Search results for: attitude dynamics
226 Phytochemical and Antimicrobial Properties of Zinc Oxide Nanocomposites on Multidrug-Resistant E. coli Enzyme: In-vitro and in-silico Studies
Authors: Callistus I. Iheme, Kenneth E. Asika, Emmanuel I. Ugwor, Chukwuka U. Ogbonna, Ugonna H. Uzoka, Nneamaka A. Chiegboka, Chinwe S. Alisi, Obinna S. Nwabueze, Amanda U. Ezirim, Judeanthony N. Ogbulie
Abstract:
Antimicrobial resistance (AMR) is a major threat to the global health sector. Zinc oxide nanocomposites (ZnONCs), composed of zinc oxide nanoparticles and phytochemicals from Azadirachta indica aqueous leaf extract, were assessed for their physico-chemicals, in silico and in vitro antimicrobial properties on multidrug-resistant Escherichia coli enzymes. Gas chromatography coupled with mass spectroscope (GC-MS) analysis on the ZnONCs revealed the presence of twenty volatile phytochemical compounds, among which is scoparone. Characterization of the ZnONCs was done using ultraviolet-visible spectroscopy (UV-vis), energy dispersive spectroscopy (EDX), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and x-ray diffractometer (XRD). Dehydrogenase enzyme converts colorless 2,3,5-triphenyltetrazolium chloride to the red triphenyl formazan (TPF). The rate of formazan formation in the presence of ZnONCs is proportional to the enzyme activities. The color formation is extracted and determined at 500 nm, and the percentage of enzyme activity is calculated. To determine the bioactive components of the ZnONCs, characterize their binding to enzymes, and evaluate the enzyme-ligand complex stability, respectively Discrete Fourier Transform (DFT) analysis, docking, and molecular dynamics simulations will be employed. The results showed arrays of ZnONCs nanorods with maximal absorption wavelengths of 320 nm and 350 nm and thermally stable at the temperature range of 423.77 to 889.69 ℃. In vitro study assessed the dehydrogenase inhibitory properties of the ZnONCs, conjugate of ZnONCs and ampicillin (ZnONCs-amp), the aqueous leaf extract of A. indica, and ampicillin (standard drug). The findings revealed that at the concentration of 500 μm/mL, 57.89 % of the enzyme activities were inhibited by ZnONCs compared to 33.33% and 21.05% of the standard drug (Ampicillin), and the aqueous leaf extract of the A. indica respectively. The inhibition of the enzyme activities by the ZnONCs at 500 μm/mL was further enhanced to 89.74 % by conjugating with Ampicillin. In silico study on the ZnONCs revealed scoparone as the most viable competitor of nicotinamide adenine dinucleotide (NAD⁺) for the coenzyme binding pocket on E. coli malate and histidinol dehydrogenase. From the findings, it can be concluded that the scoparone components of the nanocomposites in synergy with the zinc oxide nanoparticles inhibited E. coli malate and histidinol dehydrogenase by competitively binding to the NAD⁺ pocket and that the conjugation of the ZnONCs with ampicillin further enhanced the antimicrobial efficiency of the nanocomposite against multidrug resistant E. coli.Keywords: antimicrobial resistance, dehydrogenase activities, E. coli, zinc oxide nanocomposites
Procedia PDF Downloads 49225 Inherent Difficulties in Countering Islamophobia
Authors: Imbesat Daudi
Abstract:
Islamophobia, which is a billion-dollar industry, is widespread, especially in the United States, Europe, India, Israel, and countries that have Muslim minorities at odds with their governmental policies. Hatred of Islam in the West did not evolve spontaneously; it was methodically created. Islamophobia's current format has been designed to spread on its own, find a space in the Western psyche, and resist its eradication. Hatred has been sustained by neoconservative ideologues and their allies, which are supported by the mainstream media. Social scientists have evaluated how ideas spread, why any idea can go viral, and where new ideas find space in our brains. This was possible because of the advances in the computational power of software and computers. Spreading of ideas, including Islamophobia, follows a sine curve; it has three phases: An initial exploratory phase with a long lag period, an explosive phase if ideas go viral, and the final phase when ideas find space in the human psyche. In the initial phase, the ideas are quickly examined in a center in the prefrontal lobe. When it is deemed relevant, it is sent for evaluation to another center of the prefrontal lobe; there, it is critically examined. Once it takes a final shape, the idea is sent as a final product to a center in the occipital lobe. This center cannot critically evaluate ideas; it can only defend them from its critics. Counterarguments, no matter how scientific, are automatically rejected. Therefore, arguments that could be highly effective in the early phases are counterproductive once they are stored in the occipital lobe. Anti-Islamophobic intellectuals have done a very good job of countering Islamophobic arguments. However, they have not been as effective as neoconservative ideologues who have promoted anti-Muslim rhetoric that was based on half-truths, misinformation, or outright lies. The failure is partly due to the support pro-war activists receive from the mainstream media, state institutions, mega-corporations engaged in violent conflicts, and think tanks that provide Islamophobic arguments. However, there are also scientific reasons why anti-Islamophobic thinkers have been less effective. There are different dynamics of spreading ideas once they are stored in the occipital lobe. The human brain is incapable of evaluating further once it accepts ideas as its own; therefore, a different strategy is required to be effective. This paper examines 1) why anti-Islamophobic intellectuals have failed in changing the minds of non-Muslims and 2) the steps of countering hatred. Simply put, a new strategy is needed that can effectively counteract hatred of Islam and Muslims. Islamophobia is a disease that requires strong measures. Fighting hatred is always a challenge, but if we understand why Islamophobia is taking root in the twenty-first century, one can succeed in challenging Islamophobic arguments. That will need a coordinated effort of Intellectuals, writers and the media.Keywords: islamophobia, Islam and violence, anti-islamophobia, demonization of Islam
Procedia PDF Downloads 48224 Chebyshev Collocation Method for Solving Heat Transfer Analysis for Squeezing Flow of Nanofluid in Parallel Disks
Authors: Mustapha Rilwan Adewale, Salau Ayobami Muhammed
Abstract:
This study focuses on the heat transfer analysis of magneto-hydrodynamics (MHD) squeezing flow between parallel disks, considering a viscous incompressible fluid. The upper disk exhibits both upward and downward motion, while the lower disk remains stationary but permeable. By employing similarity transformations, a system of nonlinear ordinary differential equations is derived to describe the flow behavior. To solve this system, a numerical approach, namely the Chebyshev collocation method, is utilized. The study investigates the influence of flow parameters and compares the obtained results with existing literature. The significance of this research lies in understanding the heat transfer characteristics of MHD squeezing flow, which has practical implications in various engineering and industrial applications. By employing the similarity transformations, the complex governing equations are simplified into a system of nonlinear ordinary differential equations, facilitating the analysis of the flow behavior. To obtain numerical solutions for the system, the Chebyshev collocation method is implemented. This approach provides accurate approximations for the nonlinear equations, enabling efficient computations of the heat transfer properties. The obtained results are compared with existing literature, establishing the validity and consistency of the numerical approach. The study's major findings shed light on the influence of flow parameters on the heat transfer characteristics of the squeezing flow. The analysis reveals the impact of parameters such as magnetic field strength, disk motion amplitude, fluid viscosity on the heat transfer rate between the disks, the squeeze number(S), suction/injection parameter(A), Hartman number(M), Prandtl number(Pr), modified Eckert number(Ec), and the dimensionless length(δ). These findings contribute to a comprehensive understanding of the system's behavior and provide insights for optimizing heat transfer processes in similar configurations. In conclusion, this study presents a thorough heat transfer analysis of magneto-hydrodynamics squeezing flow between parallel disks. The numerical solutions obtained through the Chebyshev collocation method demonstrate the feasibility and accuracy of the approach. The investigation of flow parameters highlights their influence on heat transfer, contributing to the existing knowledge in this field. The agreement of the results with previous literature further strengthens the reliability of the findings. These outcomes have practical implications for engineering applications and pave the way for further research in related areas.Keywords: squeezing flow, magneto-hydro-dynamics (MHD), chebyshev collocation method(CCA), parallel manifolds, finite difference method (FDM)
Procedia PDF Downloads 75223 Metamorphosis of Caste: An Examination of the Transformation of Caste from a Material to Ideological Phenomenon in Sri Lanka
Authors: Pradeep Peiris, Hasini Lecamwasam
Abstract:
The fluid, ambiguous, and often elusive existence of caste among the Sinhalese in Sri Lanka has inspired many scholarly endeavours. Originally, Sinhalese caste was organized according to the occupational functions assigned to various groups in society. Hence cultivators came to be known as Goyigama, washers Dobi, drummers Berava, smiths Navandanna and so on. During pre-colonial times the specialized services of various groups were deployed to build water reservoirs, cultivate the land, and/or sustain the Buddhist order by material means. However, as to how and why caste prevails today in Sinhalese society when labour is in ideal terms free to move where it wants, or in other words, occupation is no longer strictly determined or restricted by birth, is a question worth exploring. Hence this paper explores how, and perhaps more interestingly why, when the nexus between traditional occupations and caste status is fast disappearing, caste itself has managed to survive and continues to be salient in politics in Sri Lanka. In answer to this larger question, the paper looks at caste from three perspectives: 1) Buddhism, whose ethical project provides a justification of social stratifications that transcends economic bases 2) Capitalism that has reactivated and reproduced archaic relations in a process of 'accumulation by subordination', not only by reinforcing the marginality of peripheral caste groups, but also by exploiting caste divisions to hinder any realization of class interests and 3) Democracy whose supposed equalizing effect expected through its ‘one man–one vote’ approach has been subverted precisely by itself, whereby the aggregate ultimately comes down to how many such votes each ‘group’ in society has. This study draws from field work carried out in Dedigama (in the District of Kegalle, Central Province) and Kelaniya (in the District of Colombo, Western Province) in Sri Lanka over three years. The choice of field locations was encouraged by the need to capture rural and urban dynamics related to caste since caste is more apparently manifest in rural areas whose material conditions partially warrant its prevalence, whereas in urban areas it exists mostly in the ideological terrain. In building its analysis, the study has employed a combination of objectivist and subjectivist approaches to capture the material and ideological existence of caste and caste politics in Sinhalese society. Therefore, methods such as in-depth interviews, observation, and collection of demographical and interpretive data from secondary sources were used for this study. The paper has been situated in a critical theoretical framework of social inquiry in an attempt to question dominant assumptions regarding such meta-labels as ‘Capitalism’ and ‘Democracy’, and also the supposed emancipatory function of religion (focusing on Buddhism).Keywords: Buddhism, capitalism, caste, democracy, Sri Lanka
Procedia PDF Downloads 136222 Differentiated Surgical Treatment of Patients With Nontraumatic Intracerebral Hematomas
Authors: Mansur Agzamov, Valery Bersnev, Natalia Ivanova, Istam Agzamov, Timur Khayrullaev, Yulduz Agzamova
Abstract:
Objectives. Treatment of hypertensive intracerebral hematoma (ICH) is controversial. Advantage of one surgical method on other has not been established. Recent reports suggest a favorable effect of minimally invasive surgery. We conducted a small comparative study of different surgical methods. Methods. We analyzed the result of surgical treatment of 176 patients with intracerebral hematomas at the age from 41 to 78 years. Men were been113 (64.2%), women - 63 (35.8%). Level of consciousness: conscious -18, lethargy -63, stupor –55, moderate coma - 40. All patients on admission and in the dynamics underwent computer tomography (CT) of the brain. ICH was located in the putamen in 87 cases, thalamus in 19, in the mix area in 50, in the lobar area in 20. Ninety seven patients of them had an intraventricular hemorrhage component. The baseline volume of the ICH was measured according to a bedside method of measuring CT intracerebral hematomas volume. Depending on the intervention of the patients were divided into three groups. Group 1 patients, 90 patients, operated open craniotomy. Level of consciousness: conscious-11, lethargy-33, stupor–18, moderate coma -18. The hemorrhage was located in the putamen in 51, thalamus in 3, in the mix area in 25, in the lobar area in 11. Group 2 patients, 22 patients, underwent smaller craniotomy with endoscopic-assisted evacuation. Level of consciousness: conscious-4, lethargy-9, stupor–5, moderate coma -4. The hemorrhage was located in the putamen in 5, thalamus in 15, in the mix area in 2. Group 3 patients, 64 patients, was conducted minimally invasive removal of intracerebral hematomas using the original device (patent of Russian Federation № 65382). The device - funnel cannula - which after the special markings introduced into the hematoma cavity. Level of consciousness: conscious-3, lethargy-21, stupor–22, moderate coma -18. The hemorrhage was located in the putamen in 31, in the mix area in 23, thalamus in 1, in the lobar area in 9. Results of treatment were evaluated by Glasgow outcome scale. Results. The study showed that the results of surgical treatment in three groups depending on the degree of consciousness, the volume and localization of hematoma. In group 1, good recovery observed in 8 cases (8.9%), moderate disability in 22 (24.4%), severe disability - 17 (18.9%), death-43 (47.8%). In group 2, good recovery observed in 7 cases (31.8%), moderate disability in 7 (31.8%), severe disability - 5 (29.7%), death-7 (31.8%). In group 3, good recovery was observed in 9 cases (14.1%), moderate disability-17 (26.5%), severe disability-19 (29.7%), death-19 (29.7%). Conclusions. The method of using cannulae allowed to abandon from open craniotomy of the majority of patients with putaminal hematomas. Minimally invasive technique reduced the postoperative mortality and improves treatment outcomes of these patients.Keywords: nontraumatic intracerebral hematoma, minimal invasive surgical technique, funnel canula, differentiated surcical treatment
Procedia PDF Downloads 83221 Advancing Sustainable Seawater Desalination Technologies: Exploring the Sub-Atmospheric Vapor Pipeline (SAVP) and Energy-Efficient Solution for Urban and Industrial Water Management in Smart, Eco-Friendly, and Green Building Infrastructure
Authors: Mona Shojaei
Abstract:
The Sub-Atmospheric Vapor Pipeline (SAVP) introduces a distinct approach to seawater desalination with promising applications in both land and industrial sectors. SAVP systems exploit the temperature difference between a hot source and a cold environment to facilitate efficient vapor transfer, offering substantial benefits in diverse industrial and field applications. This approach incorporates dynamic boundary conditions, where the temperatures of hot and cold sources vary over time, particularly in natural and industrial environments. Such variations critically influence convection and diffusion processes, introducing challenges that require the refinement of the convection-diffusion equation and the derivation of temperature profiles along the pipeline through advanced engineering mathematics. This study formulates vapor temperature as a function of time and length using two mathematical approaches: Eigen functions and Green’s equation. Combining detailed theoretical modeling, mathematical simulations, and extensive field and industrial tests, this research underscores the SAVP system’s scalability for real-world applications. Results reveal a high degree of accuracy, highlighting SAVP’s significant potential for energy conservation and environmental sustainability. Furthermore, the integration of SAVP technology within smart and green building systems creates new opportunities for sustainable urban water management. By capturing and repurposing vapor for non-potable uses such as irrigation, greywater recycling, and ecosystem support in green spaces, SAVP aligns with the principles of smart and green buildings. Smart buildings emphasize efficient resource management, enhanced system control, and automation for optimal energy and water use, while green buildings prioritize environmental impact reduction and resource conservation. SAVP technology bridges both paradigms, enhancing water self-sufficiency and reducing reliance on external water supplies. The sustainable and energy-efficient properties of SAVP make it a vital component in resilient infrastructure development, addressing urban water scarcity while promoting eco-friendly living. This dual alignment with smart and green building goals positions SAVP as a transformative solution in the pursuit of sustainable urban resource management.Keywords: sub-atmospheric vapor pipeline, seawater desalination, energy efficiency, vapor transfer dynamics, mathematical modeling, sustainable water solutions, smart buildings
Procedia PDF Downloads 12220 Effect of Two Types of Shoe Insole on the Dynamics of Lower Extremities Joints in Individuals with Leg Length Discrepancy during Stance Phase of Walking
Authors: Mansour Eslami, Fereshte Habibi
Abstract:
Limb length discrepancy (LLD), or anisomeric, is defined as a condition in which paired limbs are noticeably unequal. Individuals with LLD during walking use compensatory mechanisms to dynamically lengthen the short limb and shorten the long limb to minimize the displacement of the body center of mass and consequently reduce body energy expenditure. Due to the compensatory movements created, LLD greater than 1 cm increases the odds of creating lumbar problems and hip and knee osteoarthritis. Insoles are non-surgical therapies that are recommended to improve the walking pattern, pain and create greater symmetry between the two lower limbs. However, it is not yet clear what effect insoles have on the variables related to injuries during walking. The aim of the present study was to evaluate the effect of internal and external heel lift insoles on pelvic kinematic in sagittal and frontal planes and lower extremity joint moments in individuals with mild leg length discrepancy during the stance phase of walking. Biomechanical data of twenty-eight men with structural leg length discrepancy of 10-25 mm were collected while they walked under three conditions: shoes without insole (SH), with internal heel lift insoles (IHLI) in shoes, and with external heal lift insole (EHLI). The tests were performed for both short and long legs. The pelvic kinematic and joint moment were measured with a motion capture system and force plate. Five walking trials were performed for each condition. The average value of five successful trials was used for further statistical analysis. Repeated measures ANCOVA with Bonferroni post hoc test were used for between-group comparisons (p ≤ 0.05). In both internal and external heel lift insoles (IHLI, EHLI), there was a significant decrease in the peak values of lateral and anterior pelvic tilts of the long leg, hip, and knee moments of a long leg and ankle moment of short leg (p ≤ 0.05). Furthermore, significant increases in peak values of lateral and anterior pelvic tilt of short leg in IHLI and EHLI were observed as compared to Shoe (SH) condition (p ≤ 0.01). In addition, a significant difference was observed between the IHLI and EHLI conditions in peak anterior pelvic tilt of long leg and plantar flexor moment of short leg (p=0.04; p= 0.04 respectively). Our findings indicate that both IHLI and EHLI can play an important role in controlling excessive pelvic movements in the sagittal and frontal planes in individuals with mild LLD during walking. Furthermore, the EHLI may have a better effect in preventing musculoskeletal injuries compared to the IHLI.Keywords: kinematic, leg length discrepancy, shoe insole, walking
Procedia PDF Downloads 119219 Global-Scale Evaluation of Two Satellite-Based Passive Microwave Soil Moisture Data Sets (SMOS and AMSR-E) with Respect to Modelled Estimates
Authors: A. Alyaaria, b, J. P. Wignerona, A. Ducharneb, Y. Kerrc, P. de Rosnayd, R. de Jeue, A. Govinda, A. Al Bitarc, C. Albergeld, J. Sabaterd, C. Moisya, P. Richaumec, A. Mialonc
Abstract:
Global Level-3 surface soil moisture (SSM) maps from the passive microwave soil moisture and Ocean Salinity satellite (SMOSL3) have been released. To further improve the Level-3 retrieval algorithm, evaluation of the accuracy of the spatio-temporal variability of the SMOS Level 3 products (referred to here as SMOSL3) is necessary. In this study, a comparative analysis of SMOSL3 with a SSM product derived from the observations of the Advanced Microwave Scanning Radiometer (AMSR-E) computed by implementing the Land Parameter Retrieval Model (LPRM) algorithm, referred to here as AMSRM, is presented. The comparison of both products (SMSL3 and AMSRM) were made against SSM products produced by a numerical weather prediction system (SM-DAS-2) at ECMWF (European Centre for Medium-Range Weather Forecasts) for the 03/2010-09/2011 period at global scale. The latter product was considered here a 'reference' product for the inter-comparison of the SMOSL3 and AMSRM products. Three statistical criteria were used for the evaluation, the correlation coefficient (R), the root-mean-squared difference (RMSD), and the bias. Global maps of these criteria were computed, taking into account vegetation information in terms of biome types and Leaf Area Index (LAI). We found that both the SMOSL3 and AMSRM products captured well the spatio-temporal variability of the SM-DAS-2 SSM products in most of the biomes. In general, the AMSRM products overestimated (i.e., wet bias) while the SMOSL3 products underestimated (i.e., dry bias) SSM in comparison to the SM-DAS-2 SSM products. In term of correlation values, the SMOSL3 products were found to better capture the SSM temporal dynamics in highly vegetated biomes ('Tropical humid', 'Temperate Humid', etc.) while best results for AMSRM were obtained over arid and semi-arid biomes ('Desert temperate', 'Desert tropical', etc.). When removing the seasonal cycles in the SSM time variations to compute anomaly values, better correlation with the SM-DAS-2 SSM anomalies were obtained with SMOSL3 than with AMSRM, in most of the biomes with the exception of desert regions. Eventually, we showed that the accuracy of the remotely sensed SSM products is strongly related to LAI. Both the SMOSL3 and AMSRM (slightly better) SSM products correlate well with the SM-DAS2 products over regions with sparse vegetation for values of LAI < 1 (these regions represent almost 50% of the pixels considered in this global study). In regions where LAI>1, SMOSL3 outperformed AMSRM with respect to SM-DAS-2: SMOSL3 had almost consistent performances up to LAI = 6, whereas AMSRM performance deteriorated rapidly with increasing values of LAI.Keywords: remote sensing, microwave, soil moisture, AMSR-E, SMOS
Procedia PDF Downloads 357218 Boussinesq Model for Dam-Break Flow Analysis
Authors: Najibullah M, Soumendra Nath Kuiry
Abstract:
Dams and reservoirs are perceived for their estimable alms to irrigation, water supply, flood control, electricity generation, etc. which civilize the prosperity and wealth of society across the world. Meantime the dam breach could cause devastating flood that can threat to the human lives and properties. Failures of large dams remain fortunately very seldom events. Nevertheless, a number of occurrences have been recorded in the world, corresponding in an average to one to two failures worldwide every year. Some of those accidents have caused catastrophic consequences. So it is decisive to predict the dam break flow for emergency planning and preparedness, as it poses high risk to life and property. To mitigate the adverse impact of dam break, modeling is necessary to gain a good understanding of the temporal and spatial evolution of the dam-break floods. This study will mainly deal with one-dimensional (1D) dam break modeling. Less commonly used in the hydraulic research community, another possible option for modeling the rapidly varied dam-break flows is the extended Boussinesq equations (BEs), which can describe the dynamics of short waves with a reasonable accuracy. Unlike the Shallow Water Equations (SWEs), the BEs taken into account the wave dispersion and non-hydrostatic pressure distribution. To capture the dam-break oscillations accurately it is very much needed of at least fourth-order accurate numerical scheme to discretize the third-order dispersion terms present in the extended BEs. The scope of this work is therefore to develop an 1D fourth-order accurate in both space and time Boussinesq model for dam-break flow analysis by using finite-volume / finite difference scheme. The spatial discretization of the flux and dispersion terms achieved through a combination of finite-volume and finite difference approximations. The flux term, was solved using a finite-volume discretization whereas the bed source and dispersion term, were discretized using centered finite-difference scheme. Time integration achieved in two stages, namely the third-order Adams Basforth predictor stage and the fourth-order Adams Moulton corrector stage. Implementation of the 1D Boussinesq model done using PYTHON 2.7.5. Evaluation of the performance of the developed model predicted as compared with the volume of fluid (VOF) based commercial model ANSYS-CFX. The developed model is used to analyze the risk of cascading dam failures similar to the Panshet dam failure in 1961 that took place in Pune, India. Nevertheless, this model can be used to predict wave overtopping accurately compared to shallow water models for designing coastal protection structures.Keywords: Boussinesq equation, Coastal protection, Dam-break flow, One-dimensional model
Procedia PDF Downloads 231217 Invisible Feminists: An Autonomist Marxist Perspective of Digital Labour and Resistance Within the Online Sex Industry
Authors: Josie West
Abstract:
This paper focuses on the conflicts and utility of Marxist Feminist frames for sex work research, drawing on findings uncovered through in-depth interviews with online sex workers, alongside critical discourse analysis of media and political commentary. It brings the critical perspective of women into digital workerism and gig economy dialogue who, despite their significant presence within online work, have been overlooked. The autonomist Marxist concept of class composition is adopted to unpack the social, technical and political composition of this often-invisible segment of the service sector. Autonomism makes visible the perspective of workers engaged in processes of mobilization and demobilizaiton. This allows researchers to find everyday forms of resistance which occur within and outside trade unions. On the other hand, Marxist feminist arguments about invisibility politics can generate unhelpful allegories about sex work as domestic labour within the reproductive sphere. Nick Srnicek’s development of Marx’s notion of infrastructure rents helps theorize experiences of unpaid labour within online sex work. Moreover, debates about anti-work politics can cause conflict among sex workers fighting for the labour movement and those rejecting the capitalist work ethic. This illuminates’ tensions caused by white privilege and differing experiences of sex work. The monopolistic and competitive nature of sex work platforms within platform capitalism, and the vulnerable position of marginalised workers within stigmatized/criminalised markets, complicates anti-work politics further. This paper is situated within the feminist sex wars and the intensely divisive question of whether sex workers are victims of the patriarchy or symbols of feminist resistance. Camgirls are shown to engage in radical tactics of resistance against their technical composition on popular sex work platforms. They also engage in creative acts of resistance through performance art, in an attempt to draw attention to stigma and anti-criminalization politics. This sector offers a fascinating window onto grassroots class-action, alongside education about ‘whorephobia.’ A case study of resistance against Only Fans, and a small workers co-operative which emerged during the pandemic, showcases how workers engage in socialist and political acts without the aid of unions. Workers are victims of neoliberalism and simultaneous adopters of neoliberal strategies of survival. The complex dynamics within unions are explored, including tensions with grass-roots resistance, financial pressures and intersecting complications of class, gender and race.Keywords: autonomist marxism, digital labor, feminism, neoliberalism, sex work, platform capitalism
Procedia PDF Downloads 90216 Numerical Investigation of Flow Boiling within Micro-Channels in the Slug-Plug Flow Regime
Authors: Anastasios Georgoulas, Manolia Andredaki, Marco Marengo
Abstract:
The present paper investigates the hydrodynamics and heat transfer characteristics of slug-plug flows under saturated flow boiling conditions within circular micro-channels. Numerical simulations are carried out, using an enhanced version of the open-source CFD-based solver ‘interFoam’ of OpenFOAM CFD Toolbox. The proposed user-defined solver is based in the Volume Of Fluid (VOF) method for interface advection, and the mentioned enhancements include the implementation of a smoothing process for spurious current reduction, the coupling with heat transfer and phase change as well as the incorporation of conjugate heat transfer to account for transient solid conduction. In all of the considered cases in the present paper, a single phase simulation is initially conducted until a quasi-steady state is reached with respect to the hydrodynamic and thermal boundary layer development. Then, a predefined and constant frequency of successive vapour bubbles is patched upstream at a certain distance from the channel inlet. The proposed numerical simulation set-up can capture the main hydrodynamic and heat transfer characteristics of slug-plug flow regimes within circular micro-channels. In more detail, the present investigation is focused on exploring the interaction between subsequent vapour slugs with respect to their generation frequency, the hydrodynamic characteristics of the liquid film between the generated vapour slugs and the channel wall as well as of the liquid plug between two subsequent vapour slugs. The proposed investigation is carried out for the 3 different working fluids and three different values of applied heat flux in the heated part of the considered microchannel. The post-processing and analysis of the results indicate that the dynamics of the evolving bubbles in each case are influenced by both the upstream and downstream bubbles in the generated sequence. In each case a slip velocity between the vapour bubbles and the liquid slugs is evident. In most cases interfacial waves appear close to the bubble tail that significantly reduce the liquid film thickness. Finally, in accordance with previous investigations vortices that are identified in the liquid slugs between two subsequent vapour bubbles can significantly enhance the convection heat transfer between the liquid regions and the heated channel walls. The overall results of the present investigation can be used to enhance the present understanding by providing better insight of the complex, underpinned heat transfer mechanisms in saturated boiling within micro-channels in the slug-plug flow regime.Keywords: slug-plug flow regime, micro-channels, VOF method, OpenFOAM
Procedia PDF Downloads 267215 A Review on Agricultural Landscapes as a Habitat of Rodents
Authors: Nadeem Munawar, Tariq Mahmood, Paula Rivadeneira, Ali Akhter
Abstract:
In this paper, we review on rodent species which are common inhabitants of agricultural landscapes where they are an important prey source for a wide variety of avian, reptilian, and mammalian predators. Agricultural fields are surrounded by fallow land, which provide suitable sites for shelter and breeding for rodents, while shrubs, grasses, annual weeds and forbs may provide supplementary food. The assemblage of rodent’s fauna in the cropland habitats including cropped fields, meadows and adjacent field structures like hedgerows, woodland and field margins fluctuates seasonally. The mature agricultural crops provides good source of food and shelter to the rodents and these factors along with favorable climatic factors/season facilitate breeding activities of these rodent species. Changes in vegetation height and vegetative cover affect two important aspects of a rodent’s life: food and shelter. In addition, during non-crop period vegetation can be important for building nests above or below ground and it provides thermal protection for rodents from heat and cold. The review revealed that rodents form a very diverse group of mammals, ranging from tiny pigmy mice to big capybaras, from arboreal flying squirrels to subterranean mole rats, from opportunistic omnivores (e.g. Norway rats) to specialist feeders (e.g. the North African fat sand rats that feed on a single family of plants only). It is therefore no surprise that some species thrive well under the conditions that are found in agricultural fields. The review on the population dynamics of the rodent species indicated that they are agricultural pests probably due to the heterogeneous landscape and to the high rotativity of vegetable crop cultivation. They also cause damage to various crops, directly and indirectly, by gnawing, spoilage, contamination and hoarding activities, besides this behavior they have also significance importance in agricultural habitat. The burrowing activities of rodents alter the soil properties around their burrows which improve its aeration, infiltration, increase the water holding capacity and thus encourage plant growth. These properties are beneficial for the soil because they affect absorption of phosphorus, absorption zinc, copper, other nutrients and the uptake of water and thus rodents are known as indicator species in agricultural fields. Our review suggests that wide crop field’s borders, particularly those contiguous to various cropland fields, should be understood as priority sites for nesting, feeding, and cover for the rodent’s fauna. The goal of this review paper is to provide a comprehensive synthesis of understanding regarding rodent habitat and biodiversity in agricultural landscapes.Keywords: agricultural landscapes, food, indicator species, shelter
Procedia PDF Downloads 169214 The Use of Geographic Information System Technologies for Geotechnical Monitoring of Pipeline Systems
Authors: A. G. Akhundov
Abstract:
Issues of obtaining unbiased data on the status of pipeline systems of oil- and oil product transportation become especially important when laying and operating pipelines under severe nature and climatic conditions. The essential attention is paid here to researching exogenous processes and their impact on linear facilities of the pipeline system. Reliable operation of pipelines under severe nature and climatic conditions, timely planning and implementation of compensating measures are only possible if operation conditions of pipeline systems are regularly monitored, and changes of permafrost soil and hydrological operation conditions are accounted for. One of the main reasons for emergency situations to appear is the geodynamic factor. Emergency situations are proved by the experience to occur within areas characterized by certain conditions of the environment and to develop according to similar scenarios depending on active processes. The analysis of natural and technical systems of main pipelines at different stages of monitoring gives a possibility of making a forecast of the change dynamics. The integration of GIS technologies, traditional means of geotechnical monitoring (in-line inspection, geodetic methods, field observations), and remote methods (aero-visual inspection, aero photo shooting, air and ground laser scanning) provides the most efficient solution of the problem. The united environment of geo information system (GIS) is a comfortable way to implement the monitoring system on the main pipelines since it provides means to describe a complex natural and technical system and every element thereof with any set of parameters. Such GIS enables a comfortable simulation of main pipelines (both in 2D and 3D), the analysis of situations and selection of recommendations to prevent negative natural or man-made processes and to mitigate their consequences. The specifics of such systems include: a multi-dimensions simulation of facilities in the pipeline system, math modelling of the processes to be observed, and the use of efficient numeric algorithms and software packets for forecasting and analyzing. We see one of the most interesting possibilities of using the monitoring results as generating of up-to-date 3D models of a facility and the surrounding area on the basis of aero laser scanning, data of aerophotoshooting, and data of in-line inspection and instrument measurements. The resulting 3D model shall be the basis of the information system providing means to store and process data of geotechnical observations with references to the facilities of the main pipeline; to plan compensating measures, and to control their implementation. The use of GISs for geotechnical monitoring of pipeline systems is aimed at improving the reliability of their operation, reducing the probability of negative events (accidents and disasters), and at mitigation of consequences thereof if they still are to occur.Keywords: databases, 3D GIS, geotechnical monitoring, pipelines, laser scaning
Procedia PDF Downloads 189213 Comparative Vector Susceptibility for Dengue Virus and Their Co-Infection in A. aegypti and A. albopictus
Authors: Monika Soni, Chandra Bhattacharya, Siraj Ahmed Ahmed, Prafulla Dutta
Abstract:
Dengue is now a globally important arboviral disease. Extensive vector surveillance has already established A.aegypti as a primary vector, but A.albopictus is now accelerating the situation through gradual adaptation to human surroundings. Global destabilization and gradual climatic shift with rising in temperature have significantly expanded the geographic range of these species These versatile vectors also host Chikungunya, Zika, and yellow fever virus. Biggest challenge faced by endemic countries now is upsurge in co-infection reported with multiple serotypes and virus co-circulation. To foster vector control interventions and mitigate disease burden, there is surge for knowledge on vector susceptibility and viral tolerance in response to multiple infections. To address our understanding on transmission dynamics and reproductive fitness, both the vectors were exposed to single and dual combinations of all four dengue serotypes by artificial feeding and followed up to third generation. Artificial feeding observed significant difference in feeding rate for both the species where A.albopictus was poor artificial feeder (35-50%) compared to A.aegypti (95-97%) Robust sequential screening of viral antigen in mosquitoes was followed by Dengue NS1 ELISA, RT-PCR and Quantitative PCR. To observe viral dissemination in different mosquito tissues Indirect immunofluorescence assay was performed. Result showed that both the vectors were infected initially with all dengue(1-4)serotypes and its co-infection (D1 and D2, D1 and D3, D1 and D4, D2 and D4) combinations. In case of DENV-2 there was significant difference in the peak titer observed at 16th day post infection. But when exposed to dual infections A.aegypti supported all combinations of virus where A.albopictus only continued single infections in successive days. There was a significant negative effect on the fecundity and fertility of both the vectors compared to control (PANOVA < 0.001). In case of dengue 2 infected mosquito, fecundity in parent generation was significantly higher (PBonferroni < 0.001) for A.albopicus compare to A.aegypti but there was a complete loss of fecundity from second to third generation for A.albopictus. It was observed that A.aegypti becomes infected with multiple serotypes frequently even at low viral titres compared to A.albopictus. Possible reason for this could be the presence of wolbachia infection in A.albopictus or mosquito innate immune response, small RNA interference etc. Based on the observations it could be anticipated that transovarial transmission may not be an important phenomenon for clinical disease outcome, due to the absence of viral positivity by third generation. Also, Dengue NS1 ELISA can be used for preliminary viral detection in mosquitoes as more than 90% of the samples were found positive compared to RT-PCR and viral load estimation.Keywords: co-infection, dengue, reproductive fitness, viral quantification
Procedia PDF Downloads 201212 Fast and Non-Invasive Patient-Specific Optimization of Left Ventricle Assist Device Implantation
Authors: Huidan Yu, Anurag Deb, Rou Chen, I-Wen Wang
Abstract:
The use of left ventricle assist devices (LVADs) in patients with heart failure has been a proven and effective therapy for patients with severe end-stage heart failure. Due to the limited availability of suitable donor hearts, LVADs will probably become the alternative solution for patient with heart failure in the near future. While the LVAD is being continuously improved toward enhanced performance, increased device durability, reduced size, a better understanding of implantation management becomes critical in order to achieve better long-term blood supplies and less post-surgical complications such as thrombi generation. Important issues related to the LVAD implantation include the location of outflow grafting (OG), the angle of the OG, the combination between LVAD and native heart pumping, uniform or pulsatile flow at OG, etc. We have hypothesized that an optimal implantation of LVAD is patient specific. To test this hypothesis, we employ a novel in-house computational modeling technique, named InVascular, to conduct a systematic evaluation of cardiac output at aortic arch together with other pertinent hemodynamic quantities for each patient under various implantation scenarios aiming to get an optimal implantation strategy. InVacular is a powerful computational modeling technique that integrates unified mesoscale modeling for both image segmentation and fluid dynamics with the cutting-edge GPU parallel computing. It first segments the aortic artery from patient’s CT image, then seamlessly feeds extracted morphology, together with the velocity wave from Echo Ultrasound image of the same patient, to the computation model to quantify 4-D (time+space) velocity and pressure fields. Using one NVIDIA Tesla K40 GPU card, InVascular completes a computation from CT image to 4-D hemodynamics within 30 minutes. Thus it has the great potential to conduct massive numerical simulation and analysis. The systematic evaluation for one patient includes three OG anastomosis (ascending aorta, descending thoracic aorta, and subclavian artery), three combinations of LVAD and native heart pumping (1:1, 1:2, and 1:3), three angles of OG anastomosis (inclined upward, perpendicular, and inclined downward), and two LVAD inflow conditions (uniform and pulsatile). The optimal LVAD implantation is suggested through a comprehensive analysis of the cardiac output and related hemodynamics from the simulations over the fifty-four scenarios. To confirm the hypothesis, 5 random patient cases will be evaluated.Keywords: graphic processing unit (GPU) parallel computing, left ventricle assist device (LVAD), lumped-parameter model, patient-specific computational hemodynamics
Procedia PDF Downloads 133211 Tourism Policy Challenges in Post-Soviet Georgia
Authors: Merab Khokhobaia
Abstract:
The research of Georgian tourism policy challenges is important, as the tourism can play an increasing role for the economic growth and improvement of standard of living of the country even with scanty resources, at the expense of improved creative approaches. It is also important to make correct decisions at macroeconomic level, which will be accordingly reflected in the successful functioning of the travel companies and finally, in the improvement of economic indicators of the country. In order to correctly orient sectoral policy, it is important to precisely determine its role in the economy. Development of travel industry has been considered as one of the priorities in Georgia; the country has unique cultural heritage and traditions, as well as plenty of natural resources, which are a significant precondition for the development of tourism. Despite the factors mentioned above, the existing resources are not completely utilized and exploited. This work represents a study of subjective, as well as objective reasons of ineffective functioning of the sector. During the years of transformation experienced by Georgia, the role of travel industry in economic development of the country represented the subject of continual discussions. Such assessments were often biased and they did not rest on specific calculations. This topic became especially popular on the ground of market economy, because reliable statistical data have a particular significance in the designing of tourism policy. In order to deeply study the aforementioned issue, this paper analyzes monetary, as well as non-monetary indicators. The research widely included the tourism indicators system; we analyzed the flaws in reporting of the results of tourism sector in Georgia. Existing defects are identified and recommendations for their improvement are offered. For stable development tourism, similarly to other economic sectors, needs a well-designed policy from the perspective of national, as well as local, regional development. The tourism policy must be drawn up in order to efficiently achieve our goals, which were established in short-term and long-term dynamics on the national or regional scale of specific country. The article focuses on the role and responsibility of the state institutes in planning and implementation of the tourism policy. The government has various tools and levers, which may positively influence the processes. These levers are especially important in terms of international, as well as internal tourism development. Within the framework of this research, the regulatory documents, which are in force in relation to this industry, were also analyzed. The main attention is turned to their modernization and necessity of their compliance with European standards. It is a current issue to direct the efforts of state policy on support of business by implementing infrastructural projects, as well as by development of human resources, which may be possible by supporting the relevant higher and vocational studying-educational programs.Keywords: regional development, tourism industry, tourism policy, transition
Procedia PDF Downloads 263210 Benjaminian Translatability and Elias Canetti's Life Component: The Other German Speaking Modernity
Authors: Noury Bakrim
Abstract:
Translatability is one of Walter Benjamin’s most influential notions, it is somehow representing the philosophy of language and history of what we might call and what we indeed coined as ‘the other German Speaking Modernity’ which could be shaped as a parallel thought form to the Marxian-Hegelian philosophy of history, the one represented by the school of Frankfurt. On the other hand, we should consider the influence of the plural German speaking identity and the Nietzschian and Goethean heritage, this last being focused on a positive will of power: the humanised human being. Having in perspective the benjaminian notion of translatability (Übersetzbarkeit), to be defined as an internal permanent hermeneutical possibility as well as a phenomenological potential of a translation relation, we are in fact touching this very double limit of both historical and linguistic reason. By life component, we mean the changing conditions of genetic and neurolinguistic post-partum functions, to be grasped as an individuation beyond the historical determinism and teleology of an event. It is, so to speak, the retrospective/introspective canettian auto-fiction, the benjaminian crystallization of the language experience in the now-time of writing/transmission. Furthermore, it raises various questioning points when it comes to translatability, they are basically related to psycholinguistic separate poles, the fatherly ladino Spanish and the motherly Vienna German, but relating more in particular to the permanent ontological quest of a world loss/belonging. Another level of this quest would be the status of Veza Canetti-Taubner Calderón, german speaking Author, Canetti’s ‘literary wife’, writer’s love, his inverted logos, protective and yet controversial ‘official private life partner’, the permanence of the jewish experience in the exiled german language. It sheds light on a traumatic relation of an inadequate/possible language facing the reconstruction of an oral life, the unconscious split of the signifier and above all on the frustrating status of writing in Canetti’s work : Using a suffering/suffered written German to save his remembered acquisition of his tongue/mother tongue by saving the vanishing spoken multilingual experience. While Canetti’s only novel ‘Die Blendung’ designates that fictional referential dynamics focusing on the nazi worldless horizon: the figure of Kien is an onomastic signifier, the anti-Canetti figure, the misunderstood legacy of Kant, the system without thought. Our postulate would be the double translatability of his auto-fiction inventing the bios oral signifier basing on the new praxemes created by Canetti’s german as observed in the English, French translations of his memory corpus. We aim at conceptualizing life component and translatability as two major features of a german speaking modernity.Keywords: translatability, language biography, presentification, bioeme, life Order
Procedia PDF Downloads 426209 Predicting the Exposure Level of Airborne Contaminants in Occupational Settings via the Well-Mixed Room Model
Authors: Alireza Fallahfard, Ludwig Vinches, Stephane Halle
Abstract:
In the workplace, the exposure level of airborne contaminants should be evaluated due to health and safety issues. It can be done by numerical models or experimental measurements, but the numerical approach can be useful when it is challenging to perform experiments. One of the simplest models is the well-mixed room (WMR) model, which has shown its usefulness to predict inhalation exposure in many situations. However, since the WMR is limited to gases and vapors, it cannot be used to predict exposure to aerosols. The main objective is to modify the WMR model to expand its application to exposure scenarios involving aerosols. To reach this objective, the standard WMR model has been modified to consider the deposition of particles by gravitational settling and Brownian and turbulent deposition. Three deposition models were implemented in the model. The time-dependent concentrations of airborne particles predicted by the model were compared to experimental results conducted in a 0.512 m3 chamber. Polystyrene particles of 1, 2, and 3 µm in aerodynamic diameter were generated with a nebulizer under two air changes per hour (ACH). The well-mixed condition and chamber ACH were determined by the tracer gas decay method. The mean friction velocity on the chamber surfaces as one of the input variables for the deposition models was determined by computational fluid dynamics (CFD) simulation. For the experimental procedure, the particles were generated until reaching the steady-state condition (emission period). Then generation stopped, and concentration measurements continued until reaching the background concentration (decay period). The results of the tracer gas decay tests revealed that the ACHs of the chamber were: 1.4 and 3.0, and the well-mixed condition was achieved. The CFD results showed the average mean friction velocity and their standard deviations for the lowest and highest ACH were (8.87 ± 0.36) ×10-2 m/s and (8.88 ± 0.38) ×10-2 m/s, respectively. The numerical results indicated the difference between the predicted deposition rates by the three deposition models was less than 2%. The experimental and numerical aerosol concentrations were compared in the emission period and decay period. In both periods, the prediction accuracy of the modified model improved in comparison with the classic WMR model. However, there is still a difference between the actual value and the predicted value. In the emission period, the modified WMR results closely follow the experimental data. However, the model significantly overestimates the experimental results during the decay period. This finding is mainly due to an underestimation of the deposition rate in the model and uncertainty related to measurement devices and particle size distribution. Comparing the experimental and numerical deposition rates revealed that the actual particle deposition rate is significant, but the deposition mechanisms considered in the model were ten times lower than the experimental value. Thus, particle deposition was significant and will affect the airborne concentration in occupational settings, and it should be considered in the airborne exposure prediction model. The role of other removal mechanisms should be investigated.Keywords: aerosol, CFD, exposure assessment, occupational settings, well-mixed room model, zonal model
Procedia PDF Downloads 103208 Temporal and Spatio-Temporal Stability Analyses in Mixed Convection of a Viscoelastic Fluid in a Porous Medium
Authors: P. Naderi, M. N. Ouarzazi, S. C. Hirata, H. Ben Hamed, H. Beji
Abstract:
The stability of mixed convection in a Newtonian fluid medium heated from below and cooled from above, also known as the Poiseuille-Rayleigh-Bénard problem, has been extensively investigated in the past decades. To our knowledge, mixed convection in porous media has received much less attention in the published literature. The present paper extends the mixed convection problem in porous media for the case of a viscoelastic fluid flow owing to its numerous environmental and industrial applications such as the extrusion of polymer fluids, solidification of liquid crystals, suspension solutions and petroleum activities. Without a superimposed through-flow, the natural convection problem of a viscoelastic fluid in a saturated porous medium has already been treated. The effects of the viscoelastic properties of the fluid on the linear and nonlinear dynamics of the thermoconvective instabilities have also been treated in this work. Consequently, the elasticity of the fluid can lead either to a Hopf bifurcation, giving rise to oscillatory structures in the strongly elastic regime, or to a stationary bifurcation in the weakly elastic regime. The objective of this work is to examine the influence of the main horizontal flow on the linear and characteristics of these two types of instabilities. Under the Boussinesq approximation and Darcy's law extended to a viscoelastic fluid, a temporal stability approach shows that the conditions for the appearance of longitudinal rolls are identical to those found in the absence of through-flow. For the general three-dimensional (3D) perturbations, a Squire transformation allows the deduction of the complex frequencies associated with the 3D problem using those obtained by solving the two-dimensional one. The numerical resolution of the eigenvalue problem concludes that the through-flow has a destabilizing effect and selects a convective configuration organized in purely transversal rolls which oscillate in time and propagate in the direction of the main flow. In addition, by using the mathematical formalism of absolute and convective instabilities, we study the nature of unstable three-dimensional disturbances. It is shown that for a non-vanishing through-flow, general three-dimensional instabilities are convectively unstable which means that in the absence of a continuous noise source these instabilities are drifted outside the porous medium, and no long-term pattern is observed. In contrast, purely transversal rolls may exhibit a transition to absolute instability regime and therefore affect the porous medium everywhere including in the absence of a noise source. The absolute instability threshold, the frequency and the wave number associated with purely transversal rolls are determined as a function of the Péclet number and the viscoelastic parameters. Results are discussed and compared to those obtained from laboratory experiments in the case of Newtonian fluids.Keywords: instability, mixed convection, porous media, and viscoelastic fluid
Procedia PDF Downloads 341207 Coupling Strategy for Multi-Scale Simulations in Micro-Channels
Authors: Dahia Chibouti, Benoit Trouette, Eric Chenier
Abstract:
With the development of micro-electro-mechanical systems (MEMS), understanding fluid flow and heat transfer at the micrometer scale is crucial. In the case where the flow characteristic length scale is narrowed to around ten times the mean free path of gas molecules, the classical fluid mechanics and energy equations are still valid in the bulk flow, but particular attention must be paid to the gas/solid interface boundary conditions. Indeed, in the vicinity of the wall, on a thickness of about the mean free path of the molecules, called the Knudsen layer, the gas molecules are no longer in local thermodynamic equilibrium. Therefore, macroscopic models based on the continuity of velocity, temperature and heat flux jump conditions must be applied at the fluid/solid interface to take this non-equilibrium into account. Although these macroscopic models are widely used, the assumptions on which they depend are not necessarily verified in realistic cases. In order to get rid of these assumptions, simulations at the molecular scale are carried out to study how molecule interaction with walls can change the fluid flow and heat transfers at the vicinity of the walls. The developed approach is based on a kind of heterogeneous multi-scale method: micro-domains overlap the continuous domain, and coupling is carried out through exchanges of information between both the molecular and the continuum approaches. In practice, molecular dynamics describes the fluid flow and heat transfers in micro-domains while the Navier-Stokes and energy equations are used at larger scales. In this framework, two kinds of micro-simulation are performed: i) in bulk, to obtain the thermo-physical properties (viscosity, conductivity, ...) as well as the equation of state of the fluid, ii) close to the walls to identify the relationships between the slip velocity and the shear stress or between the temperature jump and the normal temperature gradient. The coupling strategy relies on an implicit formulation of the quantities extracted from micro-domains. Indeed, using the results of the molecular simulations, a Bayesian regression is performed in order to build continuous laws giving both the behavior of the physical properties, the equation of state and the slip relationships, as well as their uncertainties. These latter allow to set up a learning strategy to optimize the number of micro simulations. In the present contribution, the first results regarding this coupling associated with the learning strategy are illustrated through parametric studies of convergence criteria, choice of basis functions and noise of input data. Anisothermic flows of a Lennard Jones fluid in micro-channels are finally presented.Keywords: multi-scale, microfluidics, micro-channel, hybrid approach, coupling
Procedia PDF Downloads 166206 Female Fans in Global Football Governance: A Call for Change
Authors: Yaron Covo, Tamar Kofman, Shira Palti
Abstract:
Over the recent decades, debates about the engagement of fans in football governance have focused on the club level and national level, emphasizing the significance of fans’ involvement in increasing the connection of clubs with the community, and in safeguarding the transparency, accountability, and clubs’ financial stability. This paper will offer a different conceptual justification for providing fans with access to decision-making processes in football. First, it will suggest that the participation of fans is necessary for addressing discriminatory practices against women in football stadiums. Second, it will argue that fans’ involvement in football governance is important not only at the club and national level but also at the global level, relying on the principles of Global Administrative Law. In contemporary men’s football, female fans face different forms of discrimination. Iranian women are still prohibited from attending football games at the domestic level; In Saudi Arabia, female fans are only permitted to enter designated family areas; Qatar – the host of the 2022 FIFA world cup – requires women to attend matches wearing modest clothing. Similarly, in Turkey, Lebanon, UAE, and Algeria, women face cultural barriers when attending men’s football games. In other countries, female fans suffer from subtle discrimination, including micro-aggressions, misogyny, sexism, and noninstitutionalized exclusion. Despite the vital role of fans in world football and the importance of football for many women’s lives, little has been done to address this problem. While FIFA recognizes that these discriminatory practices contradict its statutes, this recognition fails to materialize into meaningful change. This paper will argue that FIFA’s omission stems from two interrelated characteristics of world football: (1) the ultra-masculine nature of the game; (2) the insufficient recognition of fans’ significance. While fans have been given a voice in various football bodies on the domestic level, FIFA has yet to allow the representation of fans as stakeholders in world football governance. Since fans are a more heterogeneous group than players, the voices of those fans who do not fit the ultra-masculine model are not heard. Thus, by focusing mainly on male players, FIFA reproduces the hegemonic masculinity that feeds back into fan dynamics and marginalizes female fans. To rectify this problem, we will call on FIFA to provide fans and female fans in particular, with voice mechanisms and access to decision-making processes. In addition to its impact on the formation of fans’ identities, such a move will allow fans to demand better enforcement of existing anti-discrimination norms and new regulations to address their needs. The literature has yet to address the relationship between fans’ gender discrimination and global football governance. Building on Global Administrative Law scholarship and feminist theories, this paper will aim to fill this gap.Keywords: fans, FIFA, football governance, gender discrimination, global administrative law, human rights
Procedia PDF Downloads 149205 Use of Progressive Feedback for Improving Team Skills and Fair Marking of Group Tasks
Authors: Shaleeza Sohail
Abstract:
Self, and peer evaluations are some of the main components in almost all group assignments and projects in higher education institutes. These evaluations provide students an opportunity to better understand the learning outcomes of the assignment and/or project. A number of online systems have been developed for this purpose that provides automated assessment and feedback of students’ contribution in a group environment based on self and peer evaluations. All these systems lack a progressive aspect of these assessments and feedbacks which is the most crucial factor for ongoing improvement and life-long learning. In addition, a number of assignments and projects are designed in a manner that smaller or initial assessment components lead to a final assignment or project. In such cases, the evaluation and feedback may provide students an insight into their performance as a group member for a particular component after the submission. Ideally, it should also create an opportunity to improve for next assessment component as well. Self and Peer Progressive Assessment and Feedback System encourages students to perform better in the next assessment by providing a comparative analysis of the individual’s contribution score on an ongoing basis. Hence, the student sees the change in their own contribution scores during the complete project based on smaller assessment components. Self-Assessment Factor is calculated as an indicator of how close the self-perception of the student’s own contribution is to the perceived contribution of that student by other members of the group. Peer-Assessment Factor is calculated to compare the perception of one student’s contribution as compared to the average value of the group. Our system also provides a Group Coherence Factor which shows collectively how group members contribute to the final submission. This feedback is provided for students and teachers to visualize the consistency of members’ contribution perceived by its group members. Teachers can use these factors to judge the individual contributions of the group members in the combined tasks and allocate marks/grades accordingly. This factor is shown to students for all groups undertaking same assessment, so the group members can comparatively analyze the efficiency of their group as compared to other groups. Our System provides flexibility to the instructors for generating their own customized criteria for self and peer evaluations based on the requirements of the assignment. Students evaluate their own and other group members’ contributions on the scale from significantly higher to significantly lower. The preliminary testing of the prototype system is done with a set of predefined cases to explicitly show the relation of system feedback factors to the case studies. The results show that such progressive feedback to students can be used to motivate self-improvement and enhanced team skills. The comparative group coherence can promote a better understanding of the group dynamics in order to improve team unity and fair division of team tasks.Keywords: effective group work, improvement of team skills, progressive feedback, self and peer assessment system
Procedia PDF Downloads 187204 Dynamic EEG Desynchronization in Response to Vicarious Pain
Authors: Justin Durham, Chanda Rooney, Robert Mather, Mickie Vanhoy
Abstract:
The psychological construct of empathy is to understand a person’s cognitive perspective and experience the other person’s emotional state. Deciphering emotional states is conducive for interpreting vicarious pain. Observing others' physical pain activates neural networks related to the actual experience of pain itself. The study addresses empathy as a nonlinear dynamic process of simulation for individuals to understand the mental states of others and experience vicarious pain, exhibiting self-organized criticality. Such criticality follows from a combination of neural networks with an excitatory feedback loop generating bistability to resonate permutated empathy. Cortical networks exhibit diverse patterns of activity, including oscillations, synchrony and waves, however, the temporal dynamics of neurophysiological activities underlying empathic processes remain poorly understood. Mu rhythms are EEG oscillations with dominant frequencies of 8-13 Hz becoming synchronized when the body is relaxed with eyes open and when the sensorimotor system is in idle, thus, mu rhythm synchrony is expected to be highest in baseline conditions. When the sensorimotor system is activated either by performing or simulating action, mu rhythms become suppressed or desynchronize, thus, should be suppressed while observing video clips of painful injuries if previous research on mirror system activation holds. Twelve undergraduates contributed EEG data and survey responses to empathy and psychopathy scales in addition to watching consecutive video clips of sports injuries. Participants watched a blank, black image on a computer monitor before and after observing a video of consecutive sports injuries incidents. Each video condition lasted five-minutes long. A BIOPAC MP150 recorded EEG signals from sensorimotor and thalamocortical regions related to a complex neural network called the ‘pain matrix’. Physical and social pain are activated in this network to resonate vicarious pain responses to processing empathy. Five EEG single electrode locations were applied to regions measuring sensorimotor electrical activity in microvolts (μV) to monitor mu rhythms. EEG signals were sampled at a rate of 200 Hz. Mu rhythm desynchronization was measured via 8-13 Hz at electrode sites (F3 & F4). Data for each participant’s mu rhythms were analyzed via Fast Fourier Transformation (FFT) and multifractal time series analysis.Keywords: desynchronization, dynamical systems theory, electroencephalography (EEG), empathy, multifractal time series analysis, mu waveform, neurophysiology, pain simulation, social cognition
Procedia PDF Downloads 283203 Unveiling Mental Health Nuances of Male Indian Classical Dancers
Authors: Madhura Bapat, Uma Krishnan
Abstract:
Exploring the redefinition of masculinity through the experiences of male Indian classical dancers, this qualitative research focuses on their perceived quality of life, psychosocial challenges, and coping strategies. This study aims to explore the mental health nuances of male Indian classical dancers through an in-depth understanding of their lived experiences with dance. The benefits and personal journeys of dancers, particularly in Indian classical forms, reveal insights into culture, gender, and societal expectations. Men in Indian classical dance frequently encounter stigma due to prevailing gender norms in the arts and society. Acknowledgment of these experiences is key to understanding issues of identity, mental wellness, and communal acceptance of male Indian classical dancers in the Indian dance scenario. This study follows an interpretive phenomenological approach to follow the lived experiences of male Indian classical dancers. Male Indian classical dancers were selected using criterion-based sampling. The participants are male, fluent in English and pursue Indian classical dance styles professionally, like Kathak, Bharatanatyam, Chhau, etc. Six participants were recruited for personal, semi-structured, in-depth interviews. A focus group discussion with four participants was conducted to explore the stigma surrounding their roles. The data were analyzed using interpretive phenomenological analysis (IPA), revealing superordinate themes of (1) identity fragmentation and negotiation in gendered social contexts; (2) gendered constraints and artistic expression; (3) psychosocial distress and mental health challenges; (4) coping mechanisms and resilience; and (5) stigmatization and social integration dynamics. Male Indian classical dancers grapple with identity formation, navigating a paradox of self-perception, artistic identity, and societal expectation. They reported experiencing emasculation, compromising artistic expression, and struggling with gender norms and gendered training constraints. They have faced name-calling, bullying, taunting, slandering, and discrimination. These experiences have led to psychological challenges and distress. However, the paradox continues as male dancers use adaptive coping strategies despite the adversities that intertwine self-perception, societal pressures, and their passion for dance. This research sheds light on the intersection of gender, mental health, and art. These findings provide a strong foundation for making changes in the dance community for acceptance of male dancers, policy making for better job opportunities for male dancers and mental health services to be provided to help them deal with distress. The study offers valuable insights into how male classical dancers navigate stigma and mental health challenges in gendered social contexts, contributing to a deeper understanding of identity formation in the arts.Keywords: gendered experiences, Indian classical dance, male dancers, mental health, stigma
Procedia PDF Downloads 44202 The Affective Motivation of Women Miners in Ghana
Authors: Adesuwa Omorede, Rufai Haruna Kilu
Abstract:
Affective motivation (motivation that is emotionally laden usually related to affect, passion, emotions, moods) in the workplace stimulates individuals to reinforce, persist and commit to their task, which leads to the individual and organizational performance. This leads individuals to reach goals especially in situations where task are highly challenging and hostile. In such situations, individuals are more disposed to be more creative, innovative and see new opportunities from the loopholes in their workplace. However, when individuals feel displaced and less important, an adverse reaction may suffice which may be detrimental to the organization and its performance. One sector where affective motivation is eminently present and relevant, is the mining industry. Due to its intense work environment; mostly dominated by men and masculinity cultures; and deliberate exclusion of women in this environment which, makes the women working in these environments to feel marginalized. In Ghana, the mining industry is mostly seen as a very physical environment especially underground and mostly considerd as 'no place for a woman'. Despite the fact that these women feel less 'needed' or 'appreciated' in such environments, they still have to juggle between intense work shifts; face violence and other health risks with their families, which put a strain on their affective motivational reaction. Beyond these challenges, however, several mining companies in Ghana today are working towards providing a fair and equal working situation for both men and women miners, by recognizing them as key stakeholders, as well as including them in the stages of mining projects from the planning and designing phase to the evaluation and implementation stage. Drawing from the psychology and gender literature, this study takes a narrative approach to identify and understand the shifting gender dynamics within the mine works in Ghana, occasioning a change in background disposition of miners, which leads to more women taking up mine jobs in the country. In doing so, a qualitative study was conducted using semi-structured interviews from Ghana. Several women working within the mining industries in Ghana shared their experiences and how they felt and still feel in their workplace. In addition, archival documents were gathered to support the findings. The results suggest a change in enrolment regimes in a mining and technology university in Ghana, making room for a more gender equal enrolments in the university. A renowned university that train and feed mine work professional into the industry. The results further acknowledge gender equal and diversity recruitment policies and initiatives among the mining companies of Ghana. This study contributes to the psychology and gender literature by highlighting the hindrances women face in the mining industry as well as highlighting several of their affective reactions towards gender inequality. The study also provides several suggestions for decision makers in the mining industry of what can be done in the future to reduce the gender inequality gap within the industry.Keywords: affective motivation, gender shape shifting, mining industry, women miners
Procedia PDF Downloads 301201 Enterprises and Social Impact: A Review of the Changing Landscape
Authors: Suzhou Wei, Isobel Cunningham, Laura Bradley McCauley
Abstract:
Social enterprises play a significant role in resolving social issues in the modern world. In contrast to traditional commercial businesses, their main goal is to address social concerns rather than primarily maximize profits. This phenomenon in entrepreneurship is presenting new opportunities and different operating models and resulting in modified approaches to measure success beyond traditional market share and margins. This paper explores social enterprises to clarify their roles and approaches in addressing grand challenges related to social issues. In doing so, it analyses the key differences between traditional business and social enterprises, such as their operating model and value proposition, to understand their contributions to society. The research presented in this paper responds to calls for research to better understand social enterprises and entrepreneurship but also to explore the dynamics between profit-driven and socially-oriented entities to deliver mutual benefits. This paper, which examines the features of commercial business, suggests their primary focus is profit generation, economic growth and innovation. Beyond the chase of profit, it highlights the critical role of innovation typical of successful businesses. This, in turn, promotes economic growth, creates job opportunities and makes a major positive impact on people's lives. In contrast, the motivations upon which social enterprises are founded relate to a commitment to address social problems rather than maximizing profits. These entities combine entrepreneurial principles with commitments to deliver social impact and grand challenge changes, creating a distinctive category within the broader enterprise and entrepreneurship landscape. The motivations for establishing a social enterprise are diverse, such as encompassing personal fulfillment, a genuine desire to contribute to society and a focus on achieving impactful accomplishments. The paper also discusses the collaboration between commercial businesses and social enterprises, which is viewed as a strategic approach to addressing grand challenges more comprehensively and effectively. Finally, this paper highlights the evolving and diverse expectations placed on all businesses to actively contribute to society beyond profit-making. We conclude that there is an unrealized and underdeveloped potential for collaboration between commercial businesses and social enterprises to produce greater and long-lasting social impacts. Overall, the aim of this research is to encourage more investigation of the complex relationship between economic and social objectives and contributions through a better understanding of how and why businesses might address social issues. Ultimately, the paper positions itself as a tool for understanding the evolving landscape of business engagement with social issues and advocates for collaborative efforts to achieve sustainable and impactful outcomes.Keywords: business, social enterprises, collaboration, social issues, motivations
Procedia PDF Downloads 51200 Optimum Drilling States in Down-the-Hole Percussive Drilling: An Experimental Investigation
Authors: Joao Victor Borges Dos Santos, Thomas Richard, Yevhen Kovalyshen
Abstract:
Down-the-hole (DTH) percussive drilling is an excavation method that is widely used in the mining industry due to its high efficiency in fragmenting hard rock formations. A DTH hammer system consists of a fluid driven (air or water) piston and a drill bit; the reciprocating movement of the piston transmits its kinetic energy to the drill bit by means of stress waves that propagate through the drill bit towards the rock formation. In the literature of percussive drilling, the existence of an optimum drilling state (Sweet Spot) is reported in some laboratory and field experimental studies. An optimum rate of penetration is achieved for a specific range of axial thrust (or weight-on-bit) beyond which the rate of penetration decreases. Several authors advance different explanations as possible root causes to the occurrence of the Sweet Spot, but a universal explanation or consensus does not exist yet. The experimental investigation in this work was initiated with drilling experiments conducted at a mining site. A full-scale drilling rig (equipped with a DTH hammer system) was instrumented with high precision sensors sampled at a very high sampling rate (kHz). Data was collected while two boreholes were being excavated, an in depth analysis of the recorded data confirmed that an optimum performance can be achieved for specific ranges of input thrust (weight-on-bit). The high sampling rate allowed to identify the bit penetration at each single impact (of the piston on the drill bit) as well as the impact frequency. These measurements provide a direct method to identify when the hammer does not fire, and drilling occurs without percussion, and the bit propagate the borehole by shearing the rock. The second stage of the experimental investigation was conducted in a laboratory environment with a custom-built equipment dubbed Woody. Woody allows the drilling of shallow holes few centimetres deep by successive discrete impacts from a piston. After each individual impact, the bit angular position is incremented by a fixed amount, the piston is moved back to its initial position at the top of the barrel, and the air pressure and thrust are set back to their pre-set values. The goal is to explore whether the observed optimum drilling state stems from the interaction between the drill bit and the rock (during impact) or governed by the overall system dynamics (between impacts). The experiments were conducted on samples of Calca Red, with a drill bit of 74 millimetres (outside diameter) and with weight-on-bit ranging from 0.3 kN to 3.7 kN. Results show that under the same piston impact energy and constant angular displacement of 15 degrees between impact, the average drill bit rate of penetration is independent of the weight-on-bit, which suggests that the sweet spot is not caused by intrinsic properties of the bit-rock interface.Keywords: optimum drilling state, experimental investigation, field experiments, laboratory experiments, down-the-hole percussive drilling
Procedia PDF Downloads 89199 Narcissism in the Life of Howard Hughes: A Psychobiographical Exploration
Authors: Alida Sandison, Louise A. Stroud
Abstract:
Narcissism is a personality configuration which has both normal and pathological personality expressions. Narcissism is highly complex, and is linked to a broad field of research. There are both dimensional and categorical conceptualisations of narcissism, and a variety of theoretical formulations that have been put forward to understand the narcissistic personality configuration. Currently, Kernberg’s Object Relations theory is well supported for this purpose. The complexity and particular defense mechanisms at play in the narcissistic personality make it a difficult personality configuration worth further research. Psychobiography as a methodology allows for the exploration of the lived life, and is thus a useful methodology to surmount these inherent challenges. Narcissism has been a focus of academic interest for a long time, and although there is a lot of research done in this area, to the researchers' knowledge, narcissistic dynamics have never been explored within a psychobiographical format. Thus, the primary aim of the research was to explore and describe narcissism in the life of Howard Hughes, with the objective of gaining further insight into narcissism through the use of this unconventional research approach. Hughes was chosen as subject for the study as he is renowned as an eccentric billionaire who had his revolutionary effect on the world, but was concurrently disturbed within his personal pathologies. Hughes was dynamic in three different sectors, namely motion pictures, aviation and gambling. He became more and more reclusive as he entered into middle age. From his early fifties he was agoraphobic, and the social network of connectivity that could reasonably be expected from someone in the top of their field was notably distorted. Due to his strong narcissistic personality configuration, and the interpersonal difficulties he experienced, Hughes represents an ideal figure to explore narcissism. The study used a single case study design, and purposive sampling to select Hughes. Qualitative data was sampled, using secondary data sources. Given that Hughes was a famous figure, there is a plethora of information on his life, which is primarily autobiographical. This includes books written about his life, and archival material in the form of newspaper articles, interviews and movies. Gathered data were triangulated to avoid the effect of author bias, and increase the credibility of the data used. It was collected using Yin’s guidelines for data collection. Data was analysed using Miles and Huberman strategy of data analysis, which consists of three steps, namely, data reduction, data display, and conclusion drawing and verification. Patterns which emerged in the data highlighted the defense mechanisms used by Hughes, in particular that of splitting and projection, in defending his sense of self. These defense mechanisms help us to understand the high levels of entitlement and paranoia experienced by Hughes. Findings provide further insight into his sense of isolation and difference, and the consequent difficulty he experienced in maintaining connections with others. Findings furthermore confirm the effectiveness of Kernberg’s theory in understanding narcissism observing an individual life.Keywords: Howard Hughes, narcissism, narcissistic defenses, object relations
Procedia PDF Downloads 356198 Spatial Climate Changes in the Province of Macerata, Central Italy, Analyzed by GIS Software
Authors: Matteo Gentilucci, Marco Materazzi, Gilberto Pambianchi
Abstract:
Climate change is an increasingly central issue in the world, because it affects many of human activities. In this context regional studies are of great importance because they sometimes differ from the general trend. This research focuses on a small area of central Italy which overlooks the Adriatic Sea, the province of Macerata. The aim is to analyze space-based climate changes, for precipitation and temperatures, in the last 3 climatological standard normals (1961-1990; 1971-2000; 1981-2010) through GIS software. The data collected from 30 weather stations for temperature and 61 rain gauges for precipitation were subject to quality controls: validation and homogenization. These data were fundamental for the spatialization of the variables (temperature and precipitation) through geostatistical techniques. To assess the best geostatistical technique for interpolation, the results of cross correlation were used. The co-kriging method with altitude as independent variable produced the best cross validation results for all time periods, among the methods analysed, with 'root mean square error standardized' close to 1, 'mean standardized error' close to 0, 'average standard error' and 'root mean square error' with similar values. The maps resulting from the analysis were compared by subtraction between rasters, producing 3 maps of annual variation and three other maps for each month of the year (1961/1990-1971/2000; 1971/2000-1981/2010; 1961/1990-1981/2010). The results show an increase in average annual temperature of about 0.1°C between 1961-1990 and 1971-2000 and 0.6 °C between 1961-1990 and 1981-2010. Instead annual precipitation shows an opposite trend, with an average difference from 1961-1990 to 1971-2000 of about 35 mm and from 1961-1990 to 1981-2010 of about 60 mm. Furthermore, the differences in the areas have been highlighted with area graphs and summarized in several tables as descriptive analysis. In fact for temperature between 1961-1990 and 1971-2000 the most areally represented frequency is 0.08°C (77.04 Km² on a total of about 2800 km²) with a kurtosis of 3.95 and a skewness of 2.19. Instead, the differences for temperatures from 1961-1990 to 1981-2010 show a most areally represented frequency of 0.83 °C, with -0.45 as kurtosis and 0.92 as skewness (36.9 km²). Therefore it can be said that distribution is more pointed for 1961/1990-1971/2000 and smoother but more intense in the growth for 1961/1990-1981/2010. In contrast, precipitation shows a very similar shape of distribution, although with different intensities, for both variations periods (first period 1961/1990-1971/2000 and second one 1961/1990-1981/2010) with similar values of kurtosis (1st = 1.93; 2nd = 1.34), skewness (1st = 1.81; 2nd = 1.62 for the second) and area of the most represented frequency (1st = 60.72 km²; 2nd = 52.80 km²). In conclusion, this methodology of analysis allows the assessment of small scale climate change for each month of the year and could be further investigated in relation to regional atmospheric dynamics.Keywords: climate change, GIS, interpolation, co-kriging
Procedia PDF Downloads 127197 Integrating Multiple Types of Value in Natural Capital Accounting Systems: Environmental Value Functions
Authors: Pirta Palola, Richard Bailey, Lisa Wedding
Abstract:
Societies and economies worldwide fundamentally depend on natural capital. Alarmingly, natural capital assets are quickly depreciating, posing an existential challenge for humanity. The development of robust natural capital accounting systems is essential for transitioning towards sustainable economic systems and ensuring sound management of capital assets. However, the accurate, equitable and comprehensive estimation of natural capital asset stocks and their accounting values still faces multiple challenges. In particular, the representation of socio-cultural values held by groups or communities has arguably been limited, as to date, the valuation of natural capital assets has primarily been based on monetary valuation methods and assumptions of individual rationality. People relate to and value the natural environment in multiple ways, and no single valuation method can provide a sufficiently comprehensive image of the range of values associated with the environment. Indeed, calls have been made to improve the representation of multiple types of value (instrumental, intrinsic, and relational) and diverse ontological and epistemological perspectives in environmental valuation. This study addresses this need by establishing a novel valuation framework, Environmental Value Functions (EVF), that allows for the integration of multiple types of value in natural capital accounting systems. The EVF framework is based on the estimation and application of value functions, each of which describes the relationship between the value and quantity (or quality) of an ecosystem component of interest. In this framework, values are estimated in terms of change relative to the current level instead of calculating absolute values. Furthermore, EVF was developed to also support non-marginalist conceptualizations of value: it is likely that some environmental values cannot be conceptualized in terms of marginal changes. For example, ecological resilience value may, in some cases, be best understood as a binary: it either exists (1) or is lost (0). In such cases, a logistic value function may be used as the discriminator. Uncertainty in the value function parameterization can be considered through, for example, Monte Carlo sampling analysis. The use of EVF is illustrated with two conceptual examples. For the first time, EVF offers a clear framework and concrete methodology for the representation of multiple types of value in natural capital accounting systems, simultaneously enabling 1) the complementary use and integration of multiple valuation methods (monetary and non-monetary); 2) the synthesis of information from diverse knowledge systems; 3) the recognition of value incommensurability; 4) marginalist and non-marginalist value analysis. Furthermore, with this advancement, the coupling of EVF and ecosystem modeling can offer novel insights to the study of spatial-temporal dynamics in natural capital asset values. For example, value time series can be produced, allowing for the prediction and analysis of volatility, long-term trends, and temporal trade-offs. This approach can provide essential information to help guide the transition to a sustainable economy.Keywords: economics of biodiversity, environmental valuation, natural capital, value function
Procedia PDF Downloads 194