Search results for: reduced order models
18596 The Development of a Comprehensive Sustainable Supply Chain Performance Measurement Theoretical Framework in the Oil Refining Sector
Authors: Dina Tamazin, Nicoleta Tipi, Sahar Validi
Abstract:
The oil refining industry plays vital role in the world economy. Oil refining companies operate in a more complex and dynamic environment than ever before. In addition, oil refining companies and the public are becoming more conscious of crude oil scarcity and climate changes. Hence, sustainability in the oil refining industry is becoming increasingly critical to the industry's long-term viability and to the environmental sustainability. Mainly, it is relevant to the measurement and evaluation of the company's sustainable performance to support the company in understanding their performance and its implication more objectively and establishing sustainability development plans. Consequently, the oil refining companies attempt to re-engineer their supply chain to meet the sustainable goals and standards. On the other hand, this research realized that previous research in oil refining sustainable supply chain performance measurements reveals that there is a lack of studies that consider the integration of sustainability in the supply chain performance measurement practices in the oil refining industry. Therefore, there is a need for research that provides performance guidance, which can be used to measure sustainability and assist in setting sustainable goals for oil refining supply chains. Accordingly, this paper aims to present a comprehensive oil refining sustainable supply chain performance measurement theoretical framework. In development of this theoretical framework, the main characteristics of oil refining industry have been identified. For this purpose, a thorough review of relevant literature on performance measurement models and sustainable supply chain performance measurement models has been conducted. The comprehensive oil refining sustainable supply chain performance measurement theoretical framework introduced in this paper aims to assist oil refining companies in measuring and evaluating their performance from a sustainability aspect to achieve sustainable operational excellence.Keywords: oil refining industry, oil refining sustainable supply chain, performance measurement, sustainability
Procedia PDF Downloads 29118595 Significance of Molecular Autophagic Pathway in Gaucher Disease Pathology
Authors: Ozlem Oral, Emre Taskin, Aysel Yuce, Serap Dokmeci, Devrim Gozuacik
Abstract:
Autophagy is an evolutionary conserved lysosome-dependent catabolic pathway, responsible for the degradation of long-lived proteins, abnormal aggregates and damaged organelles which cannot be degraded by the ubiquitin-proteasome system. Lysosomes degrade the substrates through the activity of lysosomal hydrolases and lysosomal membrane-bound proteins. Mutations in the coding region of these proteins cause malfunctional lysosomes, which contributes to the pathogenesis of lysosomal storage diseases. Gaucher disease is a lysosomal storage disease resulting from the mutation of a lysosomal membrane-associated glycoprotein called glucocerebrosidase and its cofactor saposin C. The disease leads to intracellular accumulation of glucosylceramide and other glycolipids. Because of the essential role of lysosomes in autophagic degradation, Gaucher disease may directly be linked to this pathway. In this study, we investigated the expression of autophagy and/or lysosome-related genes and proteins in fibroblast cells isolated from patients with different mutations. We carried out confocal microscopy analysis and examined autophagic flux by utilizing the differential pH sensitivities of RFP and GFP in mRFP-GFP-LC3 probe. We also evaluated lysosomal pH by active lysosome staining and lysosomal enzyme activity. Beside lysosomes, we also performed proteasomal activity and cell death analysis in patient samples. Our data showed significant attenuation in the expression of key autophagy-related genes and accumulation of their proteins in mutant cells. We found decreased the ability of autophagosomes to fuse with lysosomes, associated with elevated lysosomal pH and reduced lysosomal enzyme activity. Proteasomal degradation and cell death analysis showed reduced proteolytic activity of the proteasome, which consequently leads to increased susceptibility to cell death. Our data indicate that the major degradation pathways are affected by multifunctional lysosomes in mutant patient cells and may underlie in the mechanism of clinical severity of Gaucher patients. (This project is supported by TUBITAK-3501-National Young Researchers Career Development Program, Project No: 112T130).Keywords: autophagy, Gaucher's disease, glucocerebrosidase, mutant fibroblasts
Procedia PDF Downloads 32718594 Methylene Blue Removal Using NiO nanoparticles-Sand Adsorption Packed Bed
Authors: Nedal N. Marei, Nashaat Nassar
Abstract:
Many treatment techniques have been used to remove the soluble pollutants from wastewater as; dyes and metal ions which could be found in rich amount in the used water of the textile and tanneries industry. The effluents from these industries are complex, containing a wide variety of dyes and other contaminants, such as dispersants, acids, bases, salts, detergents, humectants, oxidants, and others. These techniques can be divided into physical, chemical, and biological methods. Adsorption has been developed as an efficient method for the removal of heavy metals from contaminated water and soil. It is now recognized as an effective method for the removal of both organic and inorganic pollutants from wastewaters. Nanosize materials are new functional materials, which offer high surface area and have come up as effective adsorbents. Nano alumina is one of the most important ceramic materials widely used as an electrical insulator, presenting exceptionally high resistance to chemical agents, as well as giving excellent performance as a catalyst for many chemical reactions, in microelectronic, membrane applications, and water and wastewater treatment. In this study, methylene blue (MB) dye has been used as model dye of textile wastewater in order to synthesize a synthetic MB wastewater. NiO nanoparticles were added in small percentage in the sand packed bed adsorption columns to remove the MB from the synthetic textile wastewater. Moreover, different parameters have been evaluated; flow of the synthetic wastewater, pH, height of the bed, percentage of the NiO to the sand in the packed material. Different mathematical models where employed to find the proper model which describe the experimental data and help to analyze the mechanism of the MB adsorption. This study will provide good understanding of the dyes adsorption using metal oxide nanoparticles in the classical sand bed.Keywords: adsorption, column, nanoparticles, methylene
Procedia PDF Downloads 27218593 Electro-Winning of Dilute Solution of Copper Metal from Sepon Mine, Lao PDR
Authors: S. Vasailor, C. Rattanakawin
Abstract:
Electro-winning of copper metal from dilute sulfate solution (13.7 g/L) was performed in a lab electrolytic cell with stainless-steel cathode and lead-alloy anode. The effects of various parameters including cell voltage, electro-winning temperature and time were studied in order to acquire an appropriate current efficiency of copper deposition. The highest efficiency is about 95% obtaining from electro-winning condition of 3V, 55°C and 3,600 s correspondingly. The cathode copper with 95.5% Cu analyzed using atomic absorption spectrometry can be obtained from this single-winning condition. In order to increase the copper grade, solvent extraction should be used to increase the sulfate concentration, say 50 g/L, prior to winning the cathode copper effectively.Keywords: copper metal, current efficiency, dilute sulfate solution, electro-winning
Procedia PDF Downloads 14218592 Quantitative Analysis of Three Sustainability Pillars for Water Tradeoff Projects in Amazon
Authors: Taha Anjamrooz, Sareh Rajabi, Hasan Mahmmud, Ghassan Abulebdeh
Abstract:
Water availability, as well as water demand, are not uniformly distributed in time and space. Numerous extra-large water diversion projects are launched in Amazon to alleviate water scarcities. This research utilizes statistical analysis to examine the temporal and spatial features of 40 extra-large water diversion projects in Amazon. Using a network analysis method, the correlation between seven major basins is measured, while the impact analysis method is employed to explore the associated economic, environmental, and social impacts. The study unearths that the development of water diversion in Amazon has witnessed four stages, from a preliminary or initial period to a phase of rapid development. It is observed that the length of water diversion channels and the quantity of water transferred have amplified significantly in the past five decades. As of 2015, in Amazon, more than 75 billion m³ of water was transferred amidst 12,000 km long channels. These projects extend over half of the Amazon Area. The River Basin E is currently the most significant source of transferred water. Through inter-basin water diversions, Amazon gains the opportunity to enhance the Gross Domestic Product (GDP) by 5%. Nevertheless, the construction costs exceed 70 billion US dollars, which is higher than any other country. The average cost of transferred water per unit has amplified with time and scale but reduced from western to eastern Amazon. Additionally, annual total energy consumption for pumping exceeded 40 billion kilowatt-hours, while the associated greenhouse gas emissions are assessed to be 35 million tons. Noteworthy to comprehend that ecological problems initiated by water diversion influence the River Basin B and River Basin D. Due to water diversion, more than 350 thousand individuals have been relocated, away from their homes. In order to enhance water diversion sustainability, four categories of innovative measures are provided for decision-makers: development of water tradeoff projects strategies, improvement of integrated water resource management, the formation of water-saving inducements, and pricing approach, and application of ex-post assessment.Keywords: sustainability, water trade-off projects, environment, Amazon
Procedia PDF Downloads 13618591 Analysis of Business Intelligence Tools in Healthcare
Authors: Avishkar Gawade, Omkar Bansode, Ketan Bhambure, Bhargav Deore
Abstract:
In recent year wide range of business intelligence technology have been applied to different area in order to support decision making process BI enables extraction of knowledge from data store. BI tools usually used in public health field for financial and administrative purposes.BI uses a dashboard in presentation stage to deliver information to information to end users.In this paper,we intend to analyze some open source BI tools on the market and their applicability in the clinical sphere taking into consideration the general characteristics of the clinical environment.A pervasive BI platform was developed using a real case in order to prove the tool viability.Analysis of various BI Tools in done with the help of several parameters such as data security,data integration,data quality reporting and anlaytics,performance,scalability and cost effectivesness.Keywords: CDSS, EHR, business intelliegence, tools
Procedia PDF Downloads 14318590 Anti-infertility Effect of Rauwolfia Vomitoria Root Extract on Reproduction Parameters in Sleep Deprived Male Rats
Authors: Akwu Bala Peter, Busuyi Kehinde David, Akwu Ojoma Racheal
Abstract:
Sleep deprivation has become increasingly common and is known to induce oxidative stress, resulting in the production of reactive oxygen species that can cause damage to neurons and cells. This study investigated the potential anti-infertility effects of Rauwolfia vomitoria root extract on reproductive functions in sleep-deprived male rats. Forty-two male albino rats were divided into seven groups based on their dosing regimen. Groups 1 and 2 underwent sleep deprivation using the water Morris maze method, with the groups receiving 200 and 400mg/kg of the extract, respectively, orally. Other groups received only the extract, sleep deprivation alone, sleep deprivation with vitamin E treatment, or served as controls. oral administration was done for 14 days, and animals were sacrificed for 15 days for their hormone and biochemical analysis. Testis and accessory organs were removed and weighed. Sperm count, viability and motility were also evaluated. Results indicated significant decreases in sperm motility, viability, count, and hormone levels in sleep-deprived rats compared to controls. However, treatment with Rauwolfia vomitoria extract, and vitamin E restored these parameters close to control levels, with a dose-dependent effect observed in sperm motility. Moreover, levels of nitric oxide (NO) and malondialdehyde (MDA), markers of oxidative stress, were significantly higher in sleep-deprived rats compared to controls. Treatment with the extract and vitamin E significantly reduced these levels, particularly at higher doses. Furthermore, sleep deprivation led to decreased activities of antioxidant enzymes and reduced glutathione concentration, which were restored with extract and vitamin E treatment. Rauwolfia vomitoria extract demonstrated potential as an anti-infertility agent by increasing antioxidant enzymes and scavenging free radicals, thereby ameliorating oxidative stress induced by sleep deprivation. These findings highlight the importance of further research into natural remedies for mitigating the adverse effects of sleep deprivation on reproductive health.Keywords: sleep-deprivation, extract, reproduction, Ameliorate
Procedia PDF Downloads 718589 Response Regimes and Vibration Mitigation in Equivalent Mechanical Model of Strongly Nonlinear Liquid Sloshing
Authors: Maor Farid, Oleg Gendelman
Abstract:
Equivalent mechanical model of liquid sloshing in partially-filled cylindrical vessel is treated in the cases of free oscillations and of horizontal base excitation. The model is designed to cover both the linear and essentially nonlinear sloshing regimes. The latter fluid behaviour might involve hydraulic impacts interacting with the inner walls of the tank. These impulsive interactions are often modeled by high-power potential and dissipation functions. For the sake of analytical description, we use the traditional approach by modeling the impacts with velocity-dependent restitution coefficient. This modelling is similar to vibro-impact nonlinear energy sink (VI NES) which was recently explored for its vibration mitigation performances and nonlinear response regimes. Steady-state periodic regimes and chaotic strongly modulated responses (CSMR) are detected. Those dynamical regimes were described by the system's slow motion on the slow invariant manifold (SIM). There is a good agreement between the analytical results and numerical simulations. Subsequently, Finite-Element (FE) method is used to determine and verify the model parameters and to identify dominant dynamical regimes, natural modes and frequencies. The tank failure modes are identified and critical locations are identified. Mathematical relation is found between degrees-of-freedom (DOFs) motion and the mechanical stress applied in the tank critical section. This is the prior attempt to take under consideration large-amplitude nonlinear sloshing and tank structure elasticity effects for design, regulation definition and resistance analysis purposes. Both linear (tuned mass damper, TMD) and nonlinear (nonlinear energy sink, NES) passive energy absorbers contribution to the overall system mitigation is firstly examined, in terms of both stress reduction and time for vibration decay.Keywords: nonlinear energy sink (NES), reduced-order modelling, liquid sloshing, vibration mitigation, vibro-impact dynamics
Procedia PDF Downloads 14918588 Electronic Commerce in Georgia: Problems and Development Perspectives
Authors: Nika GorgoShadze, Anri Shainidze, Bachuki Katamadze
Abstract:
In parallel to the development of the digital economy in the world, electronic commerce is also widely developing. Internet and ICT (information and communication technology) have created new business models as well as promoted to market consolidation, sustainability of the business environment, creation of digital economy, facilitation of business and trade, business dynamism, higher competitiveness, etc. Electronic commerce involves internet technology which is sold via the internet. Nowadays electronic commerce is a field of business which is used by leading world brands very effectively. After the research of internet market in Georgia, it was found out that quality of internet is high in Tbilisi and is low in the regions. The internet market of Tbilisi can be evaluated as high-speed internet service, competitive and cost effective internet market. Development of electronic commerce in Georgia is connected with organizational and methodological as well as legal problems. First of all, a legal framework should be developed which will regulate responsibilities of organizations. The Ministry of Economy and Sustainable Development will play a crucial role in creating legal framework. Ministry of Justice will also be involved in this process as well as agency for data exchange. Measures should be taken in order to make electronic commerce in Georgia easier. Business companies may be offered some model to get low-cost and complex service. A service centre should be created which will provide all kinds of online-shopping. This will be a rather interesting innovation which will facilitate online-shopping in Georgia. Development of electronic business in Georgia requires modernized infrastructure of telecommunications (especially in the regions) as well as solution of institutional and socio-economic problems. Issues concerning internet availability and computer skills are also important.Keywords: electronic commerce, internet market, electronic business, information technology, information society, electronic systems
Procedia PDF Downloads 38718587 Non-Linear Assessment of Chromatographic Lipophilicity of Selected Steroid Derivatives
Authors: Milica Karadžić, Lidija Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Anamarija Mandić, Aleksandar Oklješa, Andrea Nikolić, Marija Sakač, Katarina Penov Gaši
Abstract:
Using chemometric approach, the relationships between the chromatographic lipophilicity and in silico molecular descriptors for twenty-nine selected steroid derivatives were studied. The chromatographic lipophilicity was predicted using artificial neural networks (ANNs) method. The most important in silico molecular descriptors were selected applying stepwise selection (SS) paired with partial least squares (PLS) method. Molecular descriptors with satisfactory variable importance in projection (VIP) values were selected for ANN modeling. The usefulness of generated models was confirmed by detailed statistical validation. High agreement between experimental and predicted values indicated that obtained models have good quality and high predictive ability. Global sensitivity analysis (GSA) confirmed the importance of each molecular descriptor used as an input variable. High-quality networks indicate a strong non-linear relationship between chromatographic lipophilicity and used in silico molecular descriptors. Applying selected molecular descriptors and generated ANNs the good prediction of chromatographic lipophilicity of the studied steroid derivatives can be obtained. This article is based upon work from COST Actions (CM1306 and CA15222), supported by COST (European Cooperation and Science and Technology).Keywords: artificial neural networks, chemometrics, global sensitivity analysis, liquid chromatography, steroids
Procedia PDF Downloads 35018586 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland
Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski
Abstract:
PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks
Procedia PDF Downloads 15318585 Oxidative Stress Related Alteration of Mitochondrial Dynamics in Cellular Models
Authors: Orsolya Horvath, Laszlo Deres, Krisztian Eros, Katalin Ordog, Tamas Habon, Balazs Sumegi, Kalman Toth, Robert Halmosi
Abstract:
Introduction: Oxidative stress induces an imbalance in mitochondrial fusion and fission processes, finally leading to cell death. The two antioxidant molecules, BGP-15 and L2286 have beneficial effects on mitochondrial functions and on cellular oxidative stress response. In this work, we studied the effects of these compounds on the processes of mitochondrial quality control. Methods: We used H9c2 cardiomyoblast and isolated neonatal rat cardiomyocytes (NRCM) for the experiments. The concentration of stressors and antioxidants was beforehand determined with MTT test. We applied 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG) in 125 µM, 400 µM and 800 µM concentrations for 4 and 8 hours on H9c2 cells. H₂O₂ was applied in 150 µM and 300 µM concentration for 0.5 and 4 hours on both models. L2286 was administered in 10 µM, while BGP-15 in 50 µM doses. Cellular levels of the key proteins playing role in mitochondrial dynamics were measured in Western blot samples. For the analysis of mitochondrial network dynamics, we applied electron microscopy and immunocytochemistry. Results: Due to MNNG treatment the level of fusion proteins (OPA1, MFN2) decreased, while the level of fission protein DRP1 elevated markedly. The levels of fusion proteins OPA1 and MNF2 increased in the L2286 and BGP-15 treated groups. During the 8 hour treatment period, the level of DRP1 also increased in the treated cells (p < 0.05). In the H₂O₂ stressed cells, administration of L2286 increased the level of OPA1 in both H9c2 and NRCM models. MFN2 levels in isolated neonatal rat cardiomyocytes raised considerably due to BGP-15 treatment (p < 0.05). L2286 administration decreased the DRP1 level in H9c2 cells (p < 0.05). We observed that the H₂O₂-induced mitochondrial fragmentation could be decreased by L2286 treatment. Conclusion: Our results indicated that the PARP-inhibitor L2286 has beneficial effect on mitochondrial dynamics during oxidative stress scenario, and also in the case of directly induced DNA damage. We could make the similar conclusions in case of BGP-15 administration, which, via reducing ROS accumulation, propagates fusion processes, this way aids preserving cellular viability. Funding: GINOP-2.3.2-15-2016-00049; GINOP-2.3.2-15-2016-00048; GINOP-2.3.3-15-2016-00025; EFOP-3.6.1-16-2016-00004; ÚNKP-17-4-I-PTE-209Keywords: H9c2, mitochondrial dynamics, neonatal rat cardiomyocytes, oxidative stress
Procedia PDF Downloads 15518584 A Hybrid Method for Determination of Effective Poles Using Clustering Dominant Pole Algorithm
Authors: Anuj Abraham, N. Pappa, Daniel Honc, Rahul Sharma
Abstract:
In this paper, an analysis of some model order reduction techniques is presented. A new hybrid algorithm for model order reduction of linear time invariant systems is compared with the conventional techniques namely Balanced Truncation, Hankel Norm reduction and Dominant Pole Algorithm (DPA). The proposed hybrid algorithm is known as Clustering Dominant Pole Algorithm (CDPA) is able to compute the full set of dominant poles and its cluster center efficiently. The dominant poles of a transfer function are specific eigenvalues of the state space matrix of the corresponding dynamical system. The effectiveness of this novel technique is shown through the simulation results.Keywords: balanced truncation, clustering, dominant pole, Hankel norm, model reduction
Procedia PDF Downloads 60218583 CeO₂-Decorated Graphene-coated Nickel Foam with NiCo Layered Double Hydroxide for Efficient Hydrogen Evolution Reaction
Authors: Renzhi Qi, Zhaoping Zhong
Abstract:
Under the dual pressure of the global energy crisis and environmental pollution, avoiding the consumption of non-renewable fossil fuels based on carbon as the energy carrier and developing and utilizing non-carbon energy carriers are the basic requirements for the future new energy economy. Electrocatalyst for water splitting plays an important role in building sustainable and environmentally friendly energy conversion. The oxygen evolution reaction (OER) is essentially limited by the slow kinetics of multi-step proton-electron transfer, which limits the efficiency and cost of water splitting. In this work, CeO₂@NiCo-NRGO/NF hybrid materials were prepared using nickel foam (NF) and nitrogen-doped reduced graphene oxide (NRGO) as conductive substrates by multi-step hydrothermal method and were used as highly efficient catalysts for OER. The well-connected nanosheet array forms a three-dimensional (3D) network on the substrate, providing a large electrochemical surface area with abundant catalytic active sites. The doping of CeO₂ in NiCo-NRGO/NF electrocatalysts promotes the dispersion of substances and its synergistic effect in promoting the activation of reactants, which is crucial for improving its catalytic performance against OER. The results indicate that CeO₂@NiCo-NRGO/NF only requires a lower overpotential of 250 mV to drive the current density of 10 mA cm-2 for an OER reaction of 1 M KOH, and exhibits excellent stability at this current density for more than 10 hours. The double layer capacitance (Cdl) values show that CeO₂@NiCo-NRGO/NF significantly affects the interfacial conductivity and electrochemically active surface area. The hybrid structure could promote the catalytic performance of oxygen evolution reaction, such as low initial potential, high electrical activity, and excellent long-term durability. The strategy for improving the catalytic activity of NiCo-LDH can be used to develop a variety of other electrocatalysts for water splitting.Keywords: CeO₂, reduced graphene oxide, NiCo-layered double hydroxide, oxygen evolution reaction
Procedia PDF Downloads 8718582 Treatment of Premalignant Lesions: Curcumin a Promising Non-Surgical Option
Authors: Heba A. Hazzah, Ragwa M. Farid, Maha M. A. Nasra, Mennatallah Zakria, Magda A. El Massik, Ossama Y. Abdallah
Abstract:
Introduction: Curcumin (Cur) is a polyphenol derived from the herbal remedy and dietary spice turmeric. It possesses diverse anti-inflammatory and anti-cancer properties following oral or topical administration. The buccal delivery of curcumin can be useful for both systemic and local disease treatments such as gingivitis, periodontal diseases, oral carcinomas, and precancerous oral lesions. Despite of its high activity, it suffers a limited application due to its low oral bioavailability, poor aqueous solubility, and instability. Aim: Preparation and characterization of curcumin solid lipid nanoparticles with a high loading capacity into a mucoadhesive gel for buccal application. Methodology: Curcumin was formulated as nanoparticles using different lipids, namely Gelucire 39/01, Gelucire 50/13, Precirol, Compritol, and Polaxomer 407 as a surfactant. The SLN were dispersed in a mucoadhesive gel matrix to be applied to the buccal mucosa. All formulations were evaluated for their content, entrapment efficiency, particle size, in vitro drug dialysis, ex vivo mucoadhesion test, and ex vivo permeation study using chicken buccal mucosa. Clinical evaluation was conducted on 15 cases suffering oral erythroplakia and erosive lichen planus. Results: The results showed high entrapment efficiency reaching almost 90 % using Gelucire 50, the loaded gel with Cur-SLN showed good adhesion property and 25 minutes in vivo residence time. In addition to stability enhancement for the Cur powder. All formulae did not show any drug permeated however, a significant amount of Cur was retained within the mucosal tissue. Pain and lesion sizes were significantly reduced upon topical treatment. Complete healing was observed after 6 weeks of treatment. Conclusion: These results open a room for the pharmaceutical technology to optimize the use of this golden magical powder to get the best out of it. In addition, the lack of local anti-inflammatory compounds with reduced side effects intensifies the importance of studying natural products for this purpose.Keywords: curcumin, erythroplakia, mucoadhesive, pain, solid lipid nanoparticles
Procedia PDF Downloads 45318581 Design, Construction and Performance Evaluation of a HPGe Detector Shield
Authors: M. Sharifi, M. Mirzaii, F. Bolourinovin, H. Yousefnia, M. Akbari, K. Yousefi-Mojir
Abstract:
A multilayer passive shield composed of low-activity lead (Pb), copper (Cu), tin (Sn) and iron (Fe) was designed and manufactured for a coaxial HPGe detector placed at a surface laboratory for reducing background radiation and radiation dose to the personnel. The performance of the shield was evaluated and efficiency curves of the detector were plotted by using of the various standard sources in different distances. Monte Carlo simulations and a set of TLD chips were used for dose estimation in two distances of 20 and 40 cm. The results show that the shield reduced background spectrum and the personnel dose more than 95%.Keywords: HPGe shield, background count, personnel dose, efficiency curve
Procedia PDF Downloads 46018580 Generating Links That Are Both Quasi-Alternating and Almost Alternating
Authors: Hamid Abchir, Mohammed Sabak2
Abstract:
We construct an infinite family of links which are both almost alternating and quasi-alternating from a given either almost alternating diagram representing a quasi-alternating link, or connected and reduced alternating tangle diagram. To do that we use what we call a dealternator extension which consists in replacing the dealternator by a rational tangle extending it. We note that all non-alternating and quasi-alternating Montesinos links can be obtained in that way. We check that all the obtained quasi-alternating links satisfy Conjecture 3.1 of Qazaqzeh et al. (JKTR 22 (6), 2013), that is the crossing number of a quasi-alternating link is less than or equal to its determinant. We also prove that the converse of Theorem 3.3 of Qazaqzeh et al. (JKTR 24 (1), 2015) is false.Keywords: quasi-alternating links, almost alternating links, tangles, determinants
Procedia PDF Downloads 16818579 Air Dispersion Model for Prediction Fugitive Landfill Gaseous Emission Impact in Ambient Atmosphere
Authors: Moustafa Osman Mohammed
Abstract:
This paper will explore formation of HCl aerosol at atmospheric boundary layers and encourages the uptake of environmental modeling systems (EMSs) as a practice evaluation of gaseous emissions (“framework measures”) from small and medium-sized enterprises (SMEs). The conceptual model predicts greenhouse gas emissions to ecological points beyond landfill site operations. It focuses on incorporation traditional knowledge into baseline information for both measurement data and the mathematical results, regarding parameters influence model variable inputs. The paper has simplified parameters of aerosol processes based on the more complex aerosol process computations. The simple model can be implemented to both Gaussian and Eulerian rural dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of organic vapors, and (iii) dry deposition. The chemical transformation of gas-phase compounds is taken into account photochemical formulation with exposure effects according to HCl concentrations as starting point of risk assessment. The discussion set out distinctly aspect of sustainability in reflection inputs, outputs, and modes of impact on the environment. Thereby, models incorporate abiotic and biotic species to broaden the scope of integration for both quantification impact and assessment risks. The later environmental obligations suggest either a recommendation or a decision of what is a legislative should be achieved for mitigation measures of landfill gas (LFG) ultimately.Keywords: air pollution, landfill emission, environmental management, monitoring/methods and impact assessment
Procedia PDF Downloads 32618578 Minimizing Fresh and Wastewater Using Water Pinch Technique in Petrochemical Industries
Authors: Wasif Mughees, Malik Al-Ahmad, Muhammad Naeem
Abstract:
This research involves the design and analysis of pinch-based water/wastewater networks to minimize water utility in the petrochemical and petroleum industries. A study has been done on Tehran Oil Refinery to analyze feasibilities of regeneration, reuse and recycling of water network. COD is considered as a single key contaminant. Amount of freshwater was reduced about 149m3/h (43.8%) regarding COD. Re-design (or retrofitting) of water allocation in the networks was undertaken. The results were analyzed through graphical method and mathematical programming technique which clearly demonstrated that amount of required water would be determined by mass transfer of COD.Keywords: minimization, water pinch, water management, pollution prevention
Procedia PDF Downloads 45518577 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources
Authors: Mustafa Alhamdi
Abstract:
Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification
Procedia PDF Downloads 15418576 Creep Analysis and Rupture Evaluation of High Temperature Materials
Authors: Yuexi Xiong, Jingwu He
Abstract:
The structural components in an energy facility such as steam turbine machines are operated under high stress and elevated temperature in an endured time period and thus the creep deformation and creep rupture failure are important issues that need to be addressed in the design of such components. There are numerous creep models being used for creep analysis that have both advantages and disadvantages in terms of accuracy and efficiency. The Isochronous Creep Analysis is one of the simplified approaches in which a full-time dependent creep analysis is avoided and instead an elastic-plastic analysis is conducted at each time point. This approach has been established based on the rupture dependent creep equations using the well-known Larson-Miller parameter. In this paper, some fundamental aspects of creep deformation and the rupture dependent creep models are reviewed and the analysis procedures using isochronous creep curves are discussed. Four rupture failure criteria are examined from creep fundamental perspectives including criteria of Stress Damage, Strain Damage, Strain Rate Damage, and Strain Capability. The accuracy of these criteria in predicting creep life is discussed and applications of the creep analysis procedures and failure predictions of simple models will be presented. In addition, a new failure criterion is proposed to improve the accuracy and effectiveness of the existing criteria. Comparisons are made between the existing criteria and the new one using several examples materials. Both strain increase and stress relaxation form a full picture of the creep behaviour of a material under high temperature in an endured time period. It is important to bear this in mind when dealing with creep problems. Accordingly there are two sets of rupture dependent creep equations. While the rupture strength vs LMP equation shows how the rupture time depends on the stress level under load controlled condition, the strain rate vs rupture time equation reflects how the rupture time behaves under strain-controlled condition. Among the four existing failure criteria for rupture life predictions, the Stress Damage and Strain Damage Criteria provide the most conservative and non-conservative predictions, respectively. The Strain Rate and Strain Capability Criteria provide predictions in between that are believed to be more accurate because the strain rate and strain capability are more determined quantities than stress to reflect the creep rupture behaviour. A modified Strain Capability Criterion is proposed making use of the two sets of creep equations and therefore is considered to be more accurate than the original Strain Capability Criterion.Keywords: creep analysis, high temperature mateials, rapture evalution, steam turbine machines
Procedia PDF Downloads 29318575 Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas
Authors: Ziad Abdeldayem, Jakub Markiewicz, Kunal Kansara, Laura Edwards
Abstract:
Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as filtering. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m.Keywords: airborne laser scanning, digital terrain models, filtering, forested areas
Procedia PDF Downloads 14218574 Study on Improvement the Performance of Construction Project Using Lean Principles
Authors: Sumaya Adina
Abstract:
The productivity of the construction industry has faced numerous challenges, rising costs, and scarce resources over the past forty years; therefore, one approach for improving and enhancing the framework is the use of lean techniques. Lean method outcomes from the use of a brand-form of manufacturing control in production. At a time when sustainability and efficiency are essential, lean offers a clear path to make the construction industry fit for the future. An excessive number of construction professionals and experts have efficiently optimised development initiatives using lean construction (LC) techniques to reduce waste, maximise value creation, and focus on the process that creates real added value and continuous improvement, strengthening flexibility and adaptability. The present research has been undertaken to study the improvement in the performance of construction projects using lean principles. The study work is divided into three stages. Initially, a questionnaire survey was conducted on visual management techniques to improve the performance of the construction projects. The questionnaire was distributed to civil engineers, architects, site managers, project managers, and full-time executives, with nearly 100 questionnaires shared with respondents. A total of 83 responses were received to determine the reliability of the data, and analysis was done using SPSS software. In the second stage, the impact of value stream mapping on the real-time project is determined and its performance in the form of time and cost reduction is evaluated. The case study examines a bunker-building project located in Kabul Afghanistan; the project was planned conventionally without considering the lean concepts. To reduce overall kinds of waste in the project, a plan was developed using the Vico Control software to visualize the value stream of the project. Finally, the impact of value stream mapping on the project's total cash flow is evaluated and compared by plotting the total cash flow curve using Vico software. As a result, labour costs were reduced by 33%. The duration of the project was reduced by 17% reducing the duration of the project also improved the cash flow of the entire project by 14% and increased the cash flow from negative 67% to negative 44%.Keywords: lean construction, cost and time overrun, value stream mapping, construction effeciency
Procedia PDF Downloads 1218573 Chaos Analysis of a 3D Finance System and Generalized Synchronization for N-Dimension
Authors: Muhammad Fiaz
Abstract:
The article in hand is the study of complex features like Zero Hopf Bifurcation, Chaos and Synchronization of integer and fractional order version of a new 3D finance system. Trusted tools of averaging theory and active control method are utilized for investigation of Zero Hopf bifurcation and synchronization for both versions respectively. Inventiveness of the paper is to find the answer of a question that is it possible to find a chaotic system which can be synchronized with any other of the same dimension? Based on different examples we categorically develop a theory that if a couple of master and slave chaotic dynamical system is synchronized by selecting a suitable gain matrix with special conditions then the master system is synchronized with any chaotic dynamical system of the same dimension. With the help of this study we developed generalized theorems for synchronization of n-dimension dynamical systems for integer as well as fractional versions. it proposed that this investigation will contribute a lot to control dynamical systems and only a suitable gain matrix with special conditions is enough to synchronize the system under consideration with any other chaotic system of the same dimension. Chaotic properties of fractional version of the new finance system are also analyzed at fractional order q=0.87. Simulations results, where required, also provided for authenticity of analytical study.Keywords: complex analysis, chaos, generalized synchronization, control dynamics, fractional order analysis
Procedia PDF Downloads 7318572 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches
Authors: Vahid Nourani, Atefeh Ashrafi
Abstract:
Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant
Procedia PDF Downloads 13418571 Phytoextraction of Some Heavy Metals from Artificially Polluted soil
Authors: Kareem Kalo Qassim, Hassan A. M. Mezori
Abstract:
The bioaccumulation of heavy metals in the environment has become a matter of public interest because it persists in the soil longer than other components of the biosphere. Bioremediation has emerged as the ideal alternative environmentally friendly and ecological sound technology for removing pollutants from polluted sites. Phytoremediation is an attractive remediation technology that makes use of plants to remove contaminants from the environment. A pot experiment was conducted under lath house conditions to evaluate the ability of plants (H. Annuus, S. Bicolor, and Z. Mays) to phytoextract heavy metals from artificially polluted soils by different concentrations of Cadmium, Lead, and Copper (0, 100, 200, 200 + EDTA). The Seed germination was influenced by the presence of heavy metals and inhibition increased by increasing the heavy metals concentration. A significant difference was observed in the effect of lead and copper. Generally, the length of root, shoot, and intact plant was reduced by all the concentrations used in the experiments. The root system was affected more than the shoot system of the same plants. All heavy metals concentrations caused a reduction in the dry weight and chlorophyll content of all tested plant species; the reduction was increased by increasing the concentration of all heavy metals, especially when EDTA was added. The Bioaccumulation of heavy metals concentration of all the tested plants increased by increasing the concentration. The highest accumulation of cadmium was (81.77mg kg⁻¹), and copper was ( 65.07 mg kg⁻¹) in S. bicolor, while lead-in H. annuus was (60.74 mg kg⁻¹). The order of accumulation of heavy metals in all the tested plant species in the root system and the intact plant was as follows: H. annuus ˃ S. bicolor ˃ Z. mays and shoot system was: H. annuus ˃ Z. mays ˃ S. bicolor. The highest TF of cadmium was (0.41) in H. annuus; lead was (0.72) in Z. mays and S. bicolor, and copper was (0.44) in Z. mays. The tested plant species varied in their response to the heavy metals and the inhibition was concentration depended. In general, the roots system was more affected by heavy metals toxicity than the shoots system; the roots system accumulated more heavy metals in the roots than the shoots system. The addition of EDTA to the last concentration of heavy metals facilitated the availably and absorption of heavy metals from the polluted soil by all tested plant species.Keywords: phytoextyraction, phytoremediation, translocation, heavy metals, soil pollution
Procedia PDF Downloads 15318570 Heterogeneous and Homogeneous Photocatalytic Degradation of Acid Orange 10 in Aqueous Solution
Authors: Merouani Djilali Redha, F. Abdelmalek, A. A. Addou
Abstract:
Advanced oxidation processes (AOPs) utilizing Homogenous photocatalysis (Fenton and photo-Fenton reactions), and Heterogeneous photocatalyse (TiO2 and ZnO) were investigated for the degradation of commercial azo dye ‘Orange G’ wastewater. Fenton and photo-Fenton experimental conditions were: Hydrogen peroxide concentration (10-2 M), Ferrous ions concentration (5.10-4 M), pH (2.8 – 3), UV lamp power (6 watt). Adding more ferrous ions enhanced the oxidation rate for the H2O2/Fe2+ and UV/H2O2/Fe2+ processes. The optimum catalyst loading was found 2.0 g.L-1 in our case for both catalysts TiO2 and ZnO. A comparative study of the photocatalytic degradation showed that these two catalysts have a comparable reactivity; it follows a pseudo-first-order kinetics. The degradation trends followed the order: UV365/Fenton > UV365/TiO2 > Solar Fenton > Solar TiO2 > Fenton ~UV365/ZnO. Among AOPs, processes using Fenton type reagent are relatively cheap and easy to operate and maintain. Moreover, UV365/Fenton process has been shown as effective in the treatment of OG dye. Dye was degraded following second-order kinetics. The rate constants was 0,041 .10+6 L.M-1.min-1. The degradation was followed by spectrophotometric method, chemical oxygen demand (COD) measures and high performance liquid chromatography analyses (HPLC). Some aromatic and aliphatic degradation compounds were identified. Degradation of Orange G by UV Fenton mechanism was also proposed.Keywords: AOPs, homogeneous catalysis, heterogeneous catalysis, acid orange 10, hydroxyl radical
Procedia PDF Downloads 41318569 Design of Dry Chemical Fire Extinguisher Inspection Equipment in Order to Reduce Ergonomic Risks for Fire Extinguisher Inspectors
Authors: Sitrapee Changmuenwai, Sudaratana Wongweragiat
Abstract:
It is important that a dry chemical fire extinguisher must be inspected for its readiness. For each inspection, the inspectors need to turn the fire extinguisher tank upside down to let the chemical inside the tank move and prevent solidification, which would make the tank not ready for usage when needed. Each tank weighs approximately 16 kg. The inspectors have to turn each tank upside down twice (2 minutes/round). They need to put the tanks over their shoulder close to their ear in order to hear the chemical flow inside the tank or use their hands to feel it. The survey and questionnaire 'The Questionnaire Know Body', which includes neck, left shoulder, upper and lower right arms suggest that all 12 security staffs have the same fatigues. The current dry chemical fire extinguisher inspection affects various ergonomic health problems. Rapid Entire Body Assessment (REBA) is used for evaluation of posture risks so that the working postures may be redesigned or corrected. The dry chemical fire extinguisher inspection equipment has been developed to reduce ergonomic health risks for the inspectors. A REBA analysis has been performed again, and the risk score has been decreased from 13 to 3. In addition, feedbacks from the first trial of the developed equipment show that there are demands to increase the installation in order to reduce the ergonomic health risks.Keywords: dry chemical fire extinguisher inspection equipment, ergonomic, REBA, rapid entire body assessment
Procedia PDF Downloads 12618568 Application of Seasonal Autoregressive Integrated Moving Average Model for Forecasting Monthly Flows in Waterval River, South Africa
Authors: Kassahun Birhanu Tadesse, Megersa Olumana Dinka
Abstract:
Reliable future river flow information is basic for planning and management of any river systems. For data scarce river system having only a river flow records like the Waterval River, a univariate time series models are appropriate for river flow forecasting. In this study, a univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was applied for forecasting Waterval River flow using GRETL statistical software. Mean monthly river flows from 1960 to 2016 were used for modeling. Different unit root tests and Mann-Kendall trend analysis were performed to test the stationarity of the observed flow time series. The time series was differenced to remove the seasonality. Using the correlogram of seasonally differenced time series, different SARIMA models were identified, their parameters were estimated, and diagnostic check-up of model forecasts was performed using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Information (AIc) and Hannan-Quinn (HQc) criteria, SARIMA (3, 0, 2) x (3, 1, 3)12 was selected as the best model for Waterval River flow forecasting. Therefore, this model can be used to generate future river information for water resources development and management in Waterval River system. SARIMA model can also be used for forecasting other similar univariate time series with seasonality characteristics.Keywords: heteroscedasticity, stationarity test, trend analysis, validation, white noise
Procedia PDF Downloads 20918567 Adapting Inclusive Residential Models to Match Universal Accessibility and Fire Protection
Authors: Patricia Huedo, Maria José Ruá, Raquel Agost-Felip
Abstract:
Ensuring sustainable development of urban environments means guaranteeing adequate environmental conditions, being resilient and meeting conditions of safety and inclusion for all people, regardless of their condition. All existing buildings should meet basic safety conditions and be equipped with safe and accessible routes, along with visual, acoustic and tactile signals to protect their users or potential visitors, and regardless of whether they undergo rehabilitation or change of use processes. Moreover, from a social perspective, we consider the need to prioritize buildings occupied by the most vulnerable groups of people that currently do not have specific regulations tailored to their needs. Some residential models in operation are not only outside the scope of application of the regulations in force; they also lack a project or technical data that would allow knowing the fire behavior of the construction materials. However, the difficulty and cost involved in adapting the entire building stock to current regulations can never justify the lack of safety for people. Hence, this work develops a simplified model to assess compliance with the basic safety conditions in case of fire and its compatibility with the specific accessibility needs of each user. The purpose is to support the designer in decision making, as well as to contribute to the development of a basic fire safety certification tool to be applied in inclusive residential models. This work has developed a methodology to support designers in adapting Social Services Centers, usually intended to vulnerable people. It incorporates a checklist of 9 items and information from sources or standards that designers can use to justify compliance or propose solutions. For each item, the verification system is justified, and possible sources of consultation are provided, considering the possibility of lacking technical documentation of construction systems or building materials. The procedure is based on diagnosing the degree of compliance with fire conditions of residential models used by vulnerable groups, considering the special accessibility conditions required by each user group. Through visual inspection and site surveying, the verification model can serve as a support tool, significantly streamlining the diagnostic phase and reducing the number of tests to be requested by over 75%. This speeds up and simplifies the diagnostic phase. To illustrate the methodology, two different buildings in the Valencian Region (Spain) have been selected. One case study is a mental health facility for residential purposes, located in a rural area, on the outskirts of a small town; the other one, is a day care facility for individuals with intellectual disabilities, located in a medium-sized city. The comparison between the case studies allow to validate the model in distinct conditions. Verifying compliance with a basic security level can allow a quality seal and a public register of buildings adapted to fire regulations to be established, similarly to what is being done with other types of attributes such as energy performance.Keywords: fire safety, inclusive housing, universal accessibility, vulnerable people
Procedia PDF Downloads 29