac arrest. It is important that timely delivery of high quality Cardio Pulmonary Resuscitation (CPR) with advanced resuscitation skills and management of cardiac arrhythmias is a key dimension of code during cardiac arrest. It will decrease the chances of patient survival if the healthcare professionals are unable to initiate CPR timely. Moreover, traditional training will not prepare physicians and nurses at a competent level and their knowledge level declines over a period of time. In this regard, simulation training has been proven to be effective in promoting resuscitation skills. Simulation teaching learning strategy improves knowledge level, and skills performance during resuscitation through experiential learning without compromising patient safety in real clinical situations. The purpose of the study is to evaluate the effectiveness of simulation training in Advanced Cardiac Life Support Courses by using the selfefficacy tool. Methods: The study design is a quantitative research design and non-randomized quasi-experimental study design. The study examined the effectiveness of simulation through self-efficacy in two instructional methods; one is Medium Fidelity Simulation (MFS) and second is Traditional Training Method (TTM). The sample size was 220. Data was compiled by using the SPSS tool. The standardized simulation based training increases self-efficacy, knowledge, and skills and improves the management of patients in actual resuscitation. Results: 153 students participated in study; CG: n = 77 and EG: n = 77. The comparison was done between arms in pre and post-test. (F value was 1.69, p value is <0.195 and df was 1). There was no significant difference between arms in the pre and post-test. The interaction between arms was observed and there was no significant difference in interaction between arms in the pre and post-test. (F value was 0.298, p value is <0.586 and df is 1. However, the results showed self-efficacy scores were significantly higher within experimental group in post-test in advanced cardiac life support resuscitation courses as compared to Traditional Training Method (TTM) and had overall (p <0.0001) and F value was 143.316 (mean score was 45.01 and SD was 9.29) verses pre-test result showed (mean score was 31.15 and SD was 12.76) as compared to TTM in post-test (mean score was 29.68 and SD was 14.12) verses pre-test result showed (mean score was 42.33 and SD was 11.39). Conclusion: The standardized simulation-based training was conducted in the safe learning environment in Advanced Cardiac Life Suport Courses and physicians and nurses benefited from self-confidence, early identification of life-threatening scenarios, early initiation of CPR, and provides high-quality CPR, timely administration of medication and defibrillation, appropriate airway management, rhythm analysis and interpretation, and Return of Spontaneous Circulation (ROSC), team dynamics, debriefing, and teaching and learning strategies that will improve the patient survival in actual resuscitation.Keywords: advanced cardiac life support, cardio pulmonary resuscitation, return of spontaneous circulation, simulation
Procedia PDF Downloads 803203 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor
Authors: Yash Jain
Abstract:
The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier
Procedia PDF Downloads 1633202 Using Artificial Intelligence Technology to Build the User-Oriented Platform for Integrated Archival Service
Authors: Lai Wenfang
Abstract:
Tthis study will describe how to use artificial intelligence (AI) technology to build the user-oriented platform for integrated archival service. The platform will be launched in 2020 by the National Archives Administration (NAA) in Taiwan. With the progression of information communication technology (ICT) the NAA has built many systems to provide archival service. In order to cope with new challenges, such as new ICT, artificial intelligence or blockchain etc. the NAA will try to use the natural language processing (NLP) and machine learning (ML) skill to build a training model and propose suggestions based on the data sent to the platform. NAA expects the platform not only can automatically inform the sending agencies’ staffs which records catalogues are against the transfer or destroy rules, but also can use the model to find the details hidden in the catalogues and suggest NAA’s staff whether the records should be or not to be, to shorten the auditing time. The platform keeps all the users’ browse trails; so that the platform can predict what kinds of archives user could be interested and recommend the search terms by visualization, moreover, inform them the new coming archives. In addition, according to the Archives Act, the NAA’s staff must spend a lot of time to mark or remove the personal data, classified data, etc. before archives provided. To upgrade the archives access service process, the platform will use some text recognition pattern to black out automatically, the staff only need to adjust the error and upload the correct one, when the platform has learned the accuracy will be getting higher. In short, the purpose of the platform is to deduct the government digital transformation and implement the vision of a service-oriented smart government.Keywords: artificial intelligence, natural language processing, machine learning, visualization
Procedia PDF Downloads 1743201 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format
Authors: Maryam Fallahpoor, Biswajeet Pradhan
Abstract:
Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format
Procedia PDF Downloads 88