Search results for: deep layer
551 Flexible Coupling between Gearbox and Pump (High Speed Machine)
Authors: Naif Mohsen Alharbi
Abstract:
This paper present failure occurred on flexible coupling installed at oil anf gas operation. Also it presents maintenance ideas implemented on the flexible coupling installed to transmit high torque from gearbox to pump. Basically, the machine train is including steam turbine which drives the pump and there is gearbox located in between for speed reduction. investigation are identifying the root causes, solving and developing the technology designs or bad actor. This report provides the study intentionally for continues operation optimization, utilize the advanced opportunity and implement a improvement. Objective: The main objectives of the investigation are identifying the root causes, solving and developing the technology designs or bad actor. Ultimately, fulfilling the operation productivity, also ensuring better technology, quality and design by solutions. This report provides the study intentionally for continues operation optimization, utilize the advanced opportunity and implemet improvement. Method: The method used in this project was a very focused root cause analysis procedure that incorporated engineering analysis and measurements. The analysis method extensively covers the measuring of the complete coupling dimensions. Including the membranes thickness, hubs, bore diameter and total length, dismantle flexible coupling to diagnose how deep the coupling has been affected. Also, defining failure modes, so that the causes could be identified and verified. Moreover, Vibration analysis and metallurgy test. Lastly applying several solutions by advanced tools (will be mentioned in detail). Results and observation: Design capacity: Coupling capacity is an inadequate to fulfil 100% of operating conditions. Therefore, design modification of service factor to be at least 2.07 is crucial to address this issue and prevent recurrence of similar scenario, especially for the new upgrading project. Discharge fluctuation: High torque flexible coupling encountered during the operation. Therefore, discharge valve behaviour, tuning, set point and general conditions revaluated and modified subsequently, it can be used as baseline for upcoming Coupling design project. Metallurgy test: Material of flexible coupling membrane (discs) tested at the lab, for a detailed metallurgical investigation, better material grade has been selected for our operating conditions,Keywords: high speed machine, reliabilty, flexible coupling, rotating equipment
Procedia PDF Downloads 68550 Effect of Repellent Coatings, Aerosol Protective Liners, and Lamination on the Properties of Chemical/Biological Protective Textiles
Authors: Natalie Pomerantz, Nicholas Dugan, Molly Richards, Walter Zukas
Abstract:
The primary research question to be answered for Chemical/Biological (CB) protective clothing, is how to protect wearers from a range of chemical and biological threats in liquid, vapor, and aerosol form, while reducing the thermal burden. Currently, CB protective garments are hot, heavy, and wearers are limited by short work times in order to prevent heat injury. This study demonstrates how to incorporate different levels of protection on a material level and modify fabric composites such that the thermal burden is reduced to such an extent it approaches that of a standard duty uniform with no CB protection. CB protective materials are usually comprised of several fabric layers: a cover fabric with a liquid repellent coating, a protective layer which is comprised of a carbon-based sorptive material or semi-permeable membrane, and a comfort next-to-skin liner. In order to reduce thermal burden, all of these layers were laminated together to form one fabric composite which had no insulative air gap in between layers. However, the elimination of the air gap also reduced the CB protection of the fabric composite. In order to increase protection in the laminated composite, different nonwoven aerosol protective liners were added, and a super repellent coating was applied to the cover fabric, prior to lamination. Different adhesive patterns were investigated to determine the durability of the laminate with the super repellent coating, and the effect on air permeation. After evaluating the thermal properties, textile properties and protective properties of the iterations of these fabric composites, it was found that the thermal burden of these materials was greatly reduced by decreasing the thermal resistance with the elimination of the air gap between layers. While the level of protection was reduced in laminate composites, the addition of a super repellent coating increased protection towards low volatility agents without impacting thermal burden. Similarly, the addition of aerosol protective liner increased protection without reducing water vapor transport, depending on the nonwoven used, however, the air permeability was significantly decreased. The balance of all these properties and exploration of the trade space between thermal burden and protection will be discussed.Keywords: aerosol protection, CBRNe protection, lamination, nonwovens, repellent coatings, thermal burden
Procedia PDF Downloads 364549 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning
Authors: Yangzhi Li
Abstract:
Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.Keywords: robotic construction, robotic assembly, visual guidance, machine learning
Procedia PDF Downloads 86548 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: cost prediction, machine learning, project management, random forest, neural networks
Procedia PDF Downloads 56547 Experimental Investigation of Cutting Forces and Temperature in Bone Drilling
Authors: Vishwanath Mali, Hemant Warhatkar, Raju Pawade
Abstract:
Drilling of bone has been always challenging for surgeons due to the adverse effect it may impart to bone tissues. Force has to be applied manually by the surgeon while performing conventional bone drilling which may lead to permanent death of bone tissues and nerves. During bone drilling the temperature of the bone tissues increases to higher values above 47 ⁰C that causes thermal osteonecrosis resulting into screw loosening and subsequent implant failures. An attempt has been made here to study the input drilling parameters and surgical drill bit geometry affecting bone health during bone drilling. A One Factor At a Time (OFAT) method is used to plan the experiments. Input drilling parameters studied include spindle speed and feed rate. The drill bit geometry parameter studied include point angle and helix angle. The output variables are drilling thrust force and bone temperature. The experiments were conducted on goat femur bone at room temperature 30 ⁰C. For measurement of thrust forces KISTLER cutting force dynamometer Type 9257BA was used. For continuous data acquisition of temperature NI LabVIEW software was used. Fixture was made on RPT machine for holding the bone specimen while performing drilling operation. Bone specimen were preserved in deep freezer (LABTOP make) under -40 ⁰C. In case of drilling parameters, it is observed that at constant feed rate when spindle speed increases, thrust force as well as temperature decreases and at constant spindle speed when feed rate increases thrust force as well as temperature increases. The effect of drill bit geometry shows that at constant helix angle when point angle increases thrust force as well as temperature increases and at constant point angle when helix angle increase thrust force as well as temperature decreases. Hence it is concluded that as the thrust force increases temperature increases. In case of drilling parameter, the lowest thrust force and temperature i.e. 35.55 N and 36.04 ⁰C respectively were recorded at spindle speed 2000 rpm and feed rate 0.04 mm/rev. In case of drill bit geometry parameter, the lowest thrust force and temperature i.e. 40.81 N and 34 ⁰C respectively were recorded at point angle 70⁰ and helix angle 25⁰ Hence to avoid thermal necrosis of bone it is recommended to use higher spindle speed, lower feed rate, low point angle and high helix angle. The hard nature of cortical bone contributes to a greater rise in temperature whereas a considerable drop in temperature is observed during cancellous bone drilling.Keywords: bone drilling, helix angle, point angle, thrust force, temperature, thermal necrosis
Procedia PDF Downloads 309546 CeO₂-Decorated Graphene-coated Nickel Foam with NiCo Layered Double Hydroxide for Efficient Hydrogen Evolution Reaction
Authors: Renzhi Qi, Zhaoping Zhong
Abstract:
Under the dual pressure of the global energy crisis and environmental pollution, avoiding the consumption of non-renewable fossil fuels based on carbon as the energy carrier and developing and utilizing non-carbon energy carriers are the basic requirements for the future new energy economy. Electrocatalyst for water splitting plays an important role in building sustainable and environmentally friendly energy conversion. The oxygen evolution reaction (OER) is essentially limited by the slow kinetics of multi-step proton-electron transfer, which limits the efficiency and cost of water splitting. In this work, CeO₂@NiCo-NRGO/NF hybrid materials were prepared using nickel foam (NF) and nitrogen-doped reduced graphene oxide (NRGO) as conductive substrates by multi-step hydrothermal method and were used as highly efficient catalysts for OER. The well-connected nanosheet array forms a three-dimensional (3D) network on the substrate, providing a large electrochemical surface area with abundant catalytic active sites. The doping of CeO₂ in NiCo-NRGO/NF electrocatalysts promotes the dispersion of substances and its synergistic effect in promoting the activation of reactants, which is crucial for improving its catalytic performance against OER. The results indicate that CeO₂@NiCo-NRGO/NF only requires a lower overpotential of 250 mV to drive the current density of 10 mA cm-2 for an OER reaction of 1 M KOH, and exhibits excellent stability at this current density for more than 10 hours. The double layer capacitance (Cdl) values show that CeO₂@NiCo-NRGO/NF significantly affects the interfacial conductivity and electrochemically active surface area. The hybrid structure could promote the catalytic performance of oxygen evolution reaction, such as low initial potential, high electrical activity, and excellent long-term durability. The strategy for improving the catalytic activity of NiCo-LDH can be used to develop a variety of other electrocatalysts for water splitting.Keywords: CeO₂, reduced graphene oxide, NiCo-layered double hydroxide, oxygen evolution reaction
Procedia PDF Downloads 82545 Impact of the Oxygen Content on the Optoelectronic Properties of the Indium-Tin-Oxide Based Transparent Electrodes for Silicon Heterojunction Solar Cells
Authors: Brahim Aissa
Abstract:
Transparent conductive oxides (TCOs) used as front electrodes in solar cells must feature simultaneously high electrical conductivity, low contact resistance with the adjacent layers, and an appropriate refractive index for maximal light in-coupling into the device. However, these properties may conflict with each other, motivating thereby the search for TCOs with high performance. Additionally, due to the presence of temperature sensitive layers in many solar cell designs (for example, in thin-film silicon and silicon heterojunction (SHJ)), low-temperature deposition processes are more suitable. Several deposition techniques have been already explored to fabricate high-mobility TCOs at low temperatures, including sputter deposition, chemical vapor deposition, and atomic layer deposition. Among this variety of methods, to the best of our knowledge, magnetron sputtering deposition is the most established technique, despite the fact that it can lead to damage of underlying layers. The Sn doped In₂O₃ (ITO) is the most commonly used transparent electrode-contact in SHJ technology. In this work, we studied the properties of ITO thin films grown by RF sputtering. Using different oxygen fraction in the argon/oxygen plasma, we prepared ITO films deposited on glass substrates, on one hand, and on a-Si (p and n-types):H/intrinsic a-Si/glass substrates, on the other hand. Hall Effect measurements were systematically conducted together with total-transmittance (TT) and total-reflectance (TR) spectrometry. The electrical properties were drastically affected whereas the TT and TR were found to be slightly impacted by the oxygen variation. Furthermore, the time of flight-secondary ion mass spectrometry (TOF-SIMS) technique was used to determine the distribution of various species throughout the thickness of the ITO and at various interfaces. The depth profiling of indium, oxygen, tin, silicon, phosphorous, boron and hydrogen was investigated throughout the various thicknesses and interfaces, and obtained results are discussed accordingly. Finally, the extreme conditions were selected to fabricate rear emitter SHJ devices, and the photovoltaic performance was evaluated; the lower oxygen flow ratio was found to yield the best performance attributed to lower series resistance.Keywords: solar cell, silicon heterojunction, oxygen content, optoelectronic properties
Procedia PDF Downloads 159544 Evaluating the Small-Strain Mechanical Properties of Cement-Treated Clayey Soils Based on the Confining Pressure
Authors: Muhammad Akmal Putera, Noriyuki Yasufuku, Adel Alowaisy, Ahmad Rifai
Abstract:
Indonesia’s government has planned a project for a high-speed railway connecting the capital cities, Jakarta and Surabaya, about 700 km. Based on that location, it has been planning construction above the lowland soil region. The lowland soil region comprises cohesive soil with high water content and high compressibility index, which in fact, led to a settlement problem. Among the variety of railway track structures, the adoption of the ballastless track was used effectively to reduce the settlement; it provided a lightweight structure and minimized workspace. Contradictorily, deploying this thin layer structure above the lowland area was compensated with several problems, such as lack of bearing capacity and deflection behavior during traffic loading. It is necessary to combine with ground improvement to assure a settlement behavior on the clayey soil. Reflecting on the assurance of strength increment and working period, those were convinced by adopting methods such as cement-treated soil as the substructure of railway track. Particularly, evaluating mechanical properties in the field has been well known by using the plate load test and cone penetration test. However, observing an increment of mechanical properties has uncertainty, especially for evaluating cement-treated soil on the substructure. The current quality control of cement-treated soils was established by laboratory tests. Moreover, using small strain devices measurement in the laboratory can predict more reliable results that are identical to field measurement tests. Aims of this research are to show an intercorrelation of confining pressure with the initial condition of the Young modulus (E_o), Poisson ratio (υ_o) and Shear modulus (G_o) within small strain ranges. Furthermore, discrepancies between those parameters were also investigated. Based on the experimental result confirmed the intercorrelation between cement content and confining pressure with a power function. In addition, higher cement ratios have discrepancies, conversely with low mixing ratios.Keywords: amount of cement, elastic zone, high-speed railway, lightweight structure
Procedia PDF Downloads 142543 Nanofiltration Membranes with Deposyted Polyelectrolytes: Caracterisation and Antifouling Potential
Authors: Viktor Kochkodan
Abstract:
The main problem arising upon water treatment and desalination using pressure driven membrane processes such as microfiltration, ultrafiltration, nanofiltration and reverse osmosis is membrane fouling that seriously hampers the application of the membrane technologies. One of the main approaches to mitigate membrane fouling is to minimize adhesion interactions between a foulant and a membrane and the surface coating of the membranes with polyelectrolytes seems to be a simple and flexible technique to improve the membrane fouling resistance. In this study composite polyamide membranes NF-90, NF-270, and BW-30 were modified using electrostatic deposition of polyelectrolyte multilayers made from various polycationic and polyanionic polymers of different molecular weights. Different anionic polyelectrolytes such as: poly(sodium 4-styrene sulfonate), poly(vinyl sulfonic acid, sodium salt), poly(4-styrene sulfonic acid-co-maleic acid) sodium salt, poly(acrylic acid) sodium salt (PA) and cationic polyelectrolytes such as poly(diallyldimethylammonium chloride), poly(ethylenimine) and poly(hexamethylene biguanide were used for membrane modification. An effect of deposition time and a number of polyelectrolyte layers on the membrane modification has been evaluated. It was found that degree of membrane modification depends on chemical nature and molecular weight of polyelectrolytes used. The surface morphology of the prepared composite membranes was studied using atomic force microscopy. It was shown that the surface membrane roughness decreases significantly as a number of the polyelectrolyte layers on the membrane surface increases. This smoothening of the membrane surface might contribute to the reduction of membrane fouling as lower roughness most often associated with a decrease in surface fouling. Zeta potentials and water contact angles on the membrane surface before and after modification have also been evaluated to provide addition information regarding membrane fouling issues. It was shown that the surface charge of the membranes modified with polyelectrolytes could be switched between positive and negative after coating with a cationic or an anionic polyelectrolyte. On the other hand, the water contact angle was strongly affected when the outermost polyelectrolyte layer was changed. Finally, a distinct difference in the performance of the noncoated membranes and the polyelectrolyte modified membranes was found during treatment of seawater in the non-continuous regime. A possible mechanism of the higher fouling resistance of the modified membranes has been discussed.Keywords: contact angle, membrane fouling, polyelectrolytes, surface modification
Procedia PDF Downloads 251542 Preliminary Studies of Antibiofouling Properties in Wrinkled Hydrogel Surfaces
Authors: Mauricio A. Sarabia-Vallejos, Carmen M. Gonzalez-Henriquez, Adolfo Del Campo-Garcia, Aitzibier L. Cortajarena, Juan Rodriguez-Hernandez
Abstract:
In this study, it was explored the formation and the morphological differences between wrinkled hydrogel patterns obtained via generation of surface instabilities. The slight variations in the polymerization conditions produce important changes in the material composition and pattern structuration. The compounds were synthesized using three main components, i.e. an amphiphilic monomer, hydroxyethyl methacrylate (HEMA), a hydrophobic monomer, trifluoroethyl methacrylate (TFMA), and a hydrophilic crosslinking agent, poly(ethylene glycol) diacrylate (PEGDA). The first part of this study was related to the formation of wrinkled surfaces using only HEMA and PEGDA and varying the amount of water added in the reaction. The second part of this study involves the gradual insertion of TFMA into the hydrophilic reaction mixture. Interestingly, the manipulation of the chemical composition of this hydrogel affects both surface morphology and physicochemical characteristics of the patterns, inducing transitions from one particular type of structure (wrinkles or ripples) to different ones (creases, folds, and crumples). Contact angle measurements show that the insertion of TFMA produces a slight decrease in surface wettability of the samples, remaining however highly hydrophilic (contact angle below 45°). More interestingly, by using confocal Raman spectroscopy, important information about the wrinkle formation mechanism is obtained. The procedure involving two consecutive thermal and photopolymerization steps lead to a “pseudo” two-layer system. Thus, upon photopolymerization, the surface is crosslinked to a higher extent than the bulk and water evaporation drives the formation of wrinkled surfaces. Finally, cellular, and bacterial proliferation studies were performed to the samples, showing that the amount of TFMA included in each sample slightly affects the proliferation of both (bacteria and cells), but in the case of bacteria, the morphology of the sample also plays an important role, importantly reducing the bacterial proliferation.Keywords: antibiofouling properties, hydrophobic/hydrophilic balance, morphologic characterization, wrinkled hydrogel patterns
Procedia PDF Downloads 163541 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 40540 Intergenerational Succession within Family Businesses: The Role of Sharing and Creation Knowledge
Authors: Wissal Ben Arfi, Jean-Michel Sahut
Abstract:
The purpose of this paper is to provide a deeper understanding of the succession process from a knowledge management perspective. By doing that, succession process in family businesses, as an environment for creating and sharing knowledge, was explored. Design/Methodology/Approach: To support our reasoning, we collected qualitative data through 16 in-depth interviews conducted with all decision makers involved in the family businesses succession process in France. These open-ended responses were subsequently exposed to thematic discourse analysis. Findings: Central to this exhibit is the nature and magnitude of knowledge creation and sharing among the actors within the family succession context and how can tacit knowledge sharing facilitate the succession process. We also identified factors that inhibit down the knowledge creation and sharing processes. The sharing and creation of knowledge among members of a family business appear to be a complex process that must be part of a strategy for change. This implies that it requests trust and takes a certain amount of time because it requires organizational change and a clear and coherent strategic vision that is accepted and assimilated by all the members. Professional and leadership skills are of particular importance in knowledge sharing and creation processes. In most cases, tacit knowledge is crucial when it is shared and accumulated collectively. Our findings reveal that managers should find ways of implementing knowledge sharing and creation processes while acknowledging the succession process within family firms. This study highlights the importance of generating knowledge strategies in order to enhance the performance and the success of intergenerational succession. The empirical outcomes contribute to enrich the field of succession management process and enhance the role of knowledge in shaping family performance and longevity. To a large extent, the lessons learned from the study of succession processes in family-owned businesses are that when there is a deliberate effort to introduce a knowledge-based approach, this action becomes a seminal event in the life of the organization. Originality/Value: The paper contributes to the deep understanding of interactions among actors by examining the knowledge creation and sharing processes since current researches in family succession focused on aspects such as personal development of potential, intra-family succession intention, decision-making processes in family businesses. Besides, as succession is one of the key factors that determine the longevity and the performance of family businesses, it also contributes to literature by examining how tacit knowledge is transferred, shared and created in family businesses and how this can facilitate the intergenerational succession process.Keywords: family-owned businesses, succession process, knowledge, performance
Procedia PDF Downloads 208539 Study of Variation of Winds Behavior on Micro Urban Environment with Use of Fuzzy Logic for Wind Power Generation: Case Study in the Cities of Arraial do Cabo and São Pedro da Aldeia, State of Rio de Janeiro, Brazil
Authors: Roberto Rosenhaim, Marcos Antonio Crus Moreira, Robson da Cunha, Gerson Gomes Cunha
Abstract:
This work provides details on the wind speed behavior within cities of Arraial do Cabo and São Pedro da Aldeia located in the Lakes Region of the State of Rio de Janeiro, Brazil. This region has one of the best potentials for wind power generation. In interurban layer, wind conditions are very complex and depend on physical geography, size and orientation of buildings and constructions around, population density, and land use. In the same context, the fundamental surface parameter that governs the production of flow turbulence in urban canyons is the surface roughness. Such factors can influence the potential for power generation from the wind within the cities. Moreover, the use of wind on a small scale is not fully utilized due to complexity of wind flow measurement inside the cities. It is difficult to accurately predict this type of resource. This study demonstrates how fuzzy logic can facilitate the assessment of the complexity of the wind potential inside the cities. It presents a decision support tool and its ability to deal with inaccurate information using linguistic variables created by the heuristic method. It relies on the already published studies about the variables that influence the wind speed in the urban environment. These variables were turned into the verbal expressions that are used in computer system, which facilitated the establishment of rules for fuzzy inference and integration with an application for smartphones used in the research. In the first part of the study, challenges of the sustainable development which are described are followed by incentive policies to the use of renewable energy in Brazil. The next chapter follows the study area characteristics and the concepts of fuzzy logic. Data were collected in field experiment by using qualitative and quantitative methods for assessment. As a result, a map of the various points is presented within the cities studied with its wind viability evaluated by a system of decision support using the method multivariate classification based on fuzzy logic.Keywords: behavior of winds, wind power, fuzzy logic, sustainable development
Procedia PDF Downloads 293538 Exploring the Concept of Fashion Waste: Hanging by a Thread
Authors: Timothy Adam Boleratzky
Abstract:
The goal of this transformative endeavour lies in the repurposing of textile scraps, heralding a renaissance in the creation of wearable art. Through a judicious fusion of Life Cycle Assessment (LCA) methodologies and cutting-edge techniques, this research embarks upon a voyage of exploration, unraveling the intricate tapestry of environmental implications woven into the fabric of textile waste. Delving deep into the annals of empirical evidence and scholarly discourse, the study not only elucidates the urgent imperative for waste reduction strategies but also unveils the transformative potential inherent in embracing circular economy principles within the hallowed halls of fashion. As the research unfurls its sails, guided by the compass of sustainability, it traverses uncharted territories, charting a course toward a more enlightened and responsible fashion ecosystem. The canvas upon which this journey unfolds is richly adorned with insights gleaned from the crucible of experimentation, laying bare the myriad pathways toward waste minimisation and resource optimisation. From the adoption of recycling strategies to the cultivation of eco-friendly production techniques, the research endeavours to sculpt a blueprint for a more sustainable future, one stitch at a time. In this unfolding narrative, the role of wearable art emerges as a potent catalyst for change, transcending the boundaries of conventional fashion to embrace a more holistic ethos of sustainability. Through the alchemy of creativity and craftsmanship, discarded textile scraps are imbued with new life, morphing into exquisite creations that serve as both a testament to human ingenuity and a rallying cry for environmental preservation. Each thread, each stitch, becomes a silent harbinger of change, weaving together a tapestry of hope in a world besieged by ecological uncertainty. As the research journey culminates, its echoes resonate far beyond the confines of academia, reverberating through the corridors of industry and beyond. In its wake, it leaves a legacy of empowerment and enlightenment, inspiring a generation of designers, entrepreneurs, and consumers to embrace a more sustainable vision of fashion. For in the intricate interplay of threads and textiles lies the promise of a brighter, more resilient future, where beauty coexists harmoniously with responsibility and where fashion becomes not merely an expression of style but a celebration of sustainability.Keywords: fabric-manipulation, sustainability, textiles, waste, wearable-art
Procedia PDF Downloads 44537 DC Bus Voltage Ripple Control of Photo Voltaic Inverter in Low Voltage Ride-Trough Operation
Authors: Afshin Kadri
Abstract:
Using Renewable Energy Resources (RES) as a type of DG unit is developing in distribution systems. The connection of these generation units to existing AC distribution systems changes the structure and some of the operational aspects of these grids. Most of the RES requires to power electronic-based interfaces for connection to AC systems. These interfaces consist of at least one DC/AC conversion unit. Nowadays, grid-connected inverters must have the required feature to support the grid under sag voltage conditions. There are two curves in these conditions that show the magnitude of the reactive component of current as a function of voltage drop value and the required minimum time value, which must be connected to the grid. This feature is named low voltage ride-through (LVRT). Implementing this feature causes problems in the operation of the inverter that increases the amplitude of high-frequency components of the injected current and working out of maximum power point in the photovoltaic panel connected inverters are some of them. The important phenomenon in these conditions is ripples in the DC bus voltage that affects the operation of the inverter directly and indirectly. The losses of DC bus capacitors which are electrolytic capacitors, cause increasing their temperature and decreasing its lifespan. In addition, if the inverter is connected to the photovoltaic panels directly and has the duty of maximum power point tracking, these ripples cause oscillations around the operating point and decrease the generating energy. Using a bidirectional converter in the DC bus, which works as a buck and boost converter and transfers the ripples to its DC bus, is the traditional method to eliminate these ripples. In spite of eliminating the ripples in the DC bus, this method cannot solve the problem of reliability because it uses an electrolytic capacitor in its DC bus. In this work, a control method is proposed which uses the bidirectional converter as the fourth leg of the inverter and eliminates the DC bus ripples using an injection of unbalanced currents into the grid. Moreover, the proposed method works based on constant power control. In this way, in addition, to supporting the amplitude of grid voltage, it stabilizes its frequency by injecting active power. Also, the proposed method can eliminate the DC bus ripples in deep voltage drops, which cause increasing the amplitude of the reference current more than the nominal current of the inverter. The amplitude of the injected current for the faulty phases in these conditions is kept at the nominal value and its phase, together with the phase and amplitude of the other phases, are adjusted, which at the end, the ripples in the DC bus are eliminated, however, the generated power decreases.Keywords: renewable energy resources, voltage drop value, DC bus ripples, bidirectional converter
Procedia PDF Downloads 76536 Informal Green Infrastructure as Mobility Enabler in Informal Settlements of Quito
Authors: Ignacio W. Loor
Abstract:
In the context of informal settlements in Quito, this paper provides evidence that slopes and deep ravines typical of Andean cities, around which marginalized urban communities sit, constitute a platform for green infrastructure that supports mobility for pedestrians in an incremental fashion. This is informally shaped green infrastructure that provides connectivity to other mobility infrastructures such as roads and public transport, which permits relegated dwellers reach their daily destinations and reclaim their rights to the city. This is relevant in that walking has been increasingly neglected as a viable mean of transport in Latin American cities, in favor of rather motorized means, for which the mobility benefits of green infrastructure have remained invisible to policymakers, contributing to the progressive isolation of informal settlements. This research leverages greatly on an ecological rejuvenation programme led by the municipality of Quito and the Andean Corporation for Development (CAN) intended for rehabilitating the ecological functionalities of ravines. Accordingly, four ravines in different stages of rejuvenation were chosen, in order to through ethnographic methods, capture the practices they support to dwellers of informal settlements across different stages, particularly in terms of issues of mobility. Then, by presenting fragments of interviews, description of observed phenomena, photographs and narratives published in institutional reports and media, the production process of mobility infrastructure over unoccupied slopes and ravines, and the roles that this infrastructure plays in the mobility of dwellers and their quotidian practices are explained. For informal settlements, which normally feature scant urban infrastructure, mobility embodies an unfavourable driver for the possibilities of dwellers to actively participate in the social, economic and political dimensions of the city, for which their rights to the city are widely neglected. Nevertheless, informal green infrastructure for mobility provides some alleviation. This infrastructure is incremental, since its features and usability gradually evolves as users put into it knowledge, labour, devices, and connectivity to other infrastructures in different dimensions which increment its dependability. This is evidenced in the diffusion of knowledge of trails and routes of footpaths among users, the implementation of linking stairs and bridges, the improved access by producing public spaces adjacent to the ravines, the illuminating of surrounding roads, and ultimately, the restoring of ecological functions of ravines. However, the perpetuity of this type of infrastructure is also fragile and vulnerable to the course of urbanisation, densification, and expansion of gated privatised spaces.Keywords: green infrastructure, informal settlements, urban mobility, walkability
Procedia PDF Downloads 164535 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis
Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante
Abstract:
The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.Keywords: dynamic analysis, long short-term memory, prediction, sepsis
Procedia PDF Downloads 125534 The Microstructure and Corrosion Behavior of High Entropy Metallic Layers Electrodeposited by Low and High-Temperature Methods
Authors: Zbigniew Szklarz, Aldona Garbacz-Klempka, Magdalena Bisztyga-Szklarz
Abstract:
Typical metallic alloys bases on one major alloying component, where the addition of other elements is intended to improve or modify certain properties, most of all the mechanical properties. However, in 1995 a new concept of metallic alloys was described and defined. High Entropy Alloys (HEA) contains at least five alloying elements in an amount from 5 to 20 at.%. A common feature this type of alloys is an absence of intermetallic phases, high homogeneity of the microstructure and unique chemical composition, what leads to obtaining materials with very high strength indicators, stable structures (also at high temperatures) and excellent corrosion resistance. Hence, HEA can be successfully used as a substitutes for typical metallic alloys in various applications where a sufficiently high properties are desirable. For fabricating HEA, a few ways are applied: 1/ from liquid phase i.e. casting (usually arc melting); 2/ from solid phase i.e. powder metallurgy (sintering methods preceded by mechanical synthesis) and 3/ from gas phase e.g. sputtering or 4/ other deposition methods like electrodeposition from liquids. Application of different production methods creates different microstructures of HEA, which can entail differences in their properties. The last two methods also allows to obtain coatings with HEA structures, hereinafter referred to as High Entropy Films (HEF). With reference to above, the crucial aim of this work was the optimization of the manufacturing process of the multi-component metallic layers (HEF) by the low- and high temperature electrochemical deposition ( ED). The low-temperature deposition process was crried out at ambient or elevated temperature (up to 100 ᵒC) in organic electrolyte. The high-temperature electrodeposition (several hundred Celcius degrees), in turn, allowed to form the HEF layer by electrochemical reduction of metals from molten salts. The basic chemical composition of the coatings was CoCrFeMnNi (known as Cantor’s alloy). However, it was modified by other, selected elements like Al or Cu. The optimization of the parameters that allow to obtain as far as it possible homogeneous and equimolar composition of HEF is the main result of presented studies. In order to analyse and compare the microstructure, SEM/EBSD, TEM and XRD techniques were employed. Morover, the determination of corrosion resistance of the CoCrFeMnNi(Cu or Al) layers in selected electrolytes (i.e. organic and non-organic liquids) was no less important than the above mentioned objectives.Keywords: high entropy alloys, electrodeposition, corrosion behavior, microstructure
Procedia PDF Downloads 80533 The Impacts Of Hydraulic Conditions On The Fate, Transport And Accumulation Of Microplastics Pollution In The Aquatic Ecosystems
Authors: Majid Rasta, Xiaotao Shi, Mian Adnan Kakakhel, Yanqin Bai, Lao Liu, Jia Manke
Abstract:
Microplastics (MPs; particles <5 mm) pollution is considered as a globally pervasive threat to aquatic ecosystems, and many studies reported this pollution in rivers, wetlands, lakes, coastal waters and oceans. In the aquatic environments, settling and transport of MPs in water column and sediments are determined by different factors such as hydrologic characteristics, watershed pattern, rainfall events, hydraulic conditions, vegetation, hydrodynamics behavior of MPs, and physical features of particles (shape, size and density). In the meantime, hydraulic conditions (such as turbulence, high/low water speed flows or water stagnation) play a key role in the fate of MPs in aquatic ecosystems. Therefore, this study presents a briefly review on the effects of different hydraulic conditions on the fate, transport and accumulation of MPs in aquatic ecosystems. Generally, MPs are distributed horizontally and vertically in aquatic environments. The vertical distribution of MPs in the water column changes with different flow velocities. In the riverine, turbulent flow causing from the rapid water velocity and shallow depth may create a homogeneous mixture of MPs throughout the water column. While low velocity followed by low-turbulent waters can lead to the low level vertical mixing of MP particles in the water column. Consequently, the high numbers of MPs are expected to be found in the sediments of deep and wide channels as well as estuaries. In contrast, observing the lowest accumulation of MP particles in the sediments of straights of the rivers, places with the highest flow velocity is understandable. In the marine environment, hydrodynamic factors (e.g., turbulence, current velocity and residual circulation) can affect the sedimentation and transportation of MPs and thus change the distribution of MPs in the marine and coastal sediments. For instance, marine bays are known as the accumulation area of MPs due to poor hydrodynamic conditions. On the other hand, in the nearshore zone, the flow conditions are highly complex and dynamic. Experimental studies illustrated that maximum horizontal flow velocity in the sandy beach can predict the accumulation of MPs so that particles with high sinking velocities deposit in the lower water depths. As a whole, it can be concluded that the transport and accumulation of MPs in aquatic ecosystems are highly affected by hydraulic conditions. This study provided information about the impacts of hydraulic on MPs pollution. Further research on hydraulics and its relationship to the accumulation of MPs in aquatic ecosystems is needed to increase insights into this pollution.Keywords: microplastics pollution, hydraulic, transport, accumulation
Procedia PDF Downloads 70532 Two-Stage Estimation of Tropical Cyclone Intensity Based on Fusion of Coarse and Fine-Grained Features from Satellite Microwave Data
Authors: Huinan Zhang, Wenjie Jiang
Abstract:
Accurate estimation of tropical cyclone intensity is of great importance for disaster prevention and mitigation. Existing techniques are largely based on satellite imagery data, and research and utilization of the inner thermal core structure characteristics of tropical cyclones still pose challenges. This paper presents a two-stage tropical cyclone intensity estimation network based on the fusion of coarse and fine-grained features from microwave brightness temperature data. The data used in this network are obtained from the thermal core structure of tropical cyclones through the Advanced Technology Microwave Sounder (ATMS) inversion. Firstly, the thermal core information in the pressure direction is comprehensively expressed through the maximal intensity projection (MIP) method, constructing coarse-grained thermal core images that represent the tropical cyclone. These images provide a coarse-grained feature range wind speed estimation result in the first stage. Then, based on this result, fine-grained features are extracted by combining thermal core information from multiple view profiles with a distributed network and fused with coarse-grained features from the first stage to obtain the final two-stage network wind speed estimation. Furthermore, to better capture the long-tail distribution characteristics of tropical cyclones, focal loss is used in the coarse-grained loss function of the first stage, and ordinal regression loss is adopted in the second stage to replace traditional single-value regression. The selection of tropical cyclones spans from 2012 to 2021, distributed in the North Atlantic (NA) regions. The training set includes 2012 to 2017, the validation set includes 2018 to 2019, and the test set includes 2020 to 2021. Based on the Saffir-Simpson Hurricane Wind Scale (SSHS), this paper categorizes tropical cyclone levels into three major categories: pre-hurricane, minor hurricane, and major hurricane, with a classification accuracy rate of 86.18% and an intensity estimation error of 4.01m/s for NA based on this accuracy. The results indicate that thermal core data can effectively represent the level and intensity of tropical cyclones, warranting further exploration of tropical cyclone attributes under this data.Keywords: Artificial intelligence, deep learning, data mining, remote sensing
Procedia PDF Downloads 63531 Evaluation of NoSQL in the Energy Marketplace with GraphQL Optimization
Authors: Michael Howard
Abstract:
The growing popularity of electric vehicles in the United States requires an ever-expanding infrastructure of commercial DC fast charging stations. The U.S. Department of Energy estimates 33,355 publicly available DC fast charging stations as of September 2023. In 2017, 115,370 gasoline stations were operating in the United States, much more ubiquitous than DC fast chargers. Range anxiety is an important impediment to the adoption of electric vehicles and is even more relevant in underserved regions in the country. The peer-to-peer energy marketplace helps fill the demand by allowing private home and small business owners to rent their 240 Volt, level-2 charging facilities. The existing, publicly accessible outlets are wrapped with a Cloud-connected microcontroller managing security and charging sessions. These microcontrollers act as Edge devices communicating with a Cloud message broker, while both buyer and seller users interact with the framework via a web-based user interface. The database storage used by the marketplace framework is a key component in both the cost of development and the performance that contributes to the user experience. A traditional storage solution is the SQL database. The architecture and query language have been in existence since the 1970s and are well understood and documented. The Structured Query Language supported by the query engine provides fine granularity with user query conditions. However, difficulty in scaling across multiple nodes and cost of its server-based compute have resulted in a trend in the last 20 years towards other NoSQL, serverless approaches. In this study, we evaluate the NoSQL vs. SQL solutions through a comparison of Google Cloud Firestore and Cloud SQL MySQL offerings. The comparison pits Google's serverless, document-model, non-relational, NoSQL against the server-base, table-model, relational, SQL service. The evaluation is based on query latency, flexibility/scalability, and cost criteria. Through benchmarking and analysis of the architecture, we determine whether Firestore can support the energy marketplace storage needs and if the introduction of a GraphQL middleware layer can overcome its deficiencies.Keywords: non-relational, relational, MySQL, mitigate, Firestore, SQL, NoSQL, serverless, database, GraphQL
Procedia PDF Downloads 62530 Spatial Variability of Phyotoplankton Assemblages during the Intermonsoon in Baler Bay, Outer and Inner Casiguran Sound, Aurora, Fronting Philipine Rise
Authors: Aime P. Lampad-Dela Pena, Rhodora V. Azanza, Cesar L. Villanoy, Ephrime B. Metillo, Aletta T. Yniguez
Abstract:
Phytoplankton community changes in relation to environmental parameters were compared between and within, the three interconnected basins. Phytoplankton samples were collected from thirteen stations of Baler Bay and Casiguran Sound, Aurora last May 2013 by filtering 10 L buckets of surface water and 5 L Niskin samples at 20 meters and at 30 to 40 meters depths through a 20um sieve. Duplicate samples per station were preserved, counted, and identified up to genus level, in order to determine the horizontal and vertical spatial variation of different phytoplankton functional groups during the summer ebb and flood flow. Baler Bay, Outer and Inner Casiguran Sound had a total of 89 genera from four phytoplankton groups: Diatom (62), Dinoflagellate (25), Silicoflagellate (1) and Cyanobacteria (1). Non-toxic diatom Chaetoceros spp. bloom (averaged 2.0 x 105 to 2.73 x 106 cells L⁻¹) co-existed with Bacteriastrum spp. at surface waters in Inner and Outer Casiguran. Pseudonitzschia spp. (1.73 x 106 cells L⁻¹) bloomed at bottom waters of the innermost embayment near Casiguran mangrove estuary. Cyanobacteria Trichodesmium spp. significantly increased during ebb tide at the mid-water layers (20 meters depth) in the three basins (ranged from 6, 900 to 15, 125 filaments L⁻¹), forming another bloom. Gonyaulax spp. - dominated dinoflagellate did not significantly change with depth across the three basins. Overall, diatoms and dinoflagellates community assemblages significantly changed between sites (p < 0.001) while diatoms and cyanobacteria varied within Casiguran outer and inner sites (p < 0.001) only. Tidal fluctuations significantly affected dinoflagellates and diatom groups (p < 0.001) in inner and baler sites. Chlorophyll significantly varied between (KW, p < 0.001) and within each basins (KW, p < 0.05), no tidal influence, with the highest value at inner Casiguran and at deeper waters indicating deep chlorophyll maxima. Aurora’s distinct shelf morphology favoring counterclockwise circulation pattern, advective transport, and continuous stratification of the water column could basically affect the phytoplankton assemblages and water quality of Baler Bay and Casiguran inner and outer basins. Observed spatial phytoplankton community changes with multi-species diatom and cyanobacteria bloom at different water layers of the three inter-connected embayments would be vital for any environmental management initiatives in Aurora.Keywords: aurora fronting Philippines Rise, intermonsoon, multi-species diatom bloom, spatial variability
Procedia PDF Downloads 147529 Re-identification Risk and Mitigation in Federated Learning: Human Activity Recognition Use Case
Authors: Besma Khalfoun
Abstract:
In many current Human Activity Recognition (HAR) applications, users' data is frequently shared and centrally stored by third parties, posing a significant privacy risk. This practice makes these entities attractive targets for extracting sensitive information about users, including their identity, health status, and location, thereby directly violating users' privacy. To tackle the issue of centralized data storage, a relatively recent paradigm known as federated learning has emerged. In this approach, users' raw data remains on their smartphones, where they train the HAR model locally. However, users still share updates of their local models originating from raw data. These updates are vulnerable to several attacks designed to extract sensitive information, such as determining whether a data sample is used in the training process, recovering the training data with inversion attacks, or inferring a specific attribute or property from the training data. In this paper, we first introduce PUR-Attack, a parameter-based user re-identification attack developed for HAR applications within a federated learning setting. It involves associating anonymous model updates (i.e., local models' weights or parameters) with the originating user's identity using background knowledge. PUR-Attack relies on a simple yet effective machine learning classifier and produces promising results. Specifically, we have found that by considering the weights of a given layer in a HAR model, we can uniquely re-identify users with an attack success rate of almost 100%. This result holds when considering a small attack training set and various data splitting strategies in the HAR model training. Thus, it is crucial to investigate protection methods to mitigate this privacy threat. Along this path, we propose SAFER, a privacy-preserving mechanism based on adaptive local differential privacy. Before sharing the model updates with the FL server, SAFER adds the optimal noise based on the re-identification risk assessment. Our approach can achieve a promising tradeoff between privacy, in terms of reducing re-identification risk, and utility, in terms of maintaining acceptable accuracy for the HAR model.Keywords: federated learning, privacy risk assessment, re-identification risk, privacy preserving mechanisms, local differential privacy, human activity recognition
Procedia PDF Downloads 11528 Generating 3D Battery Cathode Microstructures using Gaussian Mixture Models and Pix2Pix
Authors: Wesley Teskey, Vedran Glavas, Julian Wegener
Abstract:
Generating battery cathode microstructures is an important area of research, given the proliferation of the use of automotive batteries. Currently, finite element analysis (FEA) is often used for simulations of battery cathode microstructures before physical batteries can be manufactured and tested to verify the simulation results. Unfortunately, a key drawback of using FEA is that this method of simulation is very slow in terms of computational runtime. Generative AI offers the key advantage of speed when compared to FEA, and because of this, generative AI is capable of evaluating very large numbers of candidate microstructures. Given AI generated candidate microstructures, a subset of the promising microstructures can be selected for further validation using FEA. Leveraging the speed advantage of AI allows for a better final microstructural selection because high speed allows for the evaluation of many more candidate microstructures. For the approach presented, battery cathode 3D candidate microstructures are generated using Gaussian Mixture Models (GMMs) and pix2pix. This approach first uses GMMs to generate a population of spheres (representing the “active material” of the cathode). Once spheres have been sampled from the GMM, they are placed within a microstructure. Subsequently, the pix2pix sweeps over the 3D microstructure (iteratively) slice by slice and adds details to the microstructure to determine what portions of the microstructure will become electrolyte and what part of the microstructure will become binder. In this manner, each subsequent slice of the microstructure is evaluated using pix2pix, where the inputs into pix2pix are the previously processed layers of the microstructure. By feeding into pix2pix previously fully processed layers of the microstructure, pix2pix can be used to ensure candidate microstructures represent a realistic physical reality. More specifically, in order for the microstructure to represent a realistic physical reality, the locations of electrolyte and binder in each layer of the microstructure must reasonably match the locations of electrolyte and binder in previous layers to ensure geometric continuity. Using the above outlined approach, a 10x to 100x speed increase was possible when generating candidate microstructures using AI when compared to using a FEA only approach for this task. A key metric for evaluating microstructures was the battery specific power value that the microstructures would be able to produce. The best generative AI result obtained was a 12% increase in specific power for a candidate microstructure when compared to what a FEA only approach was capable of producing. This 12% increase in specific power was verified by FEA simulation.Keywords: finite element analysis, gaussian mixture models, generative design, Pix2Pix, structural design
Procedia PDF Downloads 107527 Robust Numerical Method for Singularly Perturbed Semilinear Boundary Value Problem with Nonlocal Boundary Condition
Authors: Habtamu Garoma Debela, Gemechis File Duressa
Abstract:
In this work, our primary interest is to provide ε-uniformly convergent numerical techniques for solving singularly perturbed semilinear boundary value problems with non-local boundary condition. These singular perturbation problems are described by differential equations in which the highest-order derivative is multiplied by an arbitrarily small parameter ε (say) known as singular perturbation parameter. This leads to the existence of boundary layers, which are basically narrow regions in the neighborhood of the boundary of the domain, where the gradient of the solution becomes steep as the perturbation parameter tends to zero. Due to the appearance of the layer phenomena, it is a challenging task to provide ε-uniform numerical methods. The term 'ε-uniform' refers to identify those numerical methods in which the approximate solution converges to the corresponding exact solution (measured to the supremum norm) independently with respect to the perturbation parameter ε. Thus, the purpose of this work is to develop, analyze, and improve the ε-uniform numerical methods for solving singularly perturbed problems. These methods are based on nonstandard fitted finite difference method. The basic idea behind the fitted operator, finite difference method, is to replace the denominator functions of the classical derivatives with positive functions derived in such a way that they capture some notable properties of the governing differential equation. A uniformly convergent numerical method is constructed via nonstandard fitted operator numerical method and numerical integration methods to solve the problem. The non-local boundary condition is treated using numerical integration techniques. Additionally, Richardson extrapolation technique, which improves the first-order accuracy of the standard scheme to second-order convergence, is applied for singularly perturbed convection-diffusion problems using the proposed numerical method. Maximum absolute errors and rates of convergence for different values of perturbation parameter and mesh sizes are tabulated for the numerical example considered. The method is shown to be ε-uniformly convergent. Finally, extensive numerical experiments are conducted which support all of our theoretical findings. A concise conclusion is provided at the end of this work.Keywords: nonlocal boundary condition, nonstandard fitted operator, semilinear problem, singular perturbation, uniformly convergent
Procedia PDF Downloads 143526 Urban Rehabilitation Assessment: Buildings' Integrity and Embodied Energy
Authors: Joana Mourão
Abstract:
Transition to a low carbon economy requires changes in consumption and production patterns, including the improvement of existing buildings’ environmental performance. Urban rehabilitation is a top policy priority in Europe, creating an opportunity to increase this performance. However, urban rehabilitation comprises different typologies of interventions with distinct levels of consideration for cultural urban heritage values and for environmental values, thus with different impacts. Cities rely on both material and non-material forms of heritage that are deep-rooted and resilient. One of the most relevant parts of that urban heritage is the historical pre-industrial housing stock, with an extensive presence in many European cities, as Lisbon. This stock is rehabilitated and transformed at the framework of urban management and local governance traditions, as well as the framework of the global economy, and in that context, faces opportunities and threats that need evaluation and control. The scope of this article is to define methodological bases and research lines for the assessment of impacts that urban rehabilitation initiatives set on the vulnerable and historical pre-industrial urban housing stock, considering it as an environmental and cultural unreplaceable material value and resource. As a framework, this article reviews the concepts of urban regeneration, urban renewal, current buildings conservation and refurbishment, and energy refurbishment of buildings, seeking to define key typologies of urban rehabilitation that represent different approaches to the urban fabric, in terms of scope, actors, and priorities. Moreover, main types of interventions - basing on a case-study in a XVIII century neighborhood in Lisbon - are defined and analyzed in terms of the elements lost in each type of intervention, and relating those to urbanistic, architectonic and constructive values of urban heritage, as well as to environmental and energy efficiency. Further, the article overviews environmental cultural heritage assessment and life-cycle assessment tools, selecting relevant and feasible impact assessment criteria for urban buildings rehabilitation regulation, focusing on multi-level urban heritage integrity. Urbanistic, architectonic, constructive and energetic integrity are studied as criteria for impact assessment and specific indicators are proposed. The role of these criteria in sustainable urban management is discussed. Throughout this article, the key challenges for urban rehabilitation planning and management, concerning urban built heritage as a resource for sustainability, are discussed and clarified.Keywords: urban rehabilitation, impact assessment criteria, buildings integrity, embodied energy
Procedia PDF Downloads 196525 In-situ and Laboratory Characterization of Fiji Lateritic Soils
Authors: Faijal Ali, Darga Kumar N., Ravikant Singh, Rajnil Lal
Abstract:
Fiji has three major landforms such as plains, low mountains, and hills. The low land soils are formed on beach sand. Fiji soils contain high concentration of iron (III), aluminum oxides and hydroxides. The soil possesses reddish or yellowish colour. The characterization of lateritic soils collected from different locations along the national highway in Viti Levu, Fiji Islands. The research has been carried out mainly to understand the physical and strength properties to assess their suitability for the highway and building construction. In this paper, the field tests such as dynamic cone penetrometer test, field vane shear, field density and laboratory tests such as unconfined compression stress, compaction, grain size analysis and Atterberg limits are conducted. The test results are analyzed and presented. From the results, it is revealed that the soils are having more percentage of silt and clay which is more than 80% and 5 to 15% of fine to medium sand is noticed. The dynamic cone penetrometer results up to 3m depth had similar penetration resistance. For the first 1m depth, the rate of penetration is found 300mm per 3 to 4 blows. In all the sites it is further noticed that the rate of penetration at depths beyond 1.5 m is decreasing for the same number of blows as compared to the top soil. From the penetration resistance measured through dynamic cone penetrometer test, the California bearing ratio and allowable bearing capacities are 4 to 5% and 50 to 100 kPa for the top 1m layer and below 1m these values are increasing. The California bearing ratio of these soils for below 1m depth is in the order of 10% to 20%. The safe bearing capacity of these soils below 1m and up to 3m depth is varying from 150 kPa to 250 kPa. The field vane shear was measured within a depth of 1m from the surface and the values were almost similar varying from 60 kPa to 120 kPa. The liquid limit and plastic limits of these soils are in the range of 40 to 60% and 20 to 25%. Overall it is found that the top 1m soil along the national highway in majority places possess a soft to medium stiff behavior with low to medium bearing capacity as well low California bearing ratio values. It is recommended to ascertain these soils behavior in terms of geotechnical parameters before taking up any construction activity.Keywords: California bearing ratio, dynamic cone penetrometer test, field vane shear, unconfined compression stress.
Procedia PDF Downloads 187524 Bartlett Factor Scores in Multiple Linear Regression Equation as a Tool for Estimating Economic Traits in Broilers
Authors: Oluwatosin M. A. Jesuyon
Abstract:
In order to propose a simpler tool that eliminates the age-long problems associated with the traditional index method for selection of multiple traits in broilers, the Barttlet factor regression equation is being proposed as an alternative selection tool. 100 day-old chicks each of Arbor Acres (AA) and Annak (AN) broiler strains were obtained from two rival hatcheries in Ibadan Nigeria. These were raised in deep litter system in a 56-day feeding trial at the University of Ibadan Teaching and Research Farm, located in South-west Tropical Nigeria. The body weight and body dimensions were measured and recorded during the trial period. Eight (8) zoometric measurements namely live weight (g), abdominal circumference, abdominal length, breast width, leg length, height, wing length and thigh circumference (all in cm) were recorded randomly from 20 birds within strain, at a fixed time on the first day of the new week respectively with a 5-kg capacity Camry scale. These records were analyzed and compared using completely randomized design (CRD) of SPSS analytical software, with the means procedure, Factor Scores (FS) in stepwise Multiple Linear Regression (MLR) procedure for initial live weight equations. Bartlett Factor Score (BFS) analysis extracted 2 factors for each strain, termed Body-length and Thigh-meatiness Factors for AA, and; Breast Size and Height Factors for AN. These derived orthogonal factors assisted in deducing and comparing trait-combinations that best describe body conformation and Meatiness in experimental broilers. BFS procedure yielded different body conformational traits for the two strains, thus indicating the different economic traits and advantages of strains. These factors could be useful as selection criteria for improving desired economic traits. The final Bartlett Factor Regression equations for prediction of body weight were highly significant with P < 0.0001, R2 of 0.92 and above, VIF of 1.00, and DW of 1.90 and 1.47 for Arbor Acres and Annak respectively. These FSR equations could be used as a simple and potent tool for selection during poultry flock improvement, it could also be used to estimate selection index of flocks in order to discriminate between strains, and evaluate consumer preference traits in broilers.Keywords: alternative selection tool, Bartlet factor regression model, consumer preference trait, linear and body measurements, live body weight
Procedia PDF Downloads 203523 Controlled Doping of Graphene Monolayer
Authors: Vedanki Khandenwal, Pawan Srivastava, Kartick Tarafder, Subhasis Ghosh
Abstract:
We present here the experimental realization of controlled doping of graphene monolayers through charge transfer by trapping selected organic molecules between the graphene layer and underlying substrates. This charge transfer between graphene and trapped molecule leads to controlled n-type or p-type doping in monolayer graphene (MLG), depending on whether the trapped molecule acts as an electron donor or an electron acceptor. Doping controllability has been validated by a shift in corresponding Raman peak positions and a shift in Dirac points. In the transfer characteristics of field effect transistors, a significant shift of Dirac point towards positive or negative gate voltage region provides the signature of p-type or n-type doping of graphene, respectively, as a result of the charge transfer between graphene and the organic molecules trapped within it. In order to facilitate the charge transfer interaction, it is crucial for the trapped molecules to be situated in close proximity to the graphene surface, as demonstrated by findings in Raman and infrared spectroscopies. However, the mechanism responsible for this charge transfer interaction has remained unclear at the microscopic level. Generally, it is accepted that the dipole moment of adsorbed molecules plays a crucial role in determining the charge-transfer interaction between molecules and graphene. However, our findings clearly illustrate that the doping effect primarily depends on the reactivity of the constituent atoms in the adsorbed molecules rather than just their dipole moment. This has been illustrated by trapping various molecules at the graphene−substrate interface. Dopant molecules such as acetone (containing highly reactive oxygen atoms) promote adsorption across the entire graphene surface. In contrast, molecules with less reactive atoms, such as acetonitrile, tend to adsorb at the edges due to the presence of reactive dangling bonds. In the case of low-dipole moment molecules like toluene, there is a lack of substantial adsorption anywhere on the graphene surface. Observation of (i) the emergence of the Raman D peak exclusively at the edges for trapped molecules without reactive atoms and throughout the entire basal plane for those with reactive atoms, and (ii) variations in the density of attached molecules (with and without reactive atoms) to graphene with their respective dipole moments provides compelling evidence to support our claim. Additionally, these observations were supported by first principle density functional calculations.Keywords: graphene, doping, charge transfer, liquid phase exfoliation
Procedia PDF Downloads 65522 Developing Cultural Competence as Part of Nursing Studies: Language, Customs and Health Issues
Authors: Mohammad Khatib, Salam Hadid
Abstract:
Introduction: Developing nurses' cultural competence begins in their basic training and requires them to participate in an array of activities which raise their awareness and stimulate their interest, desire and curiosity about different cultures, by creating opportunities for intercultural meetings promoting the concept of 'culture' and its components, including recognition of cultural diversity and the legitimacy of the other. Importantly, professionals need to acquire specific cultural knowledge and thorough understanding of the values, norms, customs, beliefs and symbols of different cultures. Similarly, they need to be given opportunities to practice the verbal and non-verbal communication skills of other cultures according to their cultural codes. Such a system is being implemented as part of nursing studies at Zefat Academic College in two study frameworks; firstly, a course integrating nursing theory and practice in multicultural nursing; secondly, a course in learning the languages spoken in Israel focusing on medical and nursing terminology. Methods: Students participating in the 'Transcultural Nursing' course come from a variety of backgrounds: Jews, or Arabs, religious, or secular; Muslim, Christian, new immigrants, Ethiopians or from other cultural affiliations. They are required to present and discuss cultural practices that affect health. In addition, as part of the language course, students learn and teach their friends 5 spoken languages (Arabic, Russian, Amharian, Yidish, and Sign language) focusing on therapeutic interaction and communication using the vocabulary and concepts necessary for the therapeutic encounter. An evaluation of the process and the results was done using a structured questionnaire which includes series of questions relating to the contributions of the courses to their cultural knowledge, awareness and skills. 155 students completed the questionnaire. Results: A preliminary assessment of this educational system points an increase in cultural awareness and knowledge among the students as well as in their willingness to recognize the other's difference. A positive atmosphere of multiculturalism is reflected in students' mutual interest and respect was created. Students showed a deep understanding of cultural issues relating to health and care (consanguinity and genetics, food customs; cultural events, reincarnation, traditional treatments etc.). Most of the students were willing to recommend the courses to others and suggest some changes relating learning methods (more simulations, role playing and activities).Keywords: cultural competence, nursing education, culture, language
Procedia PDF Downloads 277