Search results for: graph neural network
1679 An Economic Way to Toughen Poly Acrylic Acid Superabsorbent Polymer Using Hyper Branched Polymer
Authors: Nazila Dehbari, Javad Tavakoli, Yakani Kambu, Youhong Tang
Abstract:
Superabsorbent hydrogels (SAP), as an enviro-sensitive material have been widely used for industrial and biomedical applications due to their unique structure and capabilities. Poor mechanical properties of SAPs - which is extremely related to their large volume change – count as a great weakness in adopting for high-tech applications. Therefore, improving SAPs’ mechanical properties via toughening methods by mixing different types of cross-linked polymer or introducing energy-dissipating mechanisms is highly focused. In this work, in order to change the intrinsic brittle character of commercialized Poly Acrylic Acid (here as SAP) to be semi-ductile, a commercial available highly branched tree-like dendritic polymers with numerous –OH end groups known as hyper-branched polymer (HB) has been added to PAA-SAP system in a single step, cost effective and environment friendly solvent casting method. Samples were characterized by FTIR, SEM and TEM and their physico-chemical characterization including swelling capabilities, hydraulic permeability, surface tension and thermal properties had been performed. Toughness energy, stiffness, elongation at breaking point, viscoelastic properties and samples extensibility were mechanical properties that had been performed and characterized as a function of samples lateral cracks’ length in different HB concentration. Addition of HB to PAA-SAP significantly improved mechanical and surface properties. Increasing equilibrium swelling ratio by about 25% had been experienced by the SAP-HB samples in comparison with SAPs; however, samples swelling kinetics remained without changes as initial rate of water uptake and equilibrium time haven’t been subjected to any changes. Thermal stability analysis showed that HB is participating in hybrid network formation while improving mechanical properties. Samples characterization by TEM showed that, the aggregated HB polymer binders into nano-spheres with diameter in range of 10–200 nm. So well dispersion in the SAP matrix occurred as it was predictable due to the hydrophilic character of the numerous hydroxyl groups at the end of HB which enhance the compatibility of HB with PAA-SAP. As the profused -OH groups in HB could react with -COOH groups in the PAA-SAP during the curing process, the formation of a 2D structure in the SAP-HB could be attributed to the strong interfacial adhesion between HB and the PAA-SAP matrix which hinders the activity of PAA chains (SEM analysis). FTIR spectra introduced new peaks at 1041 and 1121 cm-1 that attributed to the C–O(–OH) stretching hydroxyl and O–C stretching ester groups of HB polymer binder indicating the incorporation of HB polymer into the SAP structure. SAP-HB polymer has significant effects on the final mechanical properties. The brittleness of PAA hydrogels are decreased by introducing HB as the fracture energies of hydrogels increased from 8.67 to 26.67. PAA-HBs’ stretch ability enhanced about 10 folds while reduced as a function of different notches depth.Keywords: superabsorbent polymer, toughening, viscoelastic properties, hydrogel network
Procedia PDF Downloads 3201678 A Blockchain-Based Privacy-Preserving Physical Delivery System
Authors: Shahin Zanbaghi, Saeed Samet
Abstract:
The internet has transformed the way we shop. Previously, most of our purchases came in the form of shopping trips to a nearby store. Now, it’s as easy as clicking a mouse. But with great convenience comes great responsibility. We have to be constantly vigilant about our personal information. In this work, our proposed approach is to encrypt the information printed on the physical packages, which include personal information in plain text, using a symmetric encryption algorithm; then, we store that encrypted information into a Blockchain network rather than storing them in companies or corporations centralized databases. We present, implement and assess a blockchain-based system using Ethereum smart contracts. We present detailed algorithms that explain the details of our smart contract. We present the security, cost, and performance analysis of the proposed method. Our work indicates that the proposed solution is economically attainable and provides data integrity, security, transparency, and data traceability.Keywords: blockchain, Ethereum, smart contract, commit-reveal scheme
Procedia PDF Downloads 1471677 Policy Views of Sustainable Integrated Solution for Increased Synergy between Light Railways and Electrical Distribution Network
Authors: Mansoureh Zangiabadi, Shamil Velji, Rajendra Kelkar, Neal Wade, Volker Pickert
Abstract:
The EU has set itself a long-term goal of reducing greenhouse gas emissions by 80-95% of the 1990 levels by 2050 as set in the Energy Roadmap 2050. This paper reports on the European Union H2020 funded E-Lobster project which demonstrates tools and technologies, software and hardware in integrating the grid distribution, and the railway power systems with power electronics technologies (Smart Soft Open Point - sSOP) and local energy storage. In this context this paper describes the existing policies and regulatory frameworks of the energy market at European level with a special focus then at National level, on the countries where the members of the consortium are located, and where the demonstration activities will be implemented. By taking into account the disciplinary approach of E-Lobster, the main policy areas investigated includes electricity, energy market, energy efficiency, transport and smart cities. Energy storage will play a key role in enabling the EU to develop a low-carbon electricity system. In recent years, Energy Storage System (ESSs) are gaining importance due to emerging applications, especially electrification of the transportation sector and grid integration of volatile renewables. The need for storage systems led to ESS technologies performance improvements and significant price decline. This allows for opening a new market where ESSs can be a reliable and economical solution. One such emerging market for ESS is R+G management which will be investigated and demonstrated within E-Lobster project. The surplus of energy in one type of power system (e.g., due to metro braking) might be directly transferred to the other power system (or vice versa). However, it would usually happen at unfavourable instances when the recipient does not need additional power. Thus, the role of ESS is to enhance advantages coming from interconnection of the railway power systems and distribution grids by offering additional energy buffer. Consequently, the surplus/deficit of energy in, e.g. railway power systems, is not to be immediately transferred to/from the distribution grid but it could be stored and used when it is really needed. This will assure better energy management exchange between the railway power systems and distribution grids and lead to more efficient loss reduction. In this framework, to identify the existing policies and regulatory frameworks is crucial for the project activities and for the future development of business models for the E-Lobster solutions. The projections carried out by the European Commission, the Member States and stakeholders and their analysis indicated some trends, challenges, opportunities and structural changes needed to design the policy measures to provide the appropriate framework for investors. This study will be used as reference for the discussion in the envisaged workshops with stakeholders (DSOs and Transport Managers) in the E-Lobster project.Keywords: light railway, electrical distribution network, Electrical Energy Storage, policy
Procedia PDF Downloads 1341676 Investigated Optimization of Davidson Path Loss Model for Digital Terrestrial Television (DTTV) Propagation in Urban Area
Authors: Pitak Keawbunsong, Sathaporn Promwong
Abstract:
This paper presents an investigation on the efficiency of the optimized Davison path loss model in order to look for a suitable path loss model to design and planning DTTV propagation for small and medium urban areas in southern Thailand. Hadyai City in Songkla Province is chosen as the case study to collect the analytical data on the electric field strength. The optimization is conducted through the least square method while the efficiency index is through the statistical value of relative error (RE). The result of the least square method is the offset and slop of the frequency to be used in the optimized process. The statistical result shows that RE of the old Davidson model is at the least when being compared with the optimized Davison and the Hata models. Thus, the old Davison path loss model is the most accurate that further becomes the most optimized for the plan on the propagation network design.Keywords: DTTV propagation, path loss model, Davidson model, least square method
Procedia PDF Downloads 3371675 Freight Time and Cost Optimization in Complex Logistics Networks, Using a Dimensional Reduction Method and K-Means Algorithm
Authors: Egemen Sert, Leila Hedayatifar, Rachel A. Rigg, Amir Akhavan, Olha Buchel, Dominic Elias Saadi, Aabir Abubaker Kar, Alfredo J. Morales, Yaneer Bar-Yam
Abstract:
The complexity of providing timely and cost-effective distribution of finished goods from industrial facilities to customers makes effective operational coordination difficult, yet effectiveness is crucial for maintaining customer service levels and sustaining a business. Logistics planning becomes increasingly complex with growing numbers of customers, varied geographical locations, the uncertainty of future orders, and sometimes extreme competitive pressure to reduce inventory costs. Linear optimization methods become cumbersome or intractable due to a large number of variables and nonlinear dependencies involved. Here we develop a complex systems approach to optimizing logistics networks based upon dimensional reduction methods and apply our approach to a case study of a manufacturing company. In order to characterize the complexity in customer behavior, we define a “customer space” in which individual customer behavior is described by only the two most relevant dimensions: the distance to production facilities over current transportation routes and the customer's demand frequency. These dimensions provide essential insight into the domain of effective strategies for customers; direct and indirect strategies. In the direct strategy, goods are sent to the customer directly from a production facility using box or bulk trucks. In the indirect strategy, in advance of an order by the customer, goods are shipped to an external warehouse near a customer using trains and then "last-mile" shipped by trucks when orders are placed. Each strategy applies to an area of the customer space with an indeterminate boundary between them. Specific company policies determine the location of the boundary generally. We then identify the optimal delivery strategy for each customer by constructing a detailed model of costs of transportation and temporary storage in a set of specified external warehouses. Customer spaces help give an aggregate view of customer behaviors and characteristics. They allow policymakers to compare customers and develop strategies based on the aggregate behavior of the system as a whole. In addition to optimization over existing facilities, using customer logistics and the k-means algorithm, we propose additional warehouse locations. We apply these methods to a medium-sized American manufacturing company with a particular logistics network, consisting of multiple production facilities, external warehouses, and customers along with three types of shipment methods (box truck, bulk truck and train). For the case study, our method forecasts 10.5% savings on yearly transportation costs and an additional 4.6% savings with three new warehouses.Keywords: logistics network optimization, direct and indirect strategies, K-means algorithm, dimensional reduction
Procedia PDF Downloads 1381674 Telecom Infrastructure Outsourcing: An Innovative Approach
Authors: Irfan Zafar
Abstract:
Over the years the Telecom Industry in the country has shown a lot of progress in terms of infrastructure development coupled with the availability of telecom services. This has however led to the cut throat completion among various operators thus leading to reduced tariffs to the customers. The profit margins have seen a reduction thus leading the operators to think of other avenues by adopting new models while keeping the quality of service intact. The outsourcing of the network and the resources is one such model which has shown promising benefits which includes lower costs, less risk, higher levels of customer support and engagement, predictable expenses, access to the emerging technologies, benefiting from a highly skilled workforce, adaptability, focus on the core business while reducing capital costs. A lot of research has been done on outsourcing in terms of reasons of outsourcing and its benefits. However this study is an attempt to analyze the effects of the outsourcing on an organizations performance (Telecommunication Sector) considering the variables (1) Cost Reduction (2) Organizational Performance (3) Flexibility (4) Employee Performance (5) Access to Specialized Skills & Technology and the (6) Outsourcing Risks.Keywords: outsourcing, ICT, telecommunication, IT, networking
Procedia PDF Downloads 3961673 Fault Tree Analysis and Bayesian Network for Fire and Explosion of Crude Oil Tanks: Case Study
Authors: B. Zerouali, M. Kara, B. Hamaidi, H. Mahdjoub, S. Rouabhia
Abstract:
In this paper, a safety analysis for crude oil tanks to prevent undesirable events that may cause catastrophic accidents. The estimation of the probability of damage to industrial systems is carried out through a series of steps, and in accordance with a specific methodology. In this context, this work involves developing an assessment tool and risk analysis at the level of crude oil tanks system, based primarily on identification of various potential causes of crude oil tanks fire and explosion by the use of Fault Tree Analysis (FTA), then improved risk modelling by Bayesian Networks (BNs). Bayesian approach in the evaluation of failure and quantification of risks is a dynamic analysis approach. For this reason, have been selected as an analytical tool in this study. Research concludes that the Bayesian networks have a distinct and effective method in the safety analysis because of the flexibility of its structure; it is suitable for a wide variety of accident scenarios.Keywords: bayesian networks, crude oil tank, fault tree, prediction, safety
Procedia PDF Downloads 6601672 Projection of Solar Radiation for the Extreme South of Brazil
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Rafael Haag, Elton Rossini
Abstract:
This work aims to validate and make the projections of solar energy for the Brazilian period from 2025 to 2100. As the plants designed by the HadGEM2-AO (Global Hadley Model 2 - Atmosphere) General Circulation Model UK Met Office Hadley Center, belonging to Phase 5 of the Intercomparison of Coupled Models (CMIP5). The simulation results of the model are compared with monthly data from 2006 to 2013, measured by a network of meteorological sections of the National Institute of Meteorology (INMET). The performance of HadGEM2-AO is evaluated by the efficiency coefficient (CEF) and bias. The results are shown in the table of maps and maps. HadGEM2-AO, in the most pessimistic scenario, RCP 8.5 had a very good accuracy, presenting efficiency coefficients between 0.94 and 0.98, the perfect setting being Solar radiation, which indicates a horizontal trend, is a climatic alternative for some regions of the Brazilian scenario, especially in spring.Keywords: climate change, projections, solar radiation, scenarios climate change
Procedia PDF Downloads 1491671 Multiband Microstrip Slotted Patch Antenna for mmWave 5G Femtocell Applications
Authors: Bhargavi G., Arathi R. Shankar
Abstract:
Transmitter and receiver closer to every other, which creates the twin benefits of better-nice links and more spatial reuse. In a network with nomadic customers, this inevitably includes deploying greater infrastructure, normally in the form of microcells, hot spots, disbursed antennas, or relays. A less pricey alternative is the recent concept of femtocells, additionally known as domestic base stations that are facts get admission to points installed by means of domestic users to get higher indoor voice and records insurance. Femtocells have the potential to offer excessive exceptional community get entry to indoor customers at low cost, even as concurrently reducing the load. gift femtocells that perform in 4G can also be extended for 5G sub-6 GHz band. Designing the femtocell in mmWave band of 5G may have many blessings in terms of bandwidth availability and coverage. Multiband microstrip patch antennas can be considered as a low value and prominent antennas in designing the femtocells because the single antenna helps multiple frequency.Keywords: 5G, mmWave, antennas, wireless communications, femtocell
Procedia PDF Downloads 701670 A Study on Game Theory Approaches for Wireless Sensor Networks
Authors: M. Shoukath Ali, Rajendra Prasad Singh
Abstract:
Game Theory approaches and their application in improving the performance of Wireless Sensor Networks (WSNs) are discussed in this paper. The mathematical modeling and analysis of WSNs may have low success rate due to the complexity of topology, modeling, link quality, etc. However, Game Theory is a field, which can efficiently use to analyze the WSNs. Game Theory is related to applied mathematics that describes and analyzes interactive decision situations. Game theory has the ability to model independent, individual decision makers whose actions affect the surrounding decision makers. The outcome of complex interactions among rational entities can be predicted by a set of analytical tools. However, the rationality demands a stringent observance to a strategy based on measured of perceived results. Researchers are adopting game theory approaches to model and analyze leading wireless communication networking issues, which includes QoS, power control, resource sharing, etc.Keywords: wireless sensor network, game theory, cooperative game theory, non-cooperative game theory
Procedia PDF Downloads 4291669 Study on Wireless Transmission for Reconnaissance UAV with Wireless Sensor Network and Cylindrical Array of Microstrip Antennas
Authors: Chien-Chun Hung, Chun-Fong Wu
Abstract:
It is important for a commander to have real-time information to aware situations and to make decision in the battlefield. Results of modern technique developments have brought in this kind of information for military purposes. Unmanned aerial vehicle (UAV) is one of the means to gather intelligence owing to its widespread applications. It is still not clear whether or not the mini UAV with short-range wireless transmission system is used as a reconnaissance system in Taiwanese. In this paper, previous experience on the research of the sort of aerial vehicles has been applied with a data-relay system using the ZigBee modulus. The mini UAV developed is expected to be able to collect certain data in some appropriate theaters. The omni-directional antenna with high gain is also integrated into mini UAV to fit the size-reducing trend of airborne sensors. Two advantages are so far obvious. First, mini UAV can fly higher than usual to avoid being attacked from ground fires. Second, the data will be almost gathered during all maneuvering attitudes.Keywords: mini UAV, reconnaissance, wireless transmission, ZigBee modulus
Procedia PDF Downloads 1901668 Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm
Authors: Annalakshmi G., Sakthivel Murugan S.
Abstract:
This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods.Keywords: feature extraction, local directional pattern, ELM classifier, GWO optimization
Procedia PDF Downloads 1631667 Advances in the Design of Wireless Sensor Networks for Environmental Monitoring
Authors: Shathya Duobiene, Gediminas Račiukaitis
Abstract:
Wireless Sensor Networks (WSNs) are an emerging technology that opens up a new field of research. The significant advance in WSN leads to an increasing prevalence of various monitoring applications and real-time assistance in labs and factories. Selective surface activation induced by laser (SSAIL) is a promising technology that adapts to the WSN design freedom of shape, dimensions, and material. This article proposes and implements a WSN-based temperature and humidity monitoring system, and its deployed architectures made for the monitoring task are discussed. Experimental results of newly developed sensor nodes implemented in university campus laboratories are shown. Then, the simulation and the implementation results obtained through monitoring scenarios are displayed. At last, a convenient solution to keep the WSN alive and functional as long as possible is proposed. Unlike other existing models, on success, the node is self-powered and can utilise minimal power consumption for sensing and data transmission to the base station.Keywords: IoT, network formation, sensor nodes, SSAIL technology
Procedia PDF Downloads 861666 The Continuous Facility Location Problem and Transportation Mode Selection in the Supply Chain under Sustainability
Authors: Abdulaziz Alageel, Martino Luis, Shuya Zhong
Abstract:
The main focus of this research study is on the challenges faced in decision-making in a supply chain network regarding the facility location while considering carbon emissions. The study aims (i) to locate facilities (i.e., distribution centeres) in a continuous space considering limitations of capacity and the costs associated with opening and (ii) to reduce the cost of carbon emissions by selecting the mode of transportation. The problem is formulated as mixed-integer linear programming. This study hybridised a greedy randomised adaptive search (GRASP) and variable neighborhood search (VNS) to deal with the problem. Well-known datasets from the literature (Brimberg et al. 2001) are used and adapted in order to assess the performance of the proposed method. The proposed hybrid method produces encouraging results based on computational analysis. The study also highlights some research avenues for future recommendations.Keywords: supply chain, facility location, weber problem, sustainability
Procedia PDF Downloads 981665 An Intrusion Detection Systems Based on K-Means, K-Medoids and Support Vector Clustering Using Ensemble
Authors: A. Mohammadpour, Ebrahim Najafi Kajabad, Ghazale Ipakchi
Abstract:
Presently, computer networks’ security rise in importance and many studies have also been conducted in this field. By the penetration of the internet networks in different fields, many things need to be done to provide a secure industrial and non-industrial network. Fire walls, appropriate Intrusion Detection Systems (IDS), encryption protocols for information sending and receiving, and use of authentication certificated are among things, which should be considered for system security. The aim of the present study is to use the outcome of several algorithms, which cause decline in IDS errors, in the way that improves system security and prevents additional overload to the system. Finally, regarding the obtained result we can also detect the amount and percentage of more sub attacks. By running the proposed system, which is based on the use of multi-algorithmic outcome and comparing that by the proposed single algorithmic methods, we observed a 78.64% result in attack detection that is improved by 3.14% than the proposed algorithms.Keywords: intrusion detection systems, clustering, k-means, k-medoids, SV clustering, ensemble
Procedia PDF Downloads 2211664 Fly-Ash/Borosilicate Glass Based Geopolymers: A Mechanical and Microstructural Investigation
Authors: Gianmarco Taveri, Ivo Dlouhy
Abstract:
Geopolymers are well-suited materials to abate CO2 emission coming from the Portland cement production, and then replace them, in the near future, in building and other applications. The cost of production of geopolymers may be seen the only weakness, but the use of wastes as raw materials could provide a valid solution to this problem, as demonstrated by the successful incorporation of fly-ash, a by-product of thermal power plants, and waste glasses. Recycled glass in waste-derived geopolymers was lately employed as a further silica source. In this work we present, for the first time, the introduction of recycled borosilicate glass (BSG). BSG is actually a waste glass, since it derives from dismantled pharmaceutical vials and cannot be reused in the manufacturing of the original articles. Owing to the specific chemical composition (BSG is an ‘alumino-boro-silicate’), it was conceived to provide the key components of zeolitic networks, such as amorphous silica and alumina, as well as boria (B2O3), which may replace Al2O3 and contribute to the polycondensation process. The solid–state MAS NMR spectroscopy was used to assess the extent of boron oxide incorporation in the structure of geopolymers, and to define the degree of networking. FTIR spectroscopy was utilized to define the degree of polymerization and to detect boron bond vibration into the structure. Mechanical performance was tested by means of 3 point bending (flexural strength), chevron notch test (fracture toughness), compression test (compressive strength), micro-indentation test (Vicker’s hardness). Spectroscopy (SEM and Confocal spectroscopy) was performed on the specimens conducted to failure. FTIR showed a characteristic absorption band attributed to the stretching modes of tetrahedral boron ions, whose tetrahedral configuration is compatible to the reaction product of geopolymerization. 27Al NMR and 29Si NMR spectra were instrumental in understanding the extent of the reaction. 11B NMR spectroscopies evidenced a change of the trigonal boron (BO3) inside the BSG in favor of a quasi-total tetrahedral boron configuration (BO4). Thanks to these results, it was inferred that boron is part of the geopolymeric structure, replacing the Si in the network, similarly to the aluminum, and therefore improving the quality of the microstructure, in favor of a more cross-linked network. As expected, the material gained as much as 25% in compressive strength (45 MPa) compared to the literature, whereas no improvements were detected in flexural strength (~ 5 MPa) and superficial hardness (~ 78 HV). The material also exhibited a low fracture toughness (0.35 MPa*m1/2), with a tangible brittleness. SEM micrographies corroborated this behavior, showing a ragged surface, along with several cracks, due to the high presence of porosity and impurities, acting as preferential points for crack initiation. The 3D pattern of the surface fracture, following the confocal spectroscopy, evidenced an irregular crack propagation, whose proclivity was mainly, but not always, to follow the porosity. Hence, the crack initiation and propagation are largely unpredictable.Keywords: borosilicate glass, characterization, fly-ash, geopolymerization
Procedia PDF Downloads 2071663 Distribution System Planning with Distributed Generation and Capacitor Placements
Authors: Nattachote Rugthaicharoencheep
Abstract:
This paper presents a feeder reconfiguration problem in distribution systems. The objective is to minimize the system power loss and to improve bus voltage profile. The optimization problem is subjected to system constraints consisting of load-point voltage limits, radial configuration format, no load-point interruption, and feeder capability limits. A method based on genetic algorithm, a search algorithm based on the mechanics of natural selection and natural genetics, is proposed to determine the optimal pattern of configuration. The developed methodology is demonstrated by a 33-bus radial distribution system with distributed generations and feeder capacitors. The study results show that the optimal on/off patterns of the switches can be identified to give the minimum power loss while respecting all the constraints.Keywords: network reconfiguration, distributed generation capacitor placement, loss reduction, genetic algorithm
Procedia PDF Downloads 1741662 Development of Fluorescence Resonance Energy Transfer-Based Nanosensor for Measurement of Sialic Acid in vivo
Authors: Ruphi Naz, Altaf Ahmad, Mohammad Anis
Abstract:
Sialic acid (5-Acetylneuraminic acid, Neu5Ac) is a common sugar found as a terminal residue on glycoconjugates in many animals. Humans brain and the central nervous system contain the highest concentration of sialic acid (as N-acetylneuraminic acid) where these acids play an important role in neural transmission and ganglioside structure in synaptogenesis. Due to its important biological function, sialic acid is attracting increasing attention. To understand metabolic networks, fluxes and regulation, it is essential to be able to determine the cellular and subcellular levels of metabolites. Genetically-encoded fluorescence resonance energy transfer (FRET) sensors represent a promising technology for measuring metabolite levels and corresponding rate changes in live cells. Taking this, we developed a genetically encoded FRET (fluorescence resonance energy transfer) based nanosensor to analyse the sialic acid level in living cells. Sialic acid periplasmic binding protein (sia P) from Haemophilus influenzae was taken and ligated between the FRET pair, the cyan fluorescent protein (eCFP) and Venus. The chimeric sensor protein was expressed in E. coli BL21 (DE3) and purified by affinity chromatography. Conformational changes in the binding protein clearly confirmed the changes in FRET efficiency. So any change in the concentration of sialic acid is associated with the change in FRET ratio. This sensor is very specific to sialic acid and found stable with the different range of pH. This nanosensor successfully reported the intracellular level of sialic acid in bacterial cell. The data suggest that the nanosensors may be a versatile tool for studying the in vivo dynamics of sialic acid level non-invasively in living cellsKeywords: nanosensor, FRET, Haemophilus influenzae, metabolic networks
Procedia PDF Downloads 1321661 Urban Landscape Sustainability Between Past and Present: Toward a Future Vision
Authors: Dina Salem
Abstract:
A variety of definitions and interpretations for sustainable development has been offered since the widely known definition of the World Commission on Environment and Development in 1987, the perspectives have ranged from deep ecology to better life quality for people. Sustainable landscape is widely understood as a key contributor to urban sustainability for the fact that all landscapes has a social, economic, cultural and ecological function for the community’s well-being and urban development, that was evident even before the emergence of sustainability concept. In this paper, the concepts of landscape planning and sustainable development are briefly reviewed; visions for landscape sustainability are demonstrated and classified. Challenges facing sustainable landscape planning are discussed. Finally, the paper investigates how our future urban open space could be sustainable and how does this contribute to urban sustainability, by creating urban landscapes that takes into account the social and cultural values of users of urban open space besides the ecological balance of urban open spaces as an integrated network.Keywords: urban landscape, urban sustainability, resilience, open spaces
Procedia PDF Downloads 5461660 Timely Palliative Screening and Interventions in Oncology
Authors: Jaci Marie Mastrandrea, Rosario Haro
Abstract:
Background: The National Comprehensive Cancer Network (NCCN) recommends that healthcare institutions have established processes for integrating palliative care (PC) into cancer treatment and that all cancer patients be screened for PC needs upon initial diagnosis as well as throughout the entire continuum of care (National Comprehensive Cancer Network, 2021). Early PC screening and intervention is directly associated with improved patient outcomes. The Sky Lakes Cancer Treatment Center (SLCTC) is an institution that has access to PC services yet does not have protocols in place for identifying patients with palliative needs or a standardized referral process. The aim of this quality improvement project was to improve early access to PC services by establishing a standardized screening and referral process for outpatient oncology patients. Method: The sample population included all adult patients with an oncology diagnosis who presented to the SLCTC for treatment during the project timeline. The “Palliative and Supportive Needs Assessment'' (PSNA) screening tool was developed from validated, evidence-based PC referral criteria. The tool was initially implemented using paper forms, and data was collected over a period of eight weeks. Patients were screened by nurses on the SLCTC oncology treatment team. Nurses responsible for screening patients received an educational inservice prior to implementation. Patients with a PSNA score of three or higher received an educational handout on the topic of PC and education about PC and symptom management. A score of five or higher indicates that PC referral is strongly recommended, and the patient’s EHR is flagged for the oncology provider to review orders for PC referral. The PSNA tool was approved by Sky Lakes administration for full integration into Epic-Beacon. The project lead collaborated with the Sky Lakes’ information systems team and representatives from Epic on the tool’s aesthetic and functionality within the Epic system. SLCTC nurses and physicians were educated on how to document the PSNA within Epic and where to view results. Results: Prior to the implementation of the PSNA screening tool, the SLCTC had zero referrals to PC in the past year, excluding referrals to hospice. Data was collected from the completed screening assessments of 100 patients under active treatment at the SLCTC. Seventy-three percent of patients met criteria for PC referral with a score greater than or equal to three. Of those patients who met referral criteria, 53.4% (39 patients) were referred for a palliative and supportive care consultation. Patients that were not referred to PC upon meeting criteria were flagged in EPIC for re-screening within one to three months. Patients with lung cancer, chronic hematologic malignancies, breast cancer, and gastrointestinal malignancy most frequently met the criteria for PC referral and scored highest overall on the scale of 0-12. Conclusion: The implementation of a standardized PC screening tool at the SLCTC significantly increased awareness of PC needs among cancer patients in the outpatient setting. Additionally, data derived from this quality improvement project supports the national recommendation for PC to be an integral component of cancer treatment across the entire continuum of care.Keywords: oncology, palliative and supportive care, symptom management, outpatient oncology, palliative screening tool
Procedia PDF Downloads 1111659 Identity Verification Based on Multimodal Machine Learning on Red Green Blue (RGB) Red Green Blue-Depth (RGB-D) Voice Data
Authors: LuoJiaoyang, Yu Hongyang
Abstract:
In this paper, we experimented with a new approach to multimodal identification using RGB, RGB-D and voice data. The multimodal combination of RGB and voice data has been applied in tasks such as emotion recognition and has shown good results and stability, and it is also the same in identity recognition tasks. We believe that the data of different modalities can enhance the effect of the model through mutual reinforcement. We try to increase the three modalities on the basis of the dual modalities and try to improve the effectiveness of the network by increasing the number of modalities. We also implemented the single-modal identification system separately, tested the data of these different modalities under clean and noisy conditions, and compared the performance with the multimodal model. In the process of designing the multimodal model, we tried a variety of different fusion strategies and finally chose the fusion method with the best performance. The experimental results show that the performance of the multimodal system is better than that of the single modality, especially in dealing with noise, and the multimodal system can achieve an average improvement of 5%.Keywords: multimodal, three modalities, RGB-D, identity verification
Procedia PDF Downloads 681658 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing
Authors: Yehjune Heo
Abstract:
As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.Keywords: anti-spoofing, CNN, fingerprint recognition, loss function, optimizer
Procedia PDF Downloads 1361657 Technological Challenges for First Responders in Civil Protection; the RESPOND-A Solution
Authors: Georgios Boustras, Cleo Varianou Mikellidou, Christos Argyropoulos
Abstract:
Summer 2021 was marked by a number of prolific fires in the EU (Greece, Cyprus, France) as well as outside the EU (USA, Turkey, Israel). This series of dramatic events have stretched national civil protection systems and first responders in particular. Despite the introduction of National, Regional and International frameworks (e.g. rescEU), a number of challenges have arisen, not only related to climate change. RESPOND-A (funded by the European Commission by Horizon 2020, Contract Number 883371) introduces a unique five-tier project architectural structure for best associating modern telecommunications technology with novel practices for First Responders of saving lives, while safeguarding themselves, more effectively and efficiently. The introduced architecture includes Perception, Network, Processing, Comprehension, and User Interface layers, which can be flexibly elaborated to support multiple levels and types of customization, so, the intended technologies and practices can adapt to any European Environment Agency (EEA)-type disaster scenario. During the preparation of the RESPOND-A proposal, some of our First Responder Partners expressed the need for an information management system that could boost existing emergency response tools, while some others envisioned a complete end-to-end network management system that would offer high Situational Awareness, Early Warning and Risk Mitigation capabilities. The intuition behind these needs and visions sits on the long-term experience of these Responders, as well, their smoldering worry that the evolving threat of climate change and the consequences of industrial accidents will become more frequent and severe. Three large-scale pilot studies are planned in order to illustrate the capabilities of the RESPOND-A system. The first pilot study will focus on the deployment and operation of all available technologies for continuous communications, enhanced Situational Awareness and improved health and safety conditions for First Responders, according to a big fire scenario in a Wildland Urban Interface zone (WUI). An important issue will be examined during the second pilot study. Unobstructed communication in the form of the flow of information is severely affected during a crisis; the flow of information between the wider public, from the first responders to the public and vice versa. Call centers are flooded with requests and communication is compromised or it breaks down on many occasions, which affects in turn – the effort to build a common operations picture for all firstr esponders. At the same time the information that reaches from the public to the operational centers is scarce, especially in the aftermath of an incident. Understandably traffic if disrupted leaves no other way to observe but only via aerial means, in order to perform rapid area surveys. Results and work in progress will be presented in detail and challenges in relation to civil protection will be discussed.Keywords: first responders, safety, civil protection, new technologies
Procedia PDF Downloads 1411656 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system
Procedia PDF Downloads 1551655 Modelling the Art Historical Canon: The Use of Dynamic Computer Models in Deconstructing the Canon
Authors: Laura M. F. Bertens
Abstract:
There is a long tradition of visually representing the art historical canon, in schematic overviews and diagrams. This is indicative of the desire for scientific, ‘objective’ knowledge of the kind (seemingly) produced in the natural sciences. These diagrams will, however, always retain an element of subjectivity and the modelling methods colour our perception of the represented information. In recent decades visualisations of art historical data, such as hand-drawn diagrams in textbooks, have been extended to include digital, computational tools. These tools significantly increase modelling strength and functionality. As such, they might be used to deconstruct and amend the very problem caused by traditional visualisations of the canon. In this paper, the use of digital tools for modelling the art historical canon is studied, in order to draw attention to the artificial nature of the static models that art historians are presented with in textbooks and lectures, as well as to explore the potential of digital, dynamic tools in creating new models. To study the way diagrams of the canon mediate the represented information, two modelling methods have been used on two case studies of existing diagrams. The tree diagram Stammbaum der neudeutschen Kunst (1823) by Ferdinand Olivier has been translated to a social network using the program Visone, and the famous flow chart Cubism and Abstract Art (1936) by Alfred Barr has been translated to an ontological model using Protégé Ontology Editor. The implications of the modelling decisions have been analysed in an art historical context. The aim of this project has been twofold. On the one hand the translation process makes explicit the design choices in the original diagrams, which reflect hidden assumptions about the Western canon. Ways of organizing data (for instance ordering art according to artist) have come to feel natural and neutral and implicit biases and the historically uneven distribution of power have resulted in underrepresentation of groups of artists. Over the last decades, scholars from fields such as Feminist Studies, Postcolonial Studies and Gender Studies have considered this problem and tried to remedy it. The translation presented here adds to this deconstruction by defamiliarizing the traditional models and analysing the process of reconstructing new models, step by step, taking into account theoretical critiques of the canon, such as the feminist perspective discussed by Griselda Pollock, amongst others. On the other hand, the project has served as a pilot study for the use of digital modelling tools in creating dynamic visualisations of the canon for education and museum purposes. Dynamic computer models introduce functionalities that allow new ways of ordering and visualising the artworks in the canon. As such, they could form a powerful tool in the training of new art historians, introducing a broader and more diverse view on the traditional canon. Although modelling will always imply a simplification and therefore a distortion of reality, new modelling techniques can help us get a better sense of the limitations of earlier models and can provide new perspectives on already established knowledge.Keywords: canon, ontological modelling, Protege Ontology Editor, social network modelling, Visone
Procedia PDF Downloads 1261654 Simulation of Acoustic Properties of Borate and Tellurite Glasses
Authors: M. S. Gaafar, S. Y. Marzouk, I. S. Mahmoud, S. Al-Zobaidi
Abstract:
Makishima and Mackenzie model was used to simulation of acoustic properties (longitudinal and shear ultrasonic wave velocities, elastic moduli theoretically for many tellurite and borate glasses. The model was proposed mainly depending on the values of the experimentally measured density, which are obtained before. In this search work, we are trying to obtain the values of densities of amorphous glasses (as the density depends on the geometry of the network structure of these glasses). In addition, the problem of simulating the slope of linear regression between the experimentally determined bulk modulus and the product of packing density and experimental Young's modulus, were solved in this search work. The results showed good agreement between the experimentally measured values of densities and both ultrasonic wave velocities, and those theoretically determined.Keywords: glasses, ultrasonic wave velocities, elastic modulus, Makishima & Mackenzie Model
Procedia PDF Downloads 3841653 Clinical Application of Measurement of Eyeball Movement for Diagnose of Autism
Authors: Ippei Torii, Kaoruko Ohtani, Takahito Niwa, Naohiro Ishii
Abstract:
This paper shows developing an objectivity index using the measurement of subtle eyeball movement to diagnose autism. The developmentally disabled assessment varies, and the diagnosis depends on the subjective judgment of professionals. Therefore, a supplementary inspection method that will enable anyone to obtain the same quantitative judgment is needed. The diagnosis are made based on a comparison of the time of gazing an object in the conventional autistic study, but the results do not match. First, we divided the pupil into four parts from the center using measurements of subtle eyeball movement and comparing the number of pixels in the overlapping parts based on an afterimage. Then we developed the objective evaluation indicator to judge non-autistic and autistic people more clearly than conventional methods by analyzing the differences of subtle eyeball movements between the right and left eyes. Even when a person gazes at one point and his/her eyeballs always stay fixed at that point, their eyes perform subtle fixating movements (ie. tremors, drifting, microsaccades) to keep the retinal image clear. Particularly, the microsaccades link with nerves and reflect the mechanism that process the sight in a brain. We converted the differences between these movements into numbers. The process of the conversion is as followed: 1) Select the pixel indicating the subject's pupil from images of captured frames. 2) Set up a reference image, known as an afterimage, from the pixel indicating the subject's pupil. 3) Divide the pupil of the subject into four from the center in the acquired frame image. 4) Select the pixel in each divided part and count the number of the pixels of the overlapping part with the present pixel based on the afterimage. 5) Process the images with precision in 24 - 30fps from a camera and convert the amount of change in the pixels of the subtle movements of the right and left eyeballs in to numbers. The difference in the area of the amount of change occurs by measuring the difference between the afterimage in consecutive frames and the present frame. We set the amount of change to the quantity of the subtle eyeball movements. This method made it possible to detect a change of the eyeball vibration in numerical value. By comparing the numerical value between the right and left eyes, we found that there is a difference in how much they move. We compared the difference in these movements between non-autistc and autistic people and analyzed the result. Our research subjects consists of 8 children and 10 adults with autism, and 6 children and 18 adults with no disability. We measured the values through pasuit movements and fixations. We converted the difference in subtle movements between the right and left eyes into a graph and define it in multidimensional measure. Then we set the identification border with density function of the distribution, cumulative frequency function, and ROC curve. With this, we established an objective index to determine autism, normal, false positive, and false negative.Keywords: subtle eyeball movement, autism, microsaccade, pursuit eye movements, ROC curve
Procedia PDF Downloads 2761652 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement
Authors: Ferinar Moaidi, Mahdi Moaidi
Abstract:
Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.Keywords: distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement
Procedia PDF Downloads 1421651 Behavioral Finance in Hundred Keywords
Authors: Ramon Hernán, Maria Teresa Corzo
Abstract:
This study examines the impact and contribution of the main journals in the discipline of behavioral finance to determine the state of the art of the discipline and the growth lines and concepts studied to date. This is a unique and novel study given that a review of the discipline has not been carried out through the keywords of the articles that allows visualizing through this component of the research, which are the main topics of discussion and the relationships that arise between the concepts discussed. To carry out this study, 3,876 articles have been taken as a reference, which includes 15,859 keywords from the main journals responsible for the growth of the discipline.; Journal of Behavioral Finance, Review of Behavioral Finance, Journal of Behavioral and Experimental Economics, Journal of Behavioral and Experimental Economics and Review of Behavioral Finance. The results indicate which are the topics most covered in the discipline throughout the period from 2000 to 2020, how these concepts have been dealt with on a recurring basis along with others throughout the aforementioned period and how the different concepts have been grouped based on the keywords established by the authors for the classification of their articles with a network diagram to complete the analysis.Keywords: behavioral finance, keywords, co-words, top journals, data visualization
Procedia PDF Downloads 1891650 Web 2.0 in Higher Education: The Instructors’ Acceptance in Higher Educational Institutes in Kingdom of Bahrain
Authors: Amal M. Alrayes, Hayat M. Ali
Abstract:
Since the beginning of distance education with the rapid evolution of technology, the social network plays a vital role in the educational process to enforce the interaction been the learners and teachers. There are many Web 2.0 technologies, services and tools designed for educational purposes. This research aims to investigate instructors’ acceptance towards web-based learning systems in higher educational institutes in Kingdom of Bahrain. Questionnaire is used to investigate the instructors’ usage of Web 2.0 and the factors affecting their acceptance. The results confirm that instructors had high accessibility to such technologies. However, patterns of use were complex. Whilst most expressed interest in using online technologies to support learning activities, learners seemed cautious about other values associated with web-based system, such as the shared construction of knowledge in a public format. The research concludes that there are main factors that affect instructors’ adoption which are security, performance expectation, perceived benefits, subjective norm, and perceived usefulness.Keywords: Web 2.0, higher education, acceptance, students' perception
Procedia PDF Downloads 336