Search results for: functional optimization
2161 High Piezoelectric and Magnetic Performance Achieved in the Lead-free BiFeO3-BaTiO3 Cceramics by Defect Engineering
Authors: Muhammad Habib, Xuefan Zhou, Lin Tang, Guoliang Xue, Fazli Akram, Dou Zhang
Abstract:
Defect engineering approach is a well-established approach for the customization of functional properties of perovskite ceramics. In modern technology, the high multiferroic properties for elevated temperature applications are greatly demanding. In this work, the Bi-nonstoichiometric lead-free 0.67Biy-xSmxFeO3-0.33BaTiO3 ceramics (Sm-doped BF-BT for Bi-excess; y = 1.03 and Bi-deficient; y = 0.975 with x = 0.00, 0.04 and 0.08) were design for the high-temperature multiferroic property. Enhanced piezoelectric (d33 250 pC/N and d33* 350 pm/V) and magnetic properties (Mr 0.25 emu/g) with a high Curie temperature (TC 465 ℃) were obtained in the Bi-deficient pure BF-BT ceramics. With Sm-doping (x = 0.04), the TC decrease to 350 ℃ a significant improvement occurred in the d33* to 504 pm/V and 450 pm/V for Bi-excess and Bi-deficient compositions, respectively. The structural origin of the enhanced piezoelectric strain performance is related to the soft ferroelectric effect by Sm-doping and reversible phase transition from the short-range relaxor ferroelectric state to the long-range order under the applied electric field. However, a slight change occurs in the Mr 0.28 emu/g value with Sm-doping for Bi-deficient ceramics, whereas the Bi-excess ceramics shows completely paramagnetic behavior. Hence, the origin of high magnetic properties in the Bi-deficient BF-BT ceramics is mainly attributed to the proposed double exchange mechanism. We believe that this strategy will provide a new perspective for the development of lead-free multiferroic ceramics for high-temperature applications.Keywords: BiFeO3-BaTiO3, lead-free piezoceramics, magnetic properties, defect engineering
Procedia PDF Downloads 1332160 Programmable Microfluidic Device Based on Stimuli Responsive Hydrogels
Authors: Martin Elstner
Abstract:
Processing of information by means of handling chemicals is a ubiquitous phenomenon in nature. Technical implementations of chemical information processing lack of low integration densities compared to electronic devices. Stimuli responsive hydrogels are promising candidates for materials with information processing capabilities. These hydrogels are sensitive toward chemical stimuli like metal ions or amino acids. The binding of an analyte molecule induces conformational changes inside the polymer network and subsequently the water content and volume of the hydrogel varies. This volume change can control material flows, and concurrently information flows, in microfluidic devices. The combination of this technology with powerful chemical logic gates yields in a platform for highly integrated chemical circuits. The manufacturing process of such devices is very challenging and rapid prototyping is a key technology used in the study. 3D printing allows generating three-dimensional defined structures of high complexity in a single and fast process step. This thermoplastic master is molded into PDMS and the master is removed by dissolution in an organic solvent. A variety of hydrogel materials is prepared by dispenser printing of pre-polymer solutions. By a variation of functional groups or cross-linking units, the functionality of the hole circuit can be programmed. Finally, applications in the field of bio-molecular analytics were demonstrated with an autonomously operating microfluidic chip.Keywords: bioanalytics, hydrogels, information processing, microvalve
Procedia PDF Downloads 3092159 Stackelberg Security Game for Optimizing Security of Federated Internet of Things Platform Instances
Authors: Violeta Damjanovic-Behrendt
Abstract:
This paper presents an approach for optimal cyber security decisions to protect instances of a federated Internet of Things (IoT) platform in the cloud. The presented solution implements the repeated Stackelberg Security Game (SSG) and a model called Stochastic Human behaviour model with AttRactiveness and Probability weighting (SHARP). SHARP employs the Subjective Utility Quantal Response (SUQR) for formulating a subjective utility function, which is based on the evaluations of alternative solutions during decision-making. We augment the repeated SSG (including SHARP and SUQR) with a reinforced learning algorithm called Naïve Q-Learning. Naïve Q-Learning belongs to the category of active and model-free Machine Learning (ML) techniques in which the agent (either the defender or the attacker) attempts to find an optimal security solution. In this way, we combine GT and ML algorithms for discovering optimal cyber security policies. The proposed security optimization components will be validated in a collaborative cloud platform that is based on the Industrial Internet Reference Architecture (IIRA) and its recently published security model.Keywords: security, internet of things, cloud computing, stackelberg game, machine learning, naive q-learning
Procedia PDF Downloads 3542158 Optimization of Lubricant Distribution with Alternative Coordinates and Number of Warehouses Considering Truck Capacity and Time Windows
Authors: Taufik Rizkiandi, Teuku Yuri M. Zagloel, Andri Dwi Setiawan
Abstract:
Distribution and growth in the transportation and warehousing business sector decreased by 15,04%. There was a decrease in Gross Domestic Product (GDP) contribution level from rank 7 of 4,41% in 2019 to 3,81% in rank 8 in 2020. A decline in the transportation and warehousing business sector contributes to GDP, resulting in oil and gas companies implementing an efficient supply chain strategy to ensure the availability of goods, especially lubricants. Fluctuating demand for lubricants and warehouse service time limits are essential things that are taken into account in determining an efficient route. Add depots points as a solution so that demand for lubricants is fulfilled (not stock out). However, adding a depot will increase operating costs and storage costs. Therefore, it is necessary to optimize the addition of depots using the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW). This research case study was conducted at an oil and gas company that produces lubricants from 2019 to 2021. The study results obtained the optimal route and the addition of a depot with a minimum additional cost. The total cost remains efficient with the addition of a depot when compared to one depot from Jakarta.Keywords: CVRPTW, optimal route, depot, tabu search algorithm
Procedia PDF Downloads 1362157 A Hierarchical Method for Multi-Class Probabilistic Classification Vector Machines
Authors: P. Byrnes, F. A. DiazDelaO
Abstract:
The Support Vector Machine (SVM) has become widely recognised as one of the leading algorithms in machine learning for both regression and binary classification. It expresses predictions in terms of a linear combination of kernel functions, referred to as support vectors. Despite its popularity amongst practitioners, SVM has some limitations, with the most significant being the generation of point prediction as opposed to predictive distributions. Stemming from this issue, a probabilistic model namely, Probabilistic Classification Vector Machines (PCVM), has been proposed which respects the original functional form of SVM whilst also providing a predictive distribution. As physical system designs become more complex, an increasing number of classification tasks involving industrial applications consist of more than two classes. Consequently, this research proposes a framework which allows for the extension of PCVM to a multi class setting. Additionally, the original PCVM framework relies on the use of type II maximum likelihood to provide estimates for both the kernel hyperparameters and model evidence. In a high dimensional multi class setting, however, this approach has been shown to be ineffective due to bad scaling as the number of classes increases. Accordingly, we propose the application of Markov Chain Monte Carlo (MCMC) based methods to provide a posterior distribution over both parameters and hyperparameters. The proposed framework will be validated against current multi class classifiers through synthetic and real life implementations.Keywords: probabilistic classification vector machines, multi class classification, MCMC, support vector machines
Procedia PDF Downloads 2212156 Optimization of Parameters for Electrospinning of Pan Nanofibers by Taguchi Method
Authors: Gamze Karanfil Celep, Kevser Dincer
Abstract:
The effects of polymer concentration and electrospinning process parameters on the average diameters of electrospun polyacrylonitrile (PAN) nanofibers were experimentally investigated. Besides, mechanical and thermal properties of PAN nanofibers were examined by tensile test and thermogravimetric analysis (TGA), respectively. For this purpose, the polymer concentration, solution feed rate, supply voltage and tip-to-collector distance were determined as the control factors. To succeed these aims, Taguchi’s L16 orthogonal design (4 parameters, 4 level) was employed for the experimental design. Optimal electrospinning conditions were defined using the signal-to-noise (S/N) ratio that was calculated from diameters of the electrospun PAN nanofibers according to "the-smaller-the-better" approachment. In addition, analysis of variance (ANOVA) was evaluated to conclude the statistical significance of the process parameters. The smallest diameter of PAN nanofibers was observed. According to the S/N ratio response results, the most effective parameter on finding out of nanofiber diameter was determined. Finally, the Taguchi design of experiments method has been found to be an effective method to statistically optimize the critical electrospinning parameters used in nanofiber production. After determining the optimum process parameters of nanofiber production, electrical conductivity and fuel cell performance of electrospun PAN nanofibers on the carbon papers will be evaluated.Keywords: nanofiber, electrospinning, polyacrylonitrile, Taguchi method
Procedia PDF Downloads 2062155 Cost Analysis of Optimized Fast Network Mobility in IEEE 802.16e Networks
Authors: Seyyed Masoud Seyyedoshohadaei, Borhanuddin Mohd Ali
Abstract:
To support group mobility, the NEMO Basic Support Protocol has been standardized as an extension of Mobile IP that enables an entire network to change its point of attachment to the Internet. Using NEMO in IEEE 802.16e (WiMax) networks causes latency in handover procedure and affects seamless communication of real-time applications. To decrease handover latency and service disruption time, an integrated scheme named Optimized Fast NEMO (OFNEMO) was introduced by authors of this paper. In OFNEMO a pre-establish multi tunnels concept, cross function optimization and cross layer design are used. In this paper, an analytical model is developed to evaluate total cost consisting of signaling and packet delivery costs of the OFNEMO compared with RFC3963. Results show that OFNEMO increases probability of predictive mode compared with RFC3963 due to smaller handover latency. Even though OFNEMO needs extra signalling to pre-establish multi tunnel, it has less total cost thanks to its optimized algorithm. OFNEMO can minimize handover latency for supporting real time application in moving networks.Keywords: fast mobile IPv6, handover latency, IEEE802.16e, network mobility
Procedia PDF Downloads 1972154 Continuous Differential Evolution Based Parameter Estimation Framework for Signal Models
Authors: Ammara Mehmood, Aneela Zameer, Muhammad Asif Zahoor Raja, Muhammad Faisal Fateh
Abstract:
In this work, the strength of bio-inspired computational intelligence based technique is exploited for parameter estimation for the periodic signals using Continuous Differential Evolution (CDE) by defining an error function in the mean square sense. Multidimensional and nonlinear nature of the problem emerging in sinusoidal signal models along with noise makes it a challenging optimization task, which is dealt with robustness and effectiveness of CDE to ensure convergence and avoid trapping in local minima. In the proposed scheme of Continuous Differential Evolution based Signal Parameter Estimation (CDESPE), unknown adjustable weights of the signal system identification model are optimized utilizing CDE algorithm. The performance of CDESPE model is validated through statistics based various performance indices on a sufficiently large number of runs in terms of estimation error, mean squared error and Thiel’s inequality coefficient. Efficacy of CDESPE is examined by comparison with the actual parameters of the system, Genetic Algorithm based outcomes and from various deterministic approaches at different signal-to-noise ratio (SNR) levels.Keywords: parameter estimation, bio-inspired computing, continuous differential evolution (CDE), periodic signals
Procedia PDF Downloads 3022153 Insight into Structure and Functions of of Acyl CoA Binding Protein of Leishmania major
Authors: Rohit Singh Dangi, Ravi Kant Pal, Monica Sundd
Abstract:
Acyl-CoA binding protein (ACBP) is a housekeeping protein which functions as an intracellular carrier of acyl-CoA esters. Given the fact that the amastigote stage (blood stage) of Leishmania depends largely on fatty acids as the energy source, of which a large part is derived from its host, these proteins might have an important role in its survival. In Leishmania major, genome sequencing suggests the presence of six ACBPs, whose function remains largely unknown. For functional and structural characterization, one of the ACBP genes was cloned, and the protein was expressed and purified heterologously. Acyl-CoA ester binding and stoichiometry were analyzed by isothermal titration calorimetry and Dynamic light scattering. Our results shed light on high affinity of ACBP towards longer acyl-CoA esters, such as myristoyl-CoA to arachidonoyl-CoA with single binding site. To understand the binding mechanism & dynamics, Nuclear magnetic resonance assignments of this protein are being done. The protein's crystal structure was determined at 1.5Å resolution and revealed a classical topology for ACBP, containing four alpha-helical bundles. In the binding pocket, the loop between the first and the second helix (16 – 26AA) is four residues longer from other extensively studied ACBPs (PfACBP) and it curls upwards towards the pantothenate moiety of CoA to provide a large tunnel space for long acyl chain insertion.Keywords: acyl-coa binding protein (ACBP), acyl-coa esters, crystal structure, isothermal titration, calorimetry, Leishmania
Procedia PDF Downloads 4482152 Brain Networks and Mathematical Learning Processes of Children
Authors: Felicitas Pielsticker, Christoph Pielsticker, Ingo Witzke
Abstract:
Neurological findings provide foundational results for many different disciplines. In this article we want to discuss these with a special focus on mathematics education. The intention is to make neuroscience research useful for the description of cognitive mathematical learning processes. A key issue of mathematics education is that students often behave as if their mathematical knowledge is constructed in isolated compartments with respect to the specific context of the original learning situation; supporting students to link these compartments to form a coherent mathematical society of mind is a fundamental task not only for mathematics teachers. This aspect goes hand in hand with the question if there is such a thing as abstract general mathematical knowledge detached from concrete reality. Educational Neuroscience may give answers to the question why students develop their mathematical knowledge in isolated subjective domains of experience and if it is generally possible to think in abstract terms. To address these questions, we will provide examples from different fields of mathematics education e.g. students’ development and understanding of the general concept of variables or the mathematical notion of universal proofs. We want to discuss these aspects in the reflection of functional studies which elucidate the role of specific brain regions in mathematical learning processes. In doing this the paper addresses concept formation processes of students in the mathematics classroom and how to support them adequately considering the results of (educational) neuroscience.Keywords: brain regions, concept formation processes in mathematics education, proofs, teaching-learning processes
Procedia PDF Downloads 1492151 Effects of Selected Plant-Derived Nutraceuticals on the Quality and Shelf-Life Stability of Frankfurter Type Sausages during Storage
Authors: Kazem Alirezalu, Javad Hesari, Zabihollah Nemati, Boukaga Farmani
Abstract:
The application of natural plant extracts which are rich in promising antioxidants and antimicrobial ingredients in the production of frankfurter-type sausages addresses consumer demands for healthier, more functional meat products. The effects of olive leaves, green tea and Urtica dioica L. extracts on physicochemical, microbiological and sensory characteristic of frankfurter-type sausage were investigated during 45 days of storage at 4 °C. The results revealed that pH and phenolic compounds decreased significantly (P < 0.05) in all samples during storage. Sausages containing 500 ppm green tea extract (1.78 mg/kg) showed the lowest TBARS values compared to olive leaves (2.01 mg/kg), Urtica dioica L. (2.26 mg/kg) extracts and control (2.74 mg/kg). Plant extracts significantly (P < 0.05) reduced the count of total mesophilic bacteria, yeast and mold by at least 2 log cycles (CFU/g) than those of control samples. Sensory characteristics of texture showed no difference (P > 0.05) between sausage samples, but sausage containing Urtica dioica L. extract had the highest score regarding flavor, freshness odor, and overall acceptability. Based on the results, sausage containing plant extracts could have a significant impact on antimicrobial activity, antioxidant capacity, sensory score, and shelf life stability of frankfurter-type sausage.Keywords: antimicrobial, antioxidant, frankfurter-type sausage, green tea, olive oil, shelf life, Urtica dioica L.
Procedia PDF Downloads 1902150 The Mechanism of Design and Analysis Modeling of Performance of Variable Speed Wind Turbine and Dynamical Control of Wind Turbine Power
Authors: Mohammadreza Heydariazad
Abstract:
Productivity growth of wind energy as a clean source needed to achieve improved strategy in production and transmission and management of wind resources in order to increase quality of power and reduce costs. New technologies based on power converters that cause changing turbine speed to suit the wind speed blowing turbine improve extraction efficiency power from wind. This article introduces variable speed wind turbines and optimization of power, and presented methods to use superconducting inductor in the composition of power converter and is proposed the dc measurement for the wind farm and especially is considered techniques available to them. In fact, this article reviews mechanisms and function, changes of wind speed turbine according to speed control strategies of various types of wind turbines and examines power possible transmission and ac from producing location to suitable location for a strong connection integrating wind farm generators, without additional cost or equipment. It also covers main objectives of the dynamic control of wind turbines, and the methods of exploitation and the ways of using it that includes the unique process of these components. Effective algorithm is presented for power control in order to extract maximum active power and maintains power factor at the desired value.Keywords: wind energy, generator, superconducting inductor, wind turbine power
Procedia PDF Downloads 3272149 Recommendations of Plant and Plant Composition Which Can Be Used in Visual Landscape Improvement in Urban Spaces in Cold Climate Regions
Authors: Feran Asur
Abstract:
In cities, plants; with its visual and functional effects, it helps to provide balance between human and environmental system. It is possible to develop alternative solutions to eliminate visual pollution by evaluating the potential properties of plant materials with other inanimate materials such as color, texture, form, size, etc. characteristics and other inanimate materials such as highlighter, background forming, harmonizing and concealer. In cold climates, the number of ornamental plant species that grow in warmer climates is less. For this reason, especially in the landscaping works of urban spaces, it is difficult to create the desired visuality with aesthetically qualified plants that are suitable for the ecology of the area, without creating monotony, with color variety. In this study, the importance of plant and plant compositions in the solution of visual problems in urban environments in cold climatic conditions is emphasized. The potential of ornamental plants that can be used for this purpose in preventing visual pollution is given. It has been shown how to use prominent features of these ornamental plants such as size, form, texture, vegetation periods to improve visual landscape in urban spaces in a long time. In addition to the design group disciplines that have activity on planning or application basis in the city and its surroundings, landscape architecture discipline can provide visual improvement of the studies to be carried out in detail in terms of planting design.Keywords: residential landscape, planting, urban space, visual improvement
Procedia PDF Downloads 1402148 Web Service Architectural Style Selection in Multi-Criteria Requirements
Authors: Ahmad Mohsin, Syda Fatima, Falak Nawaz, Aman Ullah Khan
Abstract:
Selection of an appropriate architectural style is vital to the success of target web service under development. The nature of architecture design and selection for service-oriented computing applications is quite different as compared to traditional software. Web Services have complex and rigorous architectural styles to choose. Due to this, selection for accurate architectural style for web services development has become a more complex decision to be made by architects. Architectural style selection is a multi-criteria decision and demands lots of experience in service oriented computing. Decision support systems are good solutions to simplify the selection process of a particular architectural style. Our research suggests a new approach using DSS for selection of architectural styles while developing a web service to cater FRs and NFRs. Our proposed DSS helps architects to select right web service architectural pattern according to the domain and non-functional requirements. In this paper, a rule base DSS has been developed using CLIPS (C Language Integrated Production System) to support decisions using multi-criteria requirements. This DSS takes architectural characteristics, domain requirements and software architect preferences for NFRs as input for different architectural styles in use today in service-oriented computing. Weighted sum model has been applied to prioritize quality attributes and domain requirements. Scores are calculated using multiple criterions to choose the final architecture style.Keywords: software architecture, web-service, rule-based, DSS, multi-criteria requirements, quality attributes
Procedia PDF Downloads 3642147 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.Keywords: deep learning, optical Soliton, neural network, partial differential equation
Procedia PDF Downloads 1262146 Seismic Retrofitting of RC Buildings with Soft Storey and Floating Columns
Authors: Vinay Agrawal, Suyash Garg, Ravindra Nagar, Vinay Chandwani
Abstract:
Open ground storey with floating columns is a typical feature in the modern multistory constructions in urban India. Such features are very much undesirable in buildings built in seismically active areas. The present study proposes a feasible solution to mitigate the effects caused due to non-uniformity of stiffness and discontinuity in load path and to simultaneously hold the functional use of the open storey particularly under the floating column, through a combination of various lateral strengthening systems. An investigation is performed on an example building with nine different analytical models to bring out the importance of recognising the presence of open ground storey and floating columns. Two separate analyses on various models of the building namely, the equivalent static analysis and the response spectrum analysis as per IS: 1893-2002 were performed. Various measures such as incorporation of Chevron bracings and shear walls, strengthening the columns in the open ground storey, and their different combinations were examined. The analysis shows that, in comparison to two short ones separated by interconnecting beams, the structural walls are most effective when placed at the periphery of the buildings and used as one long structural wall. Further, it can be shown that the force transfer from floating columns becomes less horizontal when the Chevron Bracings are placed just below them, thereby reducing the shear forces in the beams on which the floating column rests.Keywords: equivalent static analysis, floating column, open ground storey, response spectrum analysis, shear wall, stiffness irregularity
Procedia PDF Downloads 2572145 Synthetic Access to Complex Metal Carbonates and Hydroxycarbonates via Sol-Gel Chemistry
Authors: Schirin Hanf, Carlos Lizandara-Pueyo, Timmo P. Emmert, Ivana Jevtovikj, Roger Gläser, Stephan A. Schunk
Abstract:
Metal alkoxides are very versatile precursors for a broad array of complex functional materials. However, metal alkoxides, especially transition metal alkoxides, tend to form oligomeric structures due to the very strong M–O–M binding motif. This fact hinders their facile application in sol-gel-processes and complicates access to complex carbonate or oxidic compounds after hydrolysis of the precursors. Therefore, the development of a synthetic alternative with the aim to grant access to carbonates and hydroxycarbonates from simple metal alkoxide precursors via hydrolysis is key to this project. Our approach involves the reaction of metal alkoxides with unsaturated isoelectronic molecules, such as carbon dioxide. Subsequently, a stoichiometric insertion of the CO₂ into the alkoxide M–O bond takes place and leads to the formation of soluble metal alkyl carbonates. This strategy is a very elegant approach to solubilize metal alkoxide precursors to make them accessible for sol-gel chemistry. After hydrolysis of the metal alkyl carbonates, crystalline metal carbonates, and hydroxycarbonates can be obtained, which were then utilized for the synthesis of Cu/Zn based bulk catalysts for methanol synthesis. Using these catalysts, a comparable catalytic activity to commercially available MeOH catalysts could be reached. Based on these results, a complement for traditional precipitation techniques, which are usually utilized for the synthesis of bulk methanol catalysts, have been found based on an alternative solubilization strategy.Keywords: metal alkoxides, metal carbonates, metal hydroxycarbonates, CO₂ insertion, solubilization
Procedia PDF Downloads 1872144 Optimization of Pressure in Deep Drawing Process
Authors: Ajay Kumar Choubey, Geeta Agnihotri, C. Sasikumar, Rashmi Dwivedi
Abstract:
Deep-drawing operations are performed widely in industrial applications. It is very important for efficiency to achieve parts with no or minimum defects. Deep drawn parts are used in high performance, high strength and high reliability applications where tension, stress, load and human safety are critical considerations. Wrinkling is a kind of defect caused by stresses in the flange part of the blank during metal forming operations. To avoid wrinkling appropriate blank-holder pressure/force or drawbead can be applied. Now-a-day computer simulation plays a vital role in the field of manufacturing process. So computer simulation of manufacturing has much advantage over previous conventional process i.e. mass production, good quality of product, fast working etc. In this study, a two dimensional elasto-plastic Finite Element (F.E.) model for Mild Steel material blank has been developed to study the behavior of the flange wrinkling and deep drawing parameters under different Blank-Holder Pressure (B.H.P.). For this, commercially available Finite Element software ANSYS 14 has been used in this study. Simulation results are critically studied and salient conclusions have been drawn.Keywords: ANSYS, deep drawing, BHP, finite element simulation, wrinkling
Procedia PDF Downloads 4492143 Aerodynamic Design of a Light Long Range Blended Wing Body Unmanned Vehicle
Authors: Halison da Silva Pereira, Ciro Sobrinho Campolina Martins, Vitor Mainenti Leal Lopes
Abstract:
Long range performance is a goal for aircraft configuration optimization. Blended Wing Body (BWB) is presented in many works of literature as the most aerodynamically efficient design for a fixed-wing aircraft. Because of its high weight to thrust ratio, BWB is the ideal configuration for many Unmanned Aerial Vehicle (UAV) missions on geomatics applications. In this work, a BWB aerodynamic design for typical light geomatics payload is presented. Aerodynamic non-dimensional coefficients are predicted using low Reynolds number computational techniques (3D Panel Method) and wing parameters like aspect ratio, taper ratio, wing twist and sweep are optimized for high cruise performance and flight quality. The methodology of this work is a summary of tailless aircraft wing design and its application, with appropriate computational schemes, to light UAV subjected to low Reynolds number flows leads to conclusions like the higher performance and flight quality of thicker airfoils in the airframe body and the benefits of using aerodynamic twist rather than just geometric.Keywords: blended wing body, low Reynolds number, panel method, UAV
Procedia PDF Downloads 5862142 Adaptive Swarm Balancing Algorithms for Rare-Event Prediction in Imbalanced Healthcare Data
Authors: Jinyan Li, Simon Fong, Raymond Wong, Mohammed Sabah, Fiaidhi Jinan
Abstract:
Clinical data analysis and forecasting have make great contributions to disease control, prevention and detection. However, such data usually suffer from highly unbalanced samples in class distributions. In this paper, we target at the binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat-inspired algorithm, and combine both of them with the synthetic minority over-sampling technique (SMOTE) for processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reveal that while the performance improvements obtained by the former methods are not scalable to larger data scales, the later one, which we call Adaptive Swarm Balancing Algorithms, leads to significant efficiency and effectiveness improvements on large datasets. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. Leading to more credible performances of the classifier, and shortening the running time compared with the brute-force method.Keywords: Imbalanced dataset, meta-heuristic algorithm, SMOTE, big data
Procedia PDF Downloads 4412141 Nutritional Properties and Lipid Oxidation Assessments of Sucuks Prepared with Camel (Camelus Dromedarius) Meat and Hump
Authors: Mina Kargozari, Isabel Revilla Martin, Ángel A. Carbonell-Barrachina
Abstract:
Different formulations of Turkish fermented sausages (sucuks) prepared with camel meat-hump (CH), camel meat-beef fat (CB), beef-hump (BH) and beef-beef fat (BB), were characterized. The sausages were analytically compared to determine differences in proximate composition and total cholesterol content (TCC), quality parameters such as fatty acids profile and fat quality characteristics, and lipid oxidation parameters including peroxide value, thiobarbituric acid-reactive substances (TBARS) and resulted carbonyl compounds. The PUFAs/SFAs ratio was higher in CB and BB samples than CH and BH (p<0.05). The higher calculated atherogenic and thrombogenic indexes (AI and TI) were obtained from the samples made with hump (p< 0.05) as a result of high amounts of their SFAs. The CH sausages contained high amount of total fat (p<0.05) among all samples. The CB sucuks exhibited the highest protein content and the lowest TCC and rancidity at the end of ripening (p<0.05). The TBARS results showed that beef fat samples were more susceptible to lipid oxidation. Moreover, no significant difference (p<0.05) was observed for the values of short aldehydes among the sucuk samples excepting nonanal. This study demonstrated that supplementing camel meat for the production of dry-fermented sausage resulted in high quality products with good functional and nutritional characteristics.Keywords: fermented sausages, quality properties, SPME, total cholesterol content
Procedia PDF Downloads 3232140 Computational Aerodynamic Shape Optimisation Using a Concept of Control Nodes and Modified Cuckoo Search
Authors: D. S. Naumann, B. J. Evans, O. Hassan
Abstract:
This paper outlines the development of an automated aerodynamic optimisation algorithm using a novel method of parameterising a computational mesh by employing user–defined control nodes. The shape boundary movement is coupled to the movement of the novel concept of the control nodes via a quasi-1D-linear deformation. Additionally, a second order smoothing step has been integrated to act on the boundary during the mesh movement based on the change in its second derivative. This allows for both linear and non-linear shape transformations dependent on the preference of the user. The domain mesh movement is then coupled to the shape boundary movement via a Delaunay graph mapping. A Modified Cuckoo Search (MCS) algorithm is used for optimisation within the prescribed design space defined by the allowed range of control node displacement. A finite volume compressible NavierStokes solver is used for aerodynamic modelling to predict aerodynamic design fitness. The resulting coupled algorithm is applied to a range of test cases in two dimensions including the design of a subsonic, transonic and supersonic intake and the optimisation approach is compared with more conventional optimisation strategies. Ultimately, the algorithm is tested on a three dimensional wing optimisation case.Keywords: mesh movement, aerodynamic shape optimization, cuckoo search, shape parameterisation
Procedia PDF Downloads 3372139 Systems Approach on Thermal Analysis of an Automatic Transmission
Authors: Sinsze Koo, Benjin Luo, Matthew Henry
Abstract:
In order to increase the performance of an automatic transmission, the automatic transmission fluid is required to be warm up to an optimal operating temperature. In a conventional vehicle, cold starts result in friction loss occurring in the gear box and engine. The stop and go nature of city driving dramatically affect the warm-up of engine oil and automatic transmission fluid and delay the time frame needed to reach an optimal operating temperature. This temperature phenomenon impacts both engine and transmission performance but also increases fuel consumption and CO2 emission. The aim of this study is to develop know-how of the thermal behavior in order to identify thermal impacts and functional principles in automatic transmissions. Thermal behavior was studied using models and simulations, developed using GT-Suit, on a one-dimensional thermal and flow transport. A power train of a conventional vehicle was modeled in order to emphasis the thermal phenomena occurring in the various components and how they impact the automatic transmission performance. The simulation demonstrates the thermal model of a transmission fluid cooling system and its component parts in warm-up after a cold start. The result of these analyses will support the future designs of transmission systems and components in an attempt to obtain better fuel efficiency and transmission performance. Therefore, these thermal analyses could possibly identify ways that improve existing thermal management techniques with prioritization on fuel efficiency.Keywords: thermal management, automatic transmission, hybrid, and systematic approach
Procedia PDF Downloads 3772138 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.Keywords: computer vision, human motion analysis, random forest, machine learning
Procedia PDF Downloads 362137 Information Theoretic Approach for Beamforming in Wireless Communications
Authors: Syed Khurram Mahmud, Athar Naveed, Shoaib Arif
Abstract:
Beamforming is a signal processing technique extensively utilized in wireless communications and radars for desired signal intensification and interference signal minimization through spatial selectivity. In this paper, we present a method for calculation of optimal weight vectors for smart antenna array, to achieve a directive pattern during transmission and selective reception in interference prone environment. In proposed scheme, Mutual Information (MI) extrema are evaluated through an energy constrained objective function, which is based on a-priori information of interference source and desired array factor. Signal to Interference plus Noise Ratio (SINR) performance is evaluated for both transmission and reception. In our scheme, MI is presented as an index to identify trade-off between information gain, SINR, illumination time and spatial selectivity in an energy constrained optimization problem. The employed method yields lesser computational complexity, which is presented through comparative analysis with conventional methods in vogue. MI based beamforming offers enhancement of signal integrity in degraded environment while reducing computational intricacy and correlating key performance indicators.Keywords: beamforming, interference, mutual information, wireless communications
Procedia PDF Downloads 2802136 Meat Products Demand in Oyo West Local Government: An Application of Almost Ideal Demand System (LA/AIDS)
Authors: B. A. Adeniyi, S. A. Daud, O. Amao
Abstract:
The study investigates consumer demand for meat products in Oyo West Local Government using linear approximate almost ideal demand system (LA/AIDS). Questions that were addressed by the study include: first, what is the type and quantity of meat products available to the household and their demand pattern? Second is the investigation of the factors that affect meat products demand pattern and proportion of income that is spent on them. For the above purpose cross-sectional data were collected from 156 households of the study area and analyzed to reveal the functional relationship between meat products consumption and some socio-economic variables of the household. Results indicated that per capita meat consumption increased as household income and education increased but decreased with age. It was also found that male tend to consume more meat products than their female counterparts and that increase in household size will first increased per caput meat consumption but later decreased it. Price also tends to greatly influence the demand pattern of meat products. The results of elasticity computed from the results of regression analysis revealed that own price elasticity for all meat products were negative which indicated that they were normal products while cross and expenditure elasticity were positive which further confirmed that meat products were normal and substitute products. This study therefore concludes that the relevance of these variables imposed a great challenge to the policy makers and the government, in the sense that more cost effective methods of meat production technology have to be devised in other to make consumption of meat products more affordable.Keywords: meat products, consumption, animal production, technology
Procedia PDF Downloads 2492135 Mechanism of Melanin Inhibition of Morello Flavone- 7″- Sulphate and Sargaol extracts from Garcinia livingstonei (Clusiaceae): Homology Modelling, Molecular Docking, and Molecular Dynamics Simulations
Authors: Ncoza Dlova, Tivani Mashamba-Thompson
Abstract:
Garcinia livingstonei (Clusiaceae) extracts, morelloflavone- 7″- sulphate and sargaol were shown to be effective against hyper-pigmentation through inhibition of tyrosinase enzyme, in vitro . The aim of this study is to elucidate the structural mechanism through which morelloflavone- 7″- sulphate and sargaol binds human tyrosinase. Implementing a homology model to construct a tyrosinase model using the crystal structure of a functional unit from Octopus hemocyanin (PDB: 1JS8) as a reference template enabled us to create a human tyrosinase model. Molecular dynamics and binding free energy calculations were optimized to enable molecular dynamics simulation of the copper dependent inhibitors. Results show the importance of the hydrogen bond formation morelloflavone- 7″- sulphate and sargaol between compound and active site residues. Both complexes demonstrated the metallic coordination between compound and arginine residue as well as copper ions within the active site. The comprehensive molecular insight gained from this study should be vital in understanding the binding mechanism morelloflavone- 7″- sulphate and sargaol. Moreover, these results will assist in the design of novel of metal ion dependent enzyme inhibitors as potential anti-hyper-pigmentation disorder therapies.Keywords: hyper-pigmentation disorders, dyschromia African skin, morelloflavone- 7″- sulphate, sagoal
Procedia PDF Downloads 4062134 Ab-initio Calculations on the Mechanism of Action of Platinum and Ruthenium Complexes in Phototherapy
Authors: Eslam Dabbish, Fortuna Ponte, Stefano Scoditti, Emilia Sicilia, Gloria Mazzone
Abstract:
The medical techniques based on the use of light for activating the drug are occupying a prominent place in the cancer treatment due to their selectivity that contributes to reduce undesirable side effects of conventional chemotherapy. Among these therapeutic treatments, photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) are emerging as complementary approaches for selective destruction of neoplastic tissue through direct cellular damage. Both techniques rely on the employment of a molecule, photosensitizer (PS), able to absorb within the so-called therapeutic window. Thus, the exposure to light of otherwise inert molecules promotes the population of excited states of the drug, that in PDT are able to produce the cytotoxic species, such as 1O2 and other ROS, in PACT can be responsible of the active species release or formation. Following the success of cisplatin in conventional treatments, many other transition metal complexes were explored as anticancer agents for applications in different medical approaches, including PDT and PACT, in order to improve their chemical, biological and photophysical properties. In this field, several crucial characteristics of candidate PSs can be accurately predicted from first principle calculations, especially in the framework of density functional theory and its time-dependent formulation, contributing to the understanding of the entire photochemical pathways involved which can ultimately help in improving the efficiency of a drug. A brief overview of the outcomes on some platinum and ruthenium-based PSs proposed for the application in the two phototherapies will be provided.Keywords: TDDFT, metal complexes, PACT, PDT
Procedia PDF Downloads 1032133 Electromyographic Analysis of Trunk Muscle Activity of Healthy Individuals While Catching a Ball on Three Different Seating Surfaces
Authors: Hanan H. ALQahtani, Karen Jones
Abstract:
Catching a ball during sitting is a functional exercise commonly used in rehabilitation to enhance trunk muscle activity. To progress this exercise, physiotherapists incorporate a Swiss ball or change seat height. However, no study has assessed the effect of different seating surfaces on trunk muscle activity while catching a ball. Objective: To investigate the effect of catching a ball during sitting on a Swiss ball, a low seat and a high seat on trunk muscle activity. Method: A repeated-measures, counterbalanced design was used. A total of 26 healthy participants (15 female and 11 male) performed three repetitions of catching a ball on each seating surface. Using surface electromyography (sEMG), the activity of the bilateral transversus abdominis/internal oblique (TrA/IO), rectus abdominis (RA), erector spinae (ES) and lumbar multifidus (MF) was recorded. Trunk muscle activity was normalized using maximum voluntary isometric contraction and analyzed. Statistical significance was set at p ≤ .05. Results: No significant differences were observed in the activity of RA, TrA/IO, ES or MF between a low seat and a Swiss ball. However, the activity of the right and left ES on a low seat was significantly greater than on a high seat (p = .017 and p = .017, respectively). Conversely, the activity of the right and left RA on a high seat was significantly greater than on a low seat (p = .007 and p = .004, respectively). Conclusion: This study suggests that replacing a low seat with a Swiss ball while catching a ball is insufficient to increase trunk muscle activity, whereas changing the seat height could induce different trunk muscle activities. However, research conducted on patients is needed before translating these results into clinical settings.Keywords: catching, electromyography, seating, trunk
Procedia PDF Downloads 2912132 The Potential of Sentiment Analysis to Categorize Social Media Comments Using German Libraries
Authors: Felix Boehnisch, Alexander Lutz
Abstract:
Based on the number of users and the amount of content posted daily, Facebook is considered the largest social network in the world. This content includes images or text posts from companies but also private persons, which are also commented on by other users. However, it can sometimes be difficult for companies to keep track of all the posts and the reactions to them, especially when there are several posts a day that contain hundreds to thousands of comments. To facilitate this, the following paper deals with the possible applications of sentiment analysis to social media comments in order to be able to support the work in social media marketing. In a first step, post comments were divided into positive and negative by a subjective rating, then the same comments were checked for their polarity value by the two german python libraries TextBlobDE and SentiWS and also grouped into positive, negative, or even neutral. As a control, the subjective classifications were compared with the machine-generated ones by a confusion matrix, and relevant quality criteria were determined. The accuracy of both libraries was not really meaningful, with 60% to 66%. However, many words or sentences were not evaluated at all, so there seems to be room for optimization to possibly get more accurate results. In future studies, the use of these specific German libraries can be optimized to gain better insights by either applying them to stricter cleaned data or by adding a sentiment value to emojis, which have been removed from the comments in advance, as they are not contained in the libraries.Keywords: Facebook, German libraries, polarity, sentiment analysis, social media comments
Procedia PDF Downloads 182