Search results for: pollution load index
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7576

Search results for: pollution load index

3676 Experimental and Comparative Study of Composite Thin Cylinder Subjected to Internal Pressure

Authors: Hakim S. Sultan Aljibori

Abstract:

An experimental procedure is developed to study the performance of composite thin wall cylinders subjected to internal pressure loading for investigations of stress distribution through the composite cylinders wall. Three types of fibers were used in this study are; woven roving glass fiber/epoxy, hybrid fiber/epoxy, and Kevlar fiber/epoxy composite specimens were fabricated and tested. All of these specimens subjected to uniformed pressure load using the hydraulic pump. Axial stress is identified, and values were found after collecting all the results. Comparison between the deferent types of specimens was done. Thus, the present investigation concludes the efficient and effective composite cylinder experimentally and provides a considerable advantage for using woven roving fibers in pressure vessels applications.

Keywords: stress distribution, composite material, internal pressure, glass fiber, hybrid fiber

Procedia PDF Downloads 144
3675 Mooring Analysis of Duct-Type Tidal Current Power System in Shallow Water

Authors: Chul H. Jo, Do Y. Kim, Bong K. Cho, Myeong J. Kim

Abstract:

The exhaustion of oil and the environmental pollution from the use of fossil fuel are increasing. Tidal current power (TCP) has been proposed as an alternative energy source because of its predictability and reliability. By applying a duct and single point mooring (SPM) system, a TCP device can amplify the generating power and keep its position properly. Because the generating power is proportional to cube of the current stream velocity, amplifying the current speed by applying a duct to a TCP system is an effective way to improve the efficiency of the power device. An SPM system can be applied at any water depth and is highly cost effective. Simple installation and maintenance procedures are also merits of an SPM system. In this study, we designed an SPM system for a duct-type TCP device for use in shallow water. Motions of the duct are investigated to obtain the response amplitude operator (RAO) as the magnitude of the transfer function. Parameters affecting the stability of the SPM system such as the fairlead departure angle, current velocity, and the number of clamp weights are analyzed and/or optimized. Wadam and OrcaFlex commercial software is used to design the mooring line.

Keywords: mooring design, parametric analysis, RAO (Response Amplitude Operator), SPM (Single Point Mooring)

Procedia PDF Downloads 277
3674 A Design of the Infrastructure and Computer Network for Distance Education, Online Learning via New Media, E-Learning and Blended Learning

Authors: Sumitra Nuanmeesri

Abstract:

The research focus on study, analyze and design the model of the infrastructure and computer networks for distance education, online learning via new media, e-learning and blended learning. The collected information from study and analyze process that information was evaluated by the index of item objective congruence (IOC) by 9 specialists to design model. The results of evaluate the model with the mean and standard deviation by the sample of 9 specialists value is 3.85. The results showed that the infrastructure and computer networks are designed to be appropriate to a great extent appropriate to a great extent.

Keywords: blended learning, new media, infrastructure and computer network, tele-education, online learning

Procedia PDF Downloads 389
3673 Micromechanical Determination of the Mechanical Properties of Carbon Nanotube-Polymer Composites with a Functionally Graded Interphase

Authors: Vahidullah Tac, Ercan Gurses

Abstract:

There have been numerous attempts at modelling carbon nanotube – polymer composites micromechanically in recent years, albeit to limited success. One of the major setbacks of the models used in the scientific community is the lack of regard to the different phases present in a nanocomposite. We employ a multi-phase micromechanical model that allows functionally grading certain phases to determine the mechanical properties of nanocomposites. The model has four distinct phases; the nanotube, the interface between the nanotube and polymer, the interphase, and the bulk matrix. Among the four phases, the interphase is functionally graded such that its moduli gradually decrease from some predetermined values to those of the bulk polymer. We find that the interface plays little role in stiffening/softening of the polymer per se , but instead, it is responsible for load transfer between the polymer and the carbon nanotube. Our results indicate that the carbon nanotube, as well as the interphase, have significant roles in stiffening the composite. The results are then compared to experimental findings and the interphase is tuned accordingly.

Keywords: carbon nanotube, composite, interphase, micromechanical modeling

Procedia PDF Downloads 153
3672 Mid-Temperature Methane-Based Chemical Looping Reforming for Hydrogen Production via Iron-Based Oxygen Carrier Particles

Authors: Yang Li, Mingkai Liu, Qiong Rao, Zhongrui Gai, Ying Pan, Hongguang Jin

Abstract:

Hydrogen is an ideal and potential energy carrier due to its high energy efficiency and low pollution. An alternative and promising approach to hydrogen generation is the chemical looping steam reforming of methane (CL-SRM) over iron-based oxygen carriers. However, the process faces challenges such as high reaction temperature (>850 ℃) and low methane conversion. We demonstrate that Ni-mixed Fe-based oxygen carrier particles have significantly improved the methane conversion and hydrogen production rate in the range of 450-600 ℃ under atmospheric pressure. The effect on the reaction reactivity of oxygen carrier particles mixed with different Ni-based particle mass ratios has been determined in the continuous unit. More than 85% of methane conversion has been achieved at 600 ℃, and hydrogen can be produced in both reduction and oxidation steps. Moreover, the iron-based oxygen carrier particles exhibited good cyclic performance during 150 consecutive redox cycles at 600 ℃. The mid-temperature iron-based oxygen carrier particles, integrated with a moving-bed chemical looping system, might provide a powerful approach toward more efficient and scalable hydrogen production.

Keywords: chemical looping, hydrogen production, mid-temperature, oxygen carrier particles

Procedia PDF Downloads 116
3671 Spatial Variation of Trace Elements in Suspended Sediments from Urban River

Authors: Daniel Macedo Neto, Sandro Froehner, Juan Sanez

Abstract:

Suspended sediments (SS) are an environmental constituent able to represent the effects of land use changes on watersheds. One important consideration of land use change is its implication on trace element loading. Water bodies have the capacity to retain trace elements. Spatial variation in trace elements concentrations can be associated with land occupation and sources of pollution. In this work, the spatial variation of trace elements in suspended sediments from an urban river was assessed. Time-integrated fluvial suspended sediment samples were installed in three different sites of Barigui River. The suspend solids were collected every 30 days, from May 2015 to August 2015 (total samples 12). Site P1 covers 44 km2 drainage area and has low land occupation, whilst P2 cover an area of 87 km2 and it is totally urban as P3, which area is higher than 130 km2. Trace elements (As, Cd, Cr, P, Pb and Zn) were analysed by ICP-ES. All elements analyzed showed a similar pattern, i.e., the concentration raise with the urbanization, exception for As (P1=7.75; P2=5.75; P3=5.60mg/kg). There was increase in concentration for Cd (P1=0.75; P2=0.78; P3=1.45mg/kg), Cr (P1=59.50; P2=101.75; P3=102.00 mg/kg), Zn (P1=142.25; P2=152.50; P3=223.00mg/kg), P (P1=937.50; P2=1,545.00; P3=2,355.00 mg/kg) and for Pb (P1=31.25; P2=32.75; P3=39.17±2.56 mg/kg). The variation in concentrations were as follow -27.74% (As), +93.33% (Cd), +71.43% (Cr), +151.20% (P), +25.33% (Pb) e +56.77% (Zn). Cd, Cr, P, Pb and Zn presented a clear trend of increasing the concentration from upstream to downstream. Such variation is more notorious for P, Cd and Cr, possibly due the urbanization.

Keywords: trace elements, erosion, urbanization, suspended sediments

Procedia PDF Downloads 300
3670 A Review and Classification of Maritime Disasters: The Case of Saudi Arabia's Coastline

Authors: Arif Almutairi, Monjur Mourshed

Abstract:

Due to varying geographical and tectonic factors, the region of Saudi Arabia has been subjected to numerous natural and man-made maritime disasters during the last two decades. Natural maritime disasters, such as cyclones and tsunamis, have been recorded in coastal areas of the Indian Ocean (including the Arabian Sea and the Gulf of Aden). Therefore, the Indian Ocean is widely recognised as the potential source of future destructive natural disasters that could affect Saudi Arabia’s coastline. Meanwhile, man-made maritime disasters, such as those arising from piracy and oil pollution, are located in the Red Sea and the Arabian Gulf, which are key locations for oil export and transportation between Asia and Europe. This paper provides a brief overview of maritime disasters surrounding Saudi Arabia’s coastline in order to classify them by frequency of occurrence and location, and discuss their future impact the region. Results show that the Arabian Gulf will be more vulnerable to natural maritime disasters because of its location, whereas the Red Sea is more vulnerable to man-made maritime disasters, as it is the key location for transportation between Asia and Europe. The results also show that with the aid of proper classification, effective disaster management can reduce the consequences of maritime disasters.

Keywords: disaster classification, maritime disaster, natural disasters, man-made disasters

Procedia PDF Downloads 177
3669 Deterioration Prediction of Pavement Load Bearing Capacity from FWD Data

Authors: Kotaro Sasai, Daijiro Mizutani, Kiyoyuki Kaito

Abstract:

Expressways in Japan have been built in an accelerating manner since the 1960s with the aid of rapid economic growth. About 40 percent in length of expressways in Japan is now 30 years and older and has become superannuated. Time-related deterioration has therefore reached to a degree that administrators, from a standpoint of operation and maintenance, are forced to take prompt measures on a large scale aiming at repairing inner damage deep in pavements. These measures have already been performed for bridge management in Japan and are also expected to be embodied for pavement management. Thus, planning methods for the measures are increasingly demanded. Deterioration of layers around road surface such as surface course and binder course is brought about at the early stages of whole pavement deterioration process, around 10 to 30 years after construction. These layers have been repaired primarily because inner damage usually becomes significant after outer damage, and because surveys for measuring inner damage such as Falling Weight Deflectometer (FWD) survey and open-cut survey are costly and time-consuming process, which has made it difficult for administrators to focus on inner damage as much as they have been supposed to. As expressways today have serious time-related deterioration within them deriving from the long time span since they started to be used, it is obvious the idea of repairing layers deep in pavements such as base course and subgrade must be taken into consideration when planning maintenance on a large scale. This sort of maintenance requires precisely predicting degrees of deterioration as well as grasping the present situations of pavements. Methods for predicting deterioration are determined to be either mechanical or statistical. While few mechanical models have been presented, as far as the authors know of, previous studies have presented statistical methods for predicting deterioration in pavements. One describes deterioration process by estimating Markov deterioration hazard model, while another study illustrates it by estimating Proportional deterioration hazard model. Both of the studies analyze deflection data obtained from FWD surveys and present statistical methods for predicting deterioration process of layers around road surface. However, layers of base course and subgrade remain unanalyzed. In this study, data collected from FWD surveys are analyzed to predict deterioration process of layers deep in pavements in addition to surface layers by a means of estimating a deterioration hazard model using continuous indexes. This model can prevent the loss of information of data when setting rating categories in Markov deterioration hazard model when evaluating degrees of deterioration in roadbeds and subgrades. As a result of portraying continuous indexes, the model can predict deterioration in each layer of pavements and evaluate it quantitatively. Additionally, as the model can also depict probability distribution of the indexes at an arbitrary point and establish a risk control level arbitrarily, it is expected that this study will provide knowledge like life cycle cost and informative content during decision making process referring to where to do maintenance on as well as when.

Keywords: deterioration hazard model, falling weight deflectometer, inner damage, load bearing capacity, pavement

Procedia PDF Downloads 368
3668 Examination of 12-14 Years Old Volleyball Players’ Body Image Levels

Authors: Dilek Yalız Solmaz, Gülsün Güven

Abstract:

The aim of this study is to examine the body image levels of 12-14 years old girls who are playing volleyball. The research group consists of 113 girls who are playing volleyball in Sakarya during the fall season of 2015-2016. Data was collected by means of the 'Body Image Questionnaire' which was originally developed by Secord and Jourard. The consequence of repeated analysis of the reliability of the scale was determined to as '.96'. This study employed statistical calculations as mean, standard deviation and t-test. According to results of this study, it was determined that the mean point of the volleyball players is 158.5 ± 25.1 (minimum=40; maximum=200) and it can be said that the volleyball players’ body image levels are high. There is a significant difference between the underweight (167.4 ± 20.7) and normal weight (151.4 ± 26.2) groups according to their Body Mass Index. Body image levels of underweight group were determined higher than normal weight group.

Keywords: volleyball, players, body image, body image levels

Procedia PDF Downloads 197
3667 Atmospheric Pressure Microwave Plasma System and Its Applications

Authors: Waqas A. Toor, Anis U. Baig, Nuaman Shafqat, Raafia Irfan, Muhammad Ashraf

Abstract:

A 2.45GHz microwave plasma system and its few applications have been developed. Argon and helium plasma is produced by metallic nozzle and also in a quartz tube at atmospheric pressure, using WR-340 waveguide and its tapered version. The waveguide applicator is also simulated in HFSS and field patterns are analyzed for maximum power absorption in the load. The system is tuned to operate at less than 10% reflected power. Various experimental techniques are used to initiate and sustain the plasma at atmospheric pressure. Plasma of atmospheric air is also produced without using any other shielding gas. The plasma flame is also characterized by its spectrum. Spectral analyses of plasma flame can be used for online analysis of combustion gases produced in industry. The applications of the system include glass and quartz processing, vitrification, emission spectroscopy, plasma coating. Low pressure plasma applications of the system include intense UV light for water purification and ozone generation.

Keywords: HFSS high frequency structure simulator, Microwave plasma, UV ultraviolet, WR rectangular waveguide

Procedia PDF Downloads 251
3666 The Bioaccumulation of Lead (Pb), Cadmium (Cd), and Chromium (Cr) in Relation to Personal and Social Habits in Electronic Repair Technicians in Kaduna Metropolis, Nigeria: A Pilot Study

Authors: M. A. Lawal, A. Uzairu, M. S. Sallau

Abstract:

The presence and bioaccumulation of lead (Pb), cadmium (Cd), and chromium (Cr) in blood, urine, nail, and hair samples of electronic repair technicians in Kaduna-Nigeria were assessed using Fast Sequential Atomic Absorption Spectrophotometry. 10 electronic repair technicians from within Kaduna Metropolis volunteered for the pilot study. The mean blood concentrations of Pb, Cd, and Cr in the subjects were 29.33 ± 4.80, 7.78 ± 10.57, and 24.78 ± 21.77 µg/dL, respectively. The mean urine concentrations of Pb, Cd, and Cr were 24.18 ± 2.98, 6.81 ± 10.05, and 14.78 ± 14.20 µg/dL, respectively. Mean nail metal values of 37.13 ± 4.08, 1.00 ± 1.21, and 18.49 ± 12.71 µg/g were obtained for Pb, Cd, and Cr, respectively while mean hair metal values of 39.41 ± 5.63, 1.09 ± 1.14, and 19.13 ± 11.61 µg/g for Pb, Cd, and Cr, respectively. Positive Pearson correlation coefficients were observed between Pb/Cd, Pb/Cr, and Cd/Cr in all samples and they indicate the metals are likely from the same pollution source. The mean concentrations of the metals in all samples were higher than the WHO, ILO, and ACGIH standards, implying the repairers are likely occupationally exposed and are subject to serious health concerns. Social habits like smoking were found to significantly affect the concentrations of these metals. The level of education, use of safety devices, period of exposure, the nature of electronics and the age of the repairers were also found to remarkably affect the concentrations of the metals.

Keywords: bioaccumulation, electronic repair technicians, heavy metals, occupational hazard

Procedia PDF Downloads 352
3665 Flexural Behavior for Prefabricated Angle Truss Composite Beams Using Precast Concrete

Authors: Jo Kwang-Won, Lee Ho-Jun, Choi In-Rak, Park Hong-Gun

Abstract:

Prefabricated angle truss composited beam is a kind of concrete encased composite beam. It is prefabricated at factory as Pratt truss with steel members. Double angle is used for top, bottom chords and vertical web member. Moreover, diagonal web member is steel plate. Its sectional shape looks like I-shape. This beam system has two stages. The first is construction stage in which the beam is directly connected to the column for resist construction load. This stage beam consists of Pratt truss and precast concrete. The stability of the beam is verified. The second is service stage. After the connection, cast-in-place concrete is used for composite action. Ultimate flexural capacity is verified and show advantage than RC and steel. In this paper, the beam flexural capacity is verified in both stages. And examined the flexural behavior of the beam.

Keywords: composite beam, prefabrication, angle, precast concrete, pratt truss

Procedia PDF Downloads 285
3664 The Development of Monk’s Food Bowl Production on Occupational Health Safety and Environment at Work for the Strength of Rattanakosin Local Wisdom

Authors: Thammarak Srimarut, Witthaya Mekhum

Abstract:

This study analysed and developed a model for monk’s food bowl production on occupational health safety and environment at work for the encouragement of Rattanakosin local wisdom at Banbart Community. The process of blowpipe welding was necessary to produce the bowl which was very dangerous or 93.59% risk. After the employment of new sitting posture, the work risk was lower 48.41% or moderate risk. When considering in details, it was found that: 1) the traditional sitting posture could create work risk at 88.89% while the new sitting posture could create the work risk at 58.86%. 2) About the environmental pollution, with the traditional sitting posture, workers exposed to the polluted fume from welding at 61.11% while with the new sitting posture workers exposed to the polluted fume from welding at 40.47%. 3) On accidental risk, with the traditional sitting posture, workers exposed to the accident from welding at 94.44% while with the new sitting posture workers exposed to the accident from welding at 62.54%.

Keywords: occupational health safety, environment at work, Monk’s food bowl, machine intelligence

Procedia PDF Downloads 424
3663 Recovery of Waste Acrylic Fibers for the Elimination of Basic Dyes

Authors: N. Ouslimani, M. T. Abadlia

Abstract:

Environment protection is a precondition for sustained growth and a better quality of life for all people on earth. Aqueous industrial effluents are the main sources of pollution. Among the compounds of these effluents, dyes are particularly resistant to discoloration by conventional methods, and discharges present many problems that must be supported. The scientific literature shows that synthetic organic dyes are compounds used in many industrial sectors. They are found in the chemical, car, paper industry and particularly the textile industry, where all the lines and grades of the chemical family are represented. The affinity between the fibers and dyes vary depending on the chemical structure of dyes and the type of materials to which they are applied. It is not uncommon to find that during the dyeing operation from 15 to 20 % of sulfur dyes, and sometimes up to 40 % of the reactants are discharged with the effluent. This study was conducted for the purpose of fading basics dyes from wastewater using as adsorbent fiber waste material. This technique presents an interesting alternative to usual treatment, as it allows the recovery of waste fibers, which can find uses as raw material for the manufacture of cleaning products or in other sectors In this study the results obtained by fading fiber waste are encouraging, given the rate of color removal which is about 90%.This method also helps to decrease BOD and suspended solids MES in an effective way.

Keywords: adsorption, dyes, fiber, valorization, wastewater

Procedia PDF Downloads 272
3662 Laser Micro-Welding of an Isomorphous System with Different Geometries: An Investigation on the Mechanical Properties and Microstructure of the Joint

Authors: Mahdi Amne Elahi, Marcus Koch, Peter Plapper

Abstract:

Due to the demand of miniaturizing in automotive industry, the application of laser welding is quite promising. The current study focused on laser micro-welding of CuSn6 bronze and nickel wire for a miniature electromechanical hybrid component. Due to the advantages of laser welding, the welding can be tailored specifically for the requirements of the part. Scanning electron and optical microscopy were implemented to study the microstructure and tensile-shear test was selected to represent the mechanical properties. Different welding sides, beam oscillations, and speeds have been investigated to optimize the tensile-shear load and microstructure. The results show that the mechanical properties and microstructure of the joint is highly under the influence of the mentioned parameters. Due to the lack of intermetallic compounds, the soundness of the joint is achievable by manipulating the geometry of the weld seam and minimize weld defects.

Keywords: bronze, laser micro-welding, microstructure, nickel, tensile shear test

Procedia PDF Downloads 148
3661 Modeling Sustainable Truck Rental Operations Using Closed-Loop Supply Chain Network

Authors: Khaled S. Abdallah, Abdel-Aziz M. Mohamed

Abstract:

Moving industries consume numerous resources and dispose masses of used packaging materials. Proper sorting, recycling and disposing the packaging materials is necessary to avoid a sever pollution disaster. This research paper presents a conceptual model to propose sustainable truck rental operations instead of the regular one. An optimization model was developed to select the locations of truck rental centers, collection sites, maintenance and repair sites, and identify the rental fees to be charged for all routes that maximize the total closed supply chain profits. Fixed costs of vehicle purchasing, costs of constructing collection centers and repair centers, as well as the fixed costs paid to use disposal and recycling centers are considered. Operating costs include the truck maintenance, repair costs as well as the cost of recycling and disposing the packing materials, and the costs of relocating the truck are presented in the model. A mixed integer model is developed followed by a simulation model to examine the factors affecting the operation of the model.

Keywords: modeling, truck rental, supply chains management.

Procedia PDF Downloads 215
3660 Biodeterioration and Biodegradation of Historic Parks of UK by Algae

Authors: Syeda Fatima Manzelat

Abstract:

The present study aims to study the groups of algal genera that are responsible for the biodeterioration, biodegradation, and biological pollution of the structures and features of the two historic parks of the UK. Different sites of Campbell Park and Great Linford Manor Park in Milton Keynes are selected to study the morphological, aesthetic, and physical effects of the algal growth. Specimens and swabs were collected mechanically from selected sites. Algal specimens are preserved in Lugol’s solution and labelled with standard information. Photomicrograph analysis of slides using taxonomic keys and visual observation identified algal species that are homogenously and non-homogenously mixed in the aerial, terrestrial, and aquatic habitats. A qualitative study revealed seven classes of Algae. Most of the algal genera isolated have proven records of potential biodegradation, discoloration, and biological pollution. Chlorophyceae was predominantly represented by eleven genera: Chlorella, Chlorococcum Cladophora, Coenochloris Cylindrocapsa, Microspora, Prasiola, Spirogyra, Trentepholia, Ulothrix and Zygnema. Charophyceae is represented by four genera: Cosmarium, Klebsormidium, Mesotaenium, and Mougeotia. Xanthophyceae with two genera, Tribonema and Vaucheria. Bacillariophyceae (Diatoms) are represented by six genera: Acnanthes, Bacillaria, Fragilaria, Gomphonema, Synedra, and Tabellaria, Dinophyceae with a Dinoflagellate. Rhodophyceae included Bangia and Batrachospermum, Cyanophyceae with five genera, Chroococcus, Gloeocapsa, Scytonema, Stigonema and Oscillatoria. The quantitative analysis by statistical method revealed that Chlorophyceae was the predominant class, with eleven genera isolated from different sites of the two parks. Coenochloris of Chlorophyceae was isolated from thirteen sites during the study, followed by Gloeocapsa of Cyanophyceae, which is isolated from 12 sites. These two algae impart varying shades of green colour on the surfaces on which they form biofilms. Prasiola, Vaucheria, and Trentepholia were isolated only from Great Linford Park. Trentepholia imparted a significant orange colour to the walls and trees of the sites. The compounds present in algae that are responsible for discoloration are the green pigment chlorophyll, orange pigment β-carotene, and yellow pigment quinone. Mesotaenium, Dinoflagellate, Gomphonema, Fragilaria, Tabellaria and two unidentified genera were isolated from Campbell Park only. Largest number of algal genera (25) were isolated from the canal of Campbell Park followed by (21) from the canal at Great Linford Manor Park. The Algae were found to grow on surfaces of walls, wooden fencings, metal sculptures, and railings. The Algae are reported to induce surface erosion, natural weathering, and cracking, leading to technical and mechanical instability and extensive damage to building materials. The algal biofilms secrete different organic acids, which are responsible for biosolubilization and biodeterioration of the building materials. The aquatic algal blooms isolated during the study release toxins which are responsible for allergy, skin rashes, vomiting, diarrhea, fever, muscle spasms, and lung and throat infections. The study identifies the places and locations at the historic sites which need to be paid attention. It provides an insight to the conservation strategies to overcome the negative impacts of bio colonization by algae. Prevention measures by different treatments need to be regularly monitored.

Keywords: algae, biodegradation, historic gardens, UK

Procedia PDF Downloads 49
3659 Biodeterioration and Biodegradation of Historic Parks of UK by Algae

Authors: Syeda Fatima Manzelat

Abstract:

The present study aims to study the groups of algal genera which are responsible for the biodeterioration, biodegradation and biological pollution of the structures and features of the two historic parks of UK. Different sites of Campbell Park and Great Linford Manor Park in Milton Keynes are selected to study morphological, aesthetic and physical effect of the algal growth. Specimens and swabs were collected mechanically from selected sites. Algal specimens are preserved in Lugol’s solution and labelled with standard information. Photomicrograph analysis of slides using taxonomic keys and visual observation identified algal species that are homogenously and non-homogenously mixed in the aerial, terrestrial and aquatic habitats. Qualitative study revealed seven classes of Algae. Most of the algal genera isolated are with proven records of potential biodegradation, discoloration and biological pollution. Chlorophyceae was predominant represented by eleven genera Chlorella, Chlorococcum Cladophora, Coenochloris Cylindrocapsa. Microspora, Prasiola, Spirogyra, Trentepholia, Ulothrix and Zygnema. Charophyceae is represented by four genera Cosmarium Klebsormidium, Mesotaenium and Mougeotia. Xanthophyceae with two genera Tribonema andVaucheria. Bacillariophyceae (Diatoms) represented by six genera Acnanthes, Bacillaria, Fragilaria, Gomphonema, Synedra and Tabellaria. Dinophyceae with a Dinoflagellate. Rhodophyceae included Bangia and Batrachospermum. Cyanophyceae with five genera, Chroococcus, Gloeocapsa, Scytonema, Stigonema and Oscillatoria. The quantitative analysis by statistical method revealed that Chlorophyceae was the predominant class with eleven genera isolated from different sites of the two parks. Coenochloris of Chlorophyceae was isolated from thirteen sites during the study followed by Gloeocapsa of Cyanophyceae which is isolated from 12 sites. These two algae impart varying shades of green colour on the surfaces on which they form biofilms. Prasiola, Vaucheria and Trentepholia were isolated only from Great Linford Park. Trentepholia imparted a significant orange colour to the walls and trees of the sites. The compounds present in algae that are responsible for discoloration are the green pigment chlorophyll, orange pigment β-carotene and yellow pigment quinone. Mesotaenium, Dinoflagellate, Gomphonema, Fragilaria, Tabellaria and 2 unidentified genera were isolated from Campbell Park only. Largest number of algal genera (25) were isolated from the canal of Campbell Park followed by (21) from the canal at Great Linford Manor Park. The Algae were found to grow on surfaces of walls, wooden fencings, metal sculptures and railing. The Algae are reported to induce surface erosion, natural weathering and cracking leading to technical and mechanical instability and extensive damage to building materials The algal biofilms secrete different organic acids which are responsible for bio solubilization and biodeterioration of the building materials. The aquatic algal blooms isolated during the study release toxins which are responsible for allergy, skin rashes, vomiting, diarrhoea, fever, muscle spasms, lung and throat infections The study identifies the places and locations at the historic sites which need to be paid attention. It provides an insight to the conservation strategies to overcome the negative impacts of bio colonization by algae. Prevention measures by different treatments need to be regularly monitored.

Keywords: algae, biodeterioration, historic gardens, UK

Procedia PDF Downloads 26
3658 Numerical Analysis of Jet Grouting Strengthened Pile under Lateral Loading

Authors: Reza Ziaie Moayed, Naeem Gholampoor

Abstract:

Jet grouting strengthened pile (JPP) is one of composite piles used in soft ground improvement. It may improve the vertical and lateral bearing capacity effectively and it has been practically used in a considerable scale. In order to make a further research on load transfer mechanism of single JPP with and without cap under lateral loads, JPP is analyzed by means of FEM analysis. It is resulted that the JPP pile could improve lateral bearing capacity by compared with bored concrete pile which is higher for shorter pile and the biggest bending moment of JPP pile is located in the depth of around 48% of embedded length of the pile. Meanwhile, increase of JPP pile length causes to increase of peak mobilized bending moment. Also, by cap addition, JPP piles will have a much higher lateral bearing capacity and increasing in cohesion of soil layer resulted to increase of lateral bearing capacity of JPP pile. In addition, the numerical results basically coincide with the experimental results presented by other researchers.

Keywords: bending moment, FEM analysis, JPP pile, lateral bearing capacity

Procedia PDF Downloads 307
3657 Investigating The Nexus Between Energy Deficiency, Environmental Sustainability and Renewable Energy: The Role of Energy Trade in Global Perspectives

Authors: Fahim Ullah, Muhammad Usman

Abstract:

Energy consumption and environmental sustainability are hard challenges of 21st century. Energy richness increases environmental pollution while energy poverty hinders economic growth. Considering these two aspects, present study calculates energy deficiency and examines the role of renewable energy to overcome rising energy deficiency and carbon emission for selected countries from 1990 to 2021. For empirical analysis, this study uses methods of moments panel quantile regression analysis and to check the robustness, study used panel quantile robust analysis. Graphical analysis indicated rising global energy deficiency since last three decades where energy consumption is higher than energy production. Empirical results showed that renewable energy is a significant factor for reducing energy deficiency. Secondly, the energy deficiency increases carbon emission level and again renewable energy decreases emissions level. This study recommends that global energy deficiency and rising carbon emissions can be controlled through structural change in the form of energy transition to replace non-renewable resources with renewable resources.

Keywords: energy deficiency, renewable energy, carbon emission, energy trade, PQL analysis

Procedia PDF Downloads 42
3656 Nonlinear Analysis of a Building Surmounted by a RC Water Tank under Hydrodynamic Load

Authors: Hocine Hammoum, Karima Bouzelha, Lounis Ziani, Lounis Hamitouche

Abstract:

In this paper, we study a complex structure which is an apartment building surmounted by a reinforced concrete water tank. The tank located on the top floor of the building is a container with capacity of 1000 m3. The building is complex in its design, its calculation and by its behavior under earthquake effect. This structure located in Algiers and aged of 53 years has been subjected to several earthquakes, but the earthquake of May 21st, 2003 with a magnitude of 6.7 on the Richter scale that struck Boumerdes region at 40 Kms East of Algiers was fatal for it. It was downgraded after an investigation study because the central core sustained serious damage. In this paper, to estimate the degree of its damages, the seismic performance of the structure will be evaluated taking into account the hydrodynamic effect, using a static equivalent nonlinear analysis called pushover.

Keywords: performance analysis, building, reinforced concrete tank, seismic analysis, nonlinear analysis, hydrodynamic, pushover

Procedia PDF Downloads 407
3655 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-Time Stochastic Systems

Authors: Tomoaki Hashimoto

Abstract:

Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the validity of the obtained stability condition.

Keywords: computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems

Procedia PDF Downloads 415
3654 Thixomixing as Novel Method for Fabrication Aluminum Composite with Carbon and Alumina Fibers

Authors: Ebrahim Akbarzadeh, Josep A. Picas Barrachina, Maite Baile Puig

Abstract:

This study focuses on a novel method for dispersion and distribution of reinforcement under high intensive shear stress to produce metal composites. The polyacrylonitrile (PAN)-based short carbon fiber (Csf) and Nextel 610 alumina fiber were dispersed under high intensive shearing at mushy zone in semi-solid of A356 by a novel method. The bundles and clusters were embedded by infiltration of slurry into the clusters, thus leading to a uniform microstructure. The fibers were embedded homogenously into the aluminum around 576-580°C with around 46% of solid fraction. Other experiments at 615°C and 568°C which are contained 0% and 90% solid respectively were not successful for dispersion and infiltration of aluminum into bundles of Csf. The alumina fiber has been cracked by high shearing load. The morphologies and crystalline phase were evaluated by SEM and XRD. The adopted thixo-process effectively improved the adherence and distribution of Csf into Al that can be developed to produce various composites by thixomixing.

Keywords: aluminum, carbon fiber, alumina fiber, thixomixing, adhesion

Procedia PDF Downloads 539
3653 Channel Characteristics and Morphometry of a Part of Umtrew River, Meghalaya

Authors: Pratyashi Phukan, Ranjan Saikia

Abstract:

Morphometry incorporates quantitative study of the area ,altitude,volume, slope profiles of a land and drainage basin characteristics of the area concerned.Fluvial geomorphology includes the consideration of linear,areal and relief aspects of a fluvially originated drainage basin. The linear aspect deals with the hierarchical orders of streams, numbers, and lenghts of stream segments and various relationship among them.The areal aspect includes the analysis of basin perimeters,basin shape, basin area, and related morphometric laws. The relief aspect incorporates besides hypsometric, climographic and altimetric analysis,the study of absolute and relative reliefs, relief ratios, average slope, etc. In this paper we have analysed the relationship among stream velocity, channel shape,sediment load,channel width,channel depth, etc.

Keywords: morphometry, hydraulic geometry, Umtrew river, Meghalaya

Procedia PDF Downloads 442
3652 Dynamic Analysis of Turbo Machinery Foundation for Different Rotating Speed

Authors: Sungyani Tripathy, Atul Desai

Abstract:

Turbo machinery Frame Foundation is very important for power generation, gas, steam, hydro, geothermal and nuclear power plants. The Turbo machinery Foundation system was simulated in SAP: 2000 software and dynamic response of foundation was analysed. In this paper, the detailed study of turbo machinery foundation with different running speed has considered. The different revolution per minute considered in this study is 4000 rpm, 6000 rpm, 8000 rpm, 1000 rpm and 12000 rpm. The above analysis has been carried out considering Winkler spring soil model, solid finite element modelling and dynamic analysis of Turbo machinery foundations. The comparison of frequency and time periods at various mode shapes are addressed in this study. Current work investigates the effect of damping on the response spectra curve at the foundation top deck, considering the dynamic machine load. It has been found that turbo generator foundation with haunches remains more elastic during seismic action for different running speeds.

Keywords: turbo machinery, SAP: 2000, response spectra, running speeds

Procedia PDF Downloads 235
3651 Good Functional Outcome after Late Surgical Treatment for Traumatic Rotator Cuff Tear, a Retrospective Cohort Study

Authors: Soheila Zhaeentan, Anders Von Heijne, Elisabet Hagert, André Stark, Björn Salomonsson

Abstract:

Recommended treatment for traumatic rotator cuff tear (TRCT) is surgery within a few weeks after injury if the diagnosis is made early, especially if a functional impairment of the shoulder exists. This may lead to the assumption that a poor outcome then can be expected in delayed surgical treatment, when the patient is diagnosed at a later stage. The aim of this study was to investigate if a surgical repair later than three months after injury may result in successful outcomes and patient satisfaction. There is evidence in literature that good results of treatment can be expected up to three months after the injury, but little is known of later treatment with cuff repair. 73 patients (75 shoulders), 58 males/17 females, mean age 59 (range 34-­‐72), who had undergone surgical intervention for TRCT between January 1999 to December 2011 at our clinic, were included in this study. Patients were assessed by MRI investigation, clinical examination, Western Ontario Rotator Cuff index (WORC), Oxford Shoulder Score, Constant-­‐Murley Score, EQ-­‐5D and patient subjective satisfaction at follow-­‐up. The patients treated surgically within three months ( < 12 weeks) after injury (39 cases) were compared with patients treated more than three months ( ≥ 12 weeks) after injury (36 cases). WORC was used as the primary outcome measure and the other variables as secondary. A senior consultant radiologist, blinded to patient category and clinical outcome, evaluated all MRI-­‐images. Rotator cuff integrity, presence of arthritis, fatty degeneration and muscle atrophy was evaluated in all cases. The average follow-­‐up time was 56 months (range 14-­‐149) and the average time from injury to repair was 16 weeks (range 3-­‐104). No statistically significant differences were found for any of the assessed parameters or scores between the two groups. The mean WORC score was 77 (early group, range 25-­‐ 100 and late group, range 27-­‐100) for both groups (p= 0.86), Constant-­‐Murley Score (p= 0.91), Oxford Shoulder Score (p= 0.79), EQ-­‐5D index (p= 0.86). Re-­‐tear frequency was 24% for both groups, and the patients with re-­‐tear reported less satisfaction with outcome. Discussion and conclusion: This study shows that surgical repair of TRCT performed later than three months after injury may result in good functional outcomes and patient satisfaction. However, this does not motivate an intentional delay in surgery when there is an indication for surgical repair as that delay may adversely affect the possibility to perform a repair. Our results show that surgeons may safely consider surgical repair even if a delay in diagnosis has occurred. A retrospective cohort study on 75 shoulders shows good functional result after traumatic rotator cuff tear (TRCT) treated surgically up to one year after the injury.

Keywords: traumatic rotator cuff injury, time to surgery, surgical outcome, retrospective cohort study

Procedia PDF Downloads 209
3650 Hardware Error Analysis and Severity Characterization in Linux-Based Server Systems

Authors: Nikolaos Georgoulopoulos, Alkis Hatzopoulos, Konstantinos Karamitsios, Konstantinos Kotrotsios, Alexandros I. Metsai

Abstract:

In modern server systems, business critical applications run in different types of infrastructure, such as cloud systems, physical machines and virtualization. Often, due to high load and over time, various hardware faults occur in servers that translate to errors, resulting to malfunction or even server breakdown. CPU, RAM and hard drive (HDD) are the hardware parts that concern server administrators the most regarding errors. In this work, selected RAM, HDD and CPU errors, that have been observed or can be simulated in kernel ring buffer log files from two groups of Linux servers, are investigated. Moreover, a severity characterization is given for each error type. Better understanding of such errors can lead to more efficient analysis of kernel logs that are usually exploited for fault diagnosis and prediction. In addition, this work summarizes ways of simulating hardware errors in RAM and HDD, in order to test the error detection and correction mechanisms of a Linux server.

Keywords: hardware errors, Kernel logs, Linux servers, RAM, hard disk, CPU

Procedia PDF Downloads 142
3649 Critical Buckling Load of Carbon Nanotube with Non-Local Timoshenko Beam Using the Differential Transform Method

Authors: Tayeb Bensattalah, Mohamed Zidour, Mohamed Ait Amar Meziane, Tahar Hassaine Daouadji, Abdelouahed Tounsi

Abstract:

In this paper, the Differential Transform Method (DTM) is employed to predict and to analysis the non-local critical buckling loads of carbon nanotubes with various end conditions and the non-local Timoshenko beam described by single differential equation. The equation differential of buckling of the nanobeams is derived via a non-local theory and the solution for non-local critical buckling loads is finding by the DTM. The DTM is introduced briefly. It can easily be applied to linear or nonlinear problems and it reduces the size of computational work. Influence of boundary conditions, the chirality of carbon nanotube and aspect ratio on non-local critical buckling loads are studied and discussed. Effects of nonlocal parameter, ratios L/d, the chirality of single-walled carbon nanotube, as well as the boundary conditions on buckling of CNT are investigated.

Keywords: boundary conditions, buckling, non-local, differential transform method

Procedia PDF Downloads 282
3648 A Vertical Grating Coupler with High Efficiency and Broadband Operation

Authors: Md. Asaduzzaman

Abstract:

A Silicon-on-insulator (SOI) perfectly vertical fibre-to-chip grating coupler is proposed and designed based on engineered subwavelength structures. The high directionality of the coupler is achieved by implementing step gratings to realize asymmetric diffraction and by applying effective index variation with auxiliary ultra-subwavelength gratings. The proposed structure is numerically analysed by using two-dimensional Finite Difference Time Domain (2D FDTD) method and achieves 96% (-0.2 dB) coupling efficiency and 39 nm 1-dB bandwidth. This highly efficient GC is necessary for applications where coupling efficiency between the optical fibre and nanophotonics waveguide is critically important, for instance, experiments of the quantum photonics integrated circuits. Such efficient and broadband perfectly vertical grating couplers are also significantly advantageous in highly dense photonic packaging.

Keywords: diffraction grating, FDTD, grating couplers, nanophotonic

Procedia PDF Downloads 55
3647 Structural and Optoelectronic Properties of Monovalent Cation Doping PbS Thin Films

Authors: Melissa Chavez Portillo, Hector Juarez Santiesteban, Mauricio Pacio Castillo, Oscar Portillo Moreno

Abstract:

Nanocrystalline Li-doped PbS thin films have been deposited by chemical bath deposition technique. The goal of this work is to study the modification of the optoelectronic and structural properties of Lithium incorporation. The increase of Li doping in PbS thin films leads to an increase of band gap in the range of 1.4-2.3, consequently, quantum size effect becomes pronounced in the Li-doped PbS films, which lead to a significant enhancement in the optical band gap. Doping shows influence in the film growth and results in a reduction of crystallite size from 30 to 14 nm. The refractive index was calculated and a relationship with dielectric constant was investigated. The dc conductivities of Li-doped and undoped samples were measured in the temperature range 290-340K, the conductivity increase with increase of Lithium content in the PbS films.

Keywords: doping, quantum confinement, optical band gap, PbS

Procedia PDF Downloads 372