Search results for: numerical coupling
267 Aerothermal Analysis of the Brazilian 14-X Hypersonic Aerospace Vehicle at Mach Number 7
Authors: Felipe J. Costa, João F. A. Martos, Ronaldo L. Cardoso, Israel S. Rêgo, Marco A. S. Minucci, Antonio C. Oliveira, Paulo G. P. Toro
Abstract:
The Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, at the Institute for Advanced Studies designed the Brazilian 14-X Hypersonic Aerospace Vehicle, which is a technological demonstrator endowed with two innovative technologies: waverider technology, to obtain lift from conical shockwave during the hypersonic flight; and uses hypersonic airbreathing propulsion system called scramjet that is based on supersonic combustion, to perform flights on Earth's atmosphere at 30 km altitude at Mach numbers 7 and 10. The scramjet is an aeronautical engine without moving parts that promote compression and deceleration of freestream atmospheric air at the inlet through the conical/oblique shockwaves generated during the hypersonic flight. During high speed flight, the shock waves and the viscous forces yield the phenomenon called aerodynamic heating, where this physical meaning is the friction between the fluid filaments and the body or compression at the stagnation regions of the leading edge that converts the kinetic energy into heat within a thin layer of air which blankets the body. The temperature of this layer increases with the square of the speed. This high temperature is concentrated in the boundary-layer, where heat will flow readily from the boundary-layer to the hypersonic aerospace vehicle structure. Fay and Riddell and Eckert methods are applied to the stagnation point and to the flat plate segments in order to calculate the aerodynamic heating. On the understanding of the aerodynamic heating it is important to analyze the heat conduction transfer to the 14-X waverider internal structure. ANSYS Workbench software provides the Thermal Numerical Analysis, using Finite Element Method of the 14-X waverider unpowered scramjet at 30 km altitude at Mach number 7 and 10 in terms of temperature and heat flux. Finally, it is possible to verify if the internal temperature complies with the requirements for embedded systems, and, if is necessary to do modifications on the structure in terms of wall thickness and materials.Keywords: aerodynamic heating, hypersonic, scramjet, thermal analysis
Procedia PDF Downloads 456266 A Geosynchronous Orbit Synthetic Aperture Radar Simulator for Moving Ship Targets
Authors: Linjie Zhang, Baifen Ren, Xi Zhang, Genwang Liu
Abstract:
Ship detection is of great significance for both military and civilian applications. Synthetic aperture radar (SAR) with all-day, all-weather, ultra-long-range characteristics, has been used widely. In view of the low time resolution of low orbit SAR and the needs for high time resolution SAR data, GEO (Geosynchronous orbit) SAR is getting more and more attention. Since GEO SAR has short revisiting period and large coverage area, it is expected to be well utilized in marine ship targets monitoring. However, the height of the orbit increases the time of integration by almost two orders of magnitude. For moving marine vessels, the utility and efficacy of GEO SAR are still not sure. This paper attempts to find the feasibility of GEO SAR by giving a GEO SAR simulator of moving ships. This presented GEO SAR simulator is a kind of geometrical-based radar imaging simulator, which focus on geometrical quality rather than high radiometric. Inputs of this simulator are 3D ship model (.obj format, produced by most 3D design software, such as 3D Max), ship's velocity, and the parameters of satellite orbit and SAR platform. Its outputs are simulated GEO SAR raw signal data and SAR image. This simulating process is accomplished by the following four steps. (1) Reading 3D model, including the ship rotations (pitch, yaw, and roll) and velocity (speed and direction) parameters, extract information of those little primitives (triangles) which is visible from the SAR platform. (2) Computing the radar scattering from the ship with physical optics (PO) method. In this step, the vessel is sliced into many little rectangles primitives along the azimuth. The radiometric calculation of each primitive is carried out separately. Since this simulator only focuses on the complex structure of ships, only single-bounce reflection and double-bounce reflection are considered. (3) Generating the raw data with GEO SAR signal modeling. Since the normal ‘stop and go’ model is not available for GEO SAR, the range model should be reconsidered. (4) At last, generating GEO SAR image with improved Range Doppler method. Numerical simulation of fishing boat and cargo ship will be given. GEO SAR images of different posture, velocity, satellite orbit, and SAR platform will be simulated. By analyzing these simulated results, the effectiveness of GEO SAR for the detection of marine moving vessels is evaluated.Keywords: GEO SAR, radar, simulation, ship
Procedia PDF Downloads 178265 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State
Authors: Tomohiko Utsuki
Abstract:
Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control
Procedia PDF Downloads 154264 A Corpus Output Error Analysis of Chinese L2 Learners From America, Myanmar, and Singapore
Authors: Qiao-Yu Warren Cai
Abstract:
Due to the rise of big data, building corpora and using them to analyze ChineseL2 learners’ language output has become a trend. Various empirical research has been conducted using Chinese corpora built by different academic institutes. However, most of the research analyzed the data in the Chinese corpora usingcorpus-based qualitative content analysis with descriptive statistics. Descriptive statistics can be used to make summations about the subjects or samples that research has actually measured to describe the numerical data, but the collected data cannot be generalized to the population. Comte, a Frenchpositivist, has argued since the 19th century that human beings’ knowledge, whether the discipline is humanistic and social science or natural science, should be verified in a scientific way to construct a universal theory to explain the truth and human beings behaviors. Inferential statistics, able to make judgments of the probability of a difference observed between groups being dependable or caused by chance (Free Geography Notes, 2015)and to infer from the subjects or examples what the population might think or behave, is just the right method to support Comte’s argument in the field of TCSOL. Also, inferential statistics is a core of quantitative research, but little research has been conducted by combing corpora with inferential statistics. Little research analyzes the differences in Chinese L2 learners’ language corpus output errors by using theOne-way ANOVA so that the findings of previous research are limited to inferring the population's Chinese errors according to the given samples’ Chinese corpora. To fill this knowledge gap in the professional development of Taiwanese TCSOL, the present study aims to utilize the One-way ANOVA to analyze corpus output errors of Chinese L2 learners from America, Myanmar, and Singapore. The results show that no significant difference exists in ‘shì (是) sentence’ and word order errors, but compared with Americans and Singaporeans, it is significantly easier for Myanmar to have ‘sentence blends.’ Based on the above results, the present study provides an instructional approach and contributes to further exploration of how Chinese L2 learners can have (and use) learning strategies to lower errors.Keywords: Chinese corpus, error analysis, one-way analysis of variance, Chinese L2 learners, Americans, myanmar, Singaporeans
Procedia PDF Downloads 107263 Understanding the Influence of Fibre Meander on the Tensile Properties of Advanced Composite Laminates
Authors: Gaoyang Meng, Philip Harrison
Abstract:
When manufacturing composite laminates, the fibre directions within the laminate are never perfectly straight and inevitably contain some degree of stochastic in-plane waviness or ‘meandering’. In this work we aim to understand the relationship between the degree of meandering of the fibre paths, and the resulting uncertainty in the laminate’s final mechanical properties. To do this, a numerical tool is developed to automatically generate meandering fibre paths in each of the laminate's 8 plies (using Matlab) and after mapping this information into finite element simulations (using Abaqus), the statistical variability of the tensile mechanical properties of a [45°/90°/-45°/0°]s carbon/epoxy (IM7/8552) laminate is predicted. The stiffness, first ply failure strength and ultimate failure strength are obtained. Results are generated by inputting the degree of variability in the fibre paths and the laminate is then examined in all directions (from 0° to 359° in increments of 1°). The resulting predictions are output as flower (polar) plots for convenient analysis. The average fibre orientation of each ply in a given laminate is determined by the laminate layup code [45°/90°/-45°/0°]s. However, in each case, the plies contain increasingly large amounts of in-plane waviness (quantified by the standard deviation of the fibre direction in each ply across the laminate. Four different amounts of variability in the fibre direction are tested (2°, 4°, 6° and 8°). Results show that both the average tensile stiffness and the average tensile strength decrease, while the standard deviations increase, with an increasing degree of fibre meander. The variability in stiffness is found to be relatively insensitive to the rotation angle, but the variability in strength is sensitive. Specifically, the uncertainty in laminate strength is relatively low at orientations centred around multiples of 45° rotation angle, and relatively high between these rotation angles. To concisely represent all the information contained in the various polar plots, rotation-angle dependent Weibull distribution equations are fitted to the data. The resulting equations can be used to quickly estimate the size of the errors bars for the different mechanical properties, resulting from the amount of fibre directional variability contained within the laminate. A longer term goal is to use these equations to quickly introduce realistic variability at the component level.Keywords: advanced composite laminates, FE simulation, in-plane waviness, tensile properties, uncertainty quantification
Procedia PDF Downloads 89262 Feasibility Study of Particle Image Velocimetry in the Muzzle Flow Fields during the Intermediate Ballistic Phase
Authors: Moumen Abdelhafidh, Stribu Bogdan, Laboureur Delphine, Gallant Johan, Hendrick Patrick
Abstract:
This study is part of an ongoing effort to improve the understanding of phenomena occurring during the intermediate ballistic phase, such as muzzle flows. A thorough comprehension of muzzle flow fields is essential for optimizing muzzle device and projectile design. This flow characterization has heretofore been almost entirely limited to local and intrusive measurement techniques such as pressure measurements using pencil probes. Consequently, the body of quantitative experimental data is limited, so is the number of numerical codes validated in this field. The objective of the work presented here is to demonstrate the applicability of the Particle Image Velocimetry (PIV) technique in the challenging environment of the propellant flow of a .300 blackout weapon to provide accurate velocity measurements. The key points of a successful PIV measurement are the selection of the particle tracer, their seeding technique, and their tracking characteristics. We have experimentally investigated the aforementioned points by evaluating the resistance, gas dispersion, laser light reflection as well as the response to a step change across the Mach disk for five different solid tracers using two seeding methods. To this end, an experimental setup has been performed and consisted of a PIV system, the combustion chamber pressure measurement, classical high-speed schlieren visualization, and an aerosol spectrometer. The latter is used to determine the particle size distribution in the muzzle flow. The experimental results demonstrated the ability of PIV to accurately resolve the salient features of the propellant flow, such as the under the expanded jet and vortex rings, as well as the instantaneous velocity field with maximum centreline velocities of more than 1000 m/s. Besides, naturally present unburned particles in the gas and solid ZrO₂ particles with a nominal size of 100 nm, when coated on the propellant powder, are suitable as tracers. However, the TiO₂ particles intended to act as a tracer, surprisingly not only melted but also functioned as a combustion accelerator and decreased the number of particles in the propellant gas.Keywords: intermediate ballistic, muzzle flow fields, particle image velocimetry, propellant gas, particle size distribution, under expanded jet, solid particle tracers
Procedia PDF Downloads 164261 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor
Authors: Hao Yan, Xiaobing Zhang
Abstract:
The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model
Procedia PDF Downloads 91260 The Association of Excessive Work Stress with Job Satisfaction and Turnover Intention in Operating Room Nurses: A Cross-Sectional Study in a Metropolitan Teaching Hospital in Southern Taiwan
Authors: Chia Yu Chen, Shu Fen Wu, Chen-Fuh Lam, I-Ling Tsai, Shu Jiuan Chen, Yen Ling Liu
Abstract:
Aim: It remains undetermined that whether increased work stress may affect the job satisfaction and career loyalty among nursing staffs in the operating room. The long-term goal of this study is to lengthen the professional life of operating room nurses by attenuating the work stress and enhancing their contentment in work. Method: This was a cross-sectional, descriptive study performed in a metropolitan teaching hospital in the southern Taiwan between May 2017 to July 2017. A structured self-administered questionnaire, modified from the Occupational Stress Indicator-2 (OSI-2) and Maslach Burnout Inventory (MBI) manual was collected from the operating room nurses. Chi-square test was used to analyze the categorical data and Pearson correlation was used to analyze the association between two numerical datasets (SPSS version 20.0). Results: The response rate was 80% (80/100) and a total of 73 (73%) completed forms were eventually proceeded for analysis. The average scores for work stress and job satisfaction of the operating room nurses were 145.96±32.91 and 47.38±6.07, respectively. The correlation coefficients of work stress versus job satisfaction and organizational identity were (r=-0.338, p=0.003 and r=-0.354, p=0.002), respectively. There were more nurses who took rotating shift quitted works from the operating room than those who took only dayshift (2=5.176, p<0.05). Nurses who reported of having lower job satisfaction were associated with significantly higher turnover intention (t=3.714, p< 0.01). Following multivariate regression analysis, rotating shift and low job satisfaction were identified as the two independent predictors of intention to quit from working in the operating room. Conclusion: Our study clearly demonstrates that increased work stress significantly attenuates job satisfaction and organizational identity. Rotating shift is associated with higher work stress, lower job satisfaction, and higher turnover intention, which is consistent with the previous surveys carried out in the department of medical technology. Therefore, improvement of working quality in the operating rooms is essential to increase the retain intention of the well-trained nursing staffs. Further investigation into types of work shifts and other strategies of attenuating stress in workplace is currently undertaken in order to improve the job satisfaction and to decrease turnover intention in the operating room.Keywords: rotating shift, work stress, job satisfaction, turnover intention
Procedia PDF Downloads 199259 Impacts of Urban Morphologies on Air Pollutants Dispersion in Porto's Urban Area
Authors: Sandra Rafael, Bruno Vicente, Vera Rodrigues, Carlos Borrego, Myriam Lopes
Abstract:
Air pollution is an environmental and social issue at different spatial scales, especially in a climate change context, with an expected decrease of air quality. Air pollution is a combination of high emissions and unfavourable weather conditions, where wind speed and wind direction play a key role. The urban design (location and structure of buildings and trees) can both promote the air pollutants dispersion as well as promote their retention within the urban area. Today, most of the urban areas are applying measures to adapt to future extreme climatic events. Most of these measures are grounded on nature-based solutions, namely green roofs and green areas. In this sense, studies are required to evaluate how the implementation of these actions will influence the wind flow within the urban area and, consequently, how this will influence air pollutants' dispersion. The main goal of this study was to evaluate the influence of a set of urban morphologies in the wind conditions and in the dispersion of air pollutants, in a built-up area in Portugal. For that, two pollutants were analysed (NOx and PM10) and four scenarios were developed: i) a baseline scenario, which characterizes the current status of the study area, ii) an urban green scenario, which implies the implementation of a green area inside the domain, iii) a green roof scenario, which consists in the implementation of green roofs in a specific area of the domain; iv) a 'grey' scenario, which consists in a scenario with absence of vegetation. For that, two models were used, namely the Weather Research and Forecasting model (WRF) and the CFD model VADIS (pollutant dispersion in the atmosphere under variable wind conditions). The WRF model was used to initialize the CFD model, while the last was used to perform the set of numerical simulations, on an hourly basis. The implementation of the green urban area promoted a reduction of air pollutants' concentrations, 16% on average, related to the increase in the wind flow, which promotes air pollutants dispersion; while the application of green roofs showed an increase of concentrations (reaching 60% during specific time periods). Overall the results showed that a strategic placement of vegetation in cities has the potential to make an important contribution to increase air pollutants dispersion and so promote the improvement of air quality and sustainability of urban environments.Keywords: air pollutants dispersion, wind conditions, urban morphologies, road traffic emissions
Procedia PDF Downloads 347258 Economic Evaluation of an Advanced Bioethanol Manufacturing Technology Using Maize as a Feedstock in South Africa
Authors: Ayanda Ndokwana, Stanley Fore
Abstract:
Industrial prosperity and rapid expansion of human population in South Africa over the past two decades, have increased the use of conventional fossil fuels such as crude oil, coal and natural gas to meet the country’s energy demands. However, the inevitable depletion of fossil fuel reserves, global volatile oil price and large carbon footprint are some of the crucial reasons the South African Government needs to make a considerable investment in the development of the biofuel industry. In South Africa, this industry is still at the introductory stage with no large scale manufacturing plant that has been commissioned yet. Bioethanol is a potential replacement of gasoline which is a fossil fuel that is used in motor vehicles. Using bioethanol for the transport sector as a source of fuel will help Government to save heavy foreign exchange incurred during importation of oil and create many job opportunities in rural farming. In 2007, the South African Government developed the National Biofuels Industrial Strategy in an effort to make provision for support and attract investment in bioethanol production. However, capital investment in the production of bioethanol on a large scale, depends on the sound economic assessment of the available manufacturing technologies. The aim of this study is to evaluate the profitability of an advanced bioethanol manufacturing technology which uses maize as a feedstock in South Africa. The impact of fiber or bran fractionation in this technology causes it to possess a number of merits such as energy efficiency, low capital expenditure, and profitability compared to a conventional dry-mill bioethanol technology. Quantitative techniques will be used to collect and analyze numerical data from suitable organisations in South Africa. The dependence of three profitability indicators such as the Discounted Payback Period (DPP), Net Present Value (NPV) and Return On Investment (ROI) on plant capacity will be evaluated. Profitability analysis will be done on the following plant capacities: 100 000 ton/year, 150 000 ton/year and 200 000 ton/year. The plant capacity with the shortest Discounted Payback Period, positive Net Present Value and highest Return On Investment implies that a further consideration in terms of capital investment is warranted.Keywords: bioethanol, economic evaluation, maize, profitability indicators
Procedia PDF Downloads 233257 Sound Source Localisation and Augmented Reality for On-Site Inspection of Prefabricated Building Components
Authors: Jacques Cuenca, Claudio Colangeli, Agnieszka Mroz, Karl Janssens, Gunther Riexinger, Antonio D'Antuono, Giuseppe Pandarese, Milena Martarelli, Gian Marco Revel, Carlos Barcena Martin
Abstract:
This study presents an on-site acoustic inspection methodology for quality and performance evaluation of building components. The work focuses on global and detailed sound source localisation, by successively performing acoustic beamforming and sound intensity measurements. A portable experimental setup is developed, consisting of an omnidirectional broadband acoustic source and a microphone array and sound intensity probe. Three main acoustic indicators are of interest, namely the sound pressure distribution on the surface of components such as walls, windows and junctions, the three-dimensional sound intensity field in the vicinity of junctions, and the sound transmission loss of partitions. The measurement data is post-processed and converted into a three-dimensional numerical model of the acoustic indicators with the help of the simultaneously acquired geolocation information. The three-dimensional acoustic indicators are then integrated into an augmented reality platform superimposing them onto a real-time visualisation of the spatial environment. The methodology thus enables a measurement-supported inspection process of buildings and the correction of errors during construction and refurbishment. Two experimental validation cases are shown. The first consists of a laboratory measurement on a full-scale mockup of a room, featuring a prefabricated panel. The latter is installed with controlled defects such as lack of insulation and joint sealing material. It is demonstrated that the combined acoustic and augmented reality tool is capable of identifying acoustic leakages from the building defects and assist in correcting them. The second validation case is performed on a prefabricated room at a near-completion stage in the factory. With the help of the measurements and visualisation tools, the homogeneity of the partition installation is evaluated and leakages from junctions and doors are identified. Furthermore, the integration of acoustic indicators together with thermal and geometrical indicators via the augmented reality platform is shown.Keywords: acoustic inspection, prefabricated building components, augmented reality, sound source localization
Procedia PDF Downloads 386256 Experimental Evaluation of Contact Interface Stiffness and Damping to Sustain Transients and Resonances
Authors: Krystof Kryniski, Asa Kassman Rudolphi, Su Zhao, Per Lindholm
Abstract:
ABB offers range of turbochargers from 500 kW to 80+ MW diesel and gas engines. Those operate on ships, power stations, generator-sets, diesel locomotives and large, off-highway vehicles. The units need to sustain harsh operating conditions, exposure to high speeds, temperatures and varying loads. They are expected to work at over-critical speeds damping effectively any transients and encountered resonances. Components are often connected via friction joints. Designs of those interfaces need to account for surface roughness, texture, pre-stress, etc. to sustain against fretting fatigue. The experience from field contributed with valuable input on components performance in hash sea environment and their exposure to high temperature, speed and load conditions. Study of tribological interactions of oxide formations provided an insight into dynamic activities occurring between the surfaces. Oxidation was recognized as the dominant factor of a wear. Microscopic inspections of fatigue cracks on turbine indicated insufficient damping and unrestrained structural stress leading to catastrophic failure, if not prevented in time. The contact interface exhibits strongly non-linear mechanism and to describe it the piecewise approach was used. Set of samples representing the combinations of materials, texture, surface and heat treatment were tested on a friction rig under range of loads, frequencies and excitation amplitudes. Developed numerical technique extracted the friction coefficient, tangential contact stiffness and damping. Vast amount of experimental data was processed with the multi-harmonics balance (MHB) method to categorize the components subjected to the periodic excitations. At the pre-defined excitation level both force and displacement formed semi-elliptical hysteresis curves having the same area and secant as the actual ones. By cross-correlating the terms remaining in the phase and out of the phase, respectively it was possible to separate an elastic energy from dissipation and derive the stiffness and damping characteristics.Keywords: contact interface, fatigue, rotor-dynamics, torsional resonances
Procedia PDF Downloads 376255 Interaction between Trapezoidal Hill and Subsurface Cavity under SH Wave Incidence
Authors: Yuanrui Xu, Zailin Yang, Yunqiu Song, Guanxixi Jiang
Abstract:
It is an important subject of seismology on the influence of local topography on ground motion during earthquake. In mountainous areas with complex terrain, the construction of the tunnel is often the most effective transportation scheme. In these projects, the local terrain can be simplified into hills with different shapes, and the underground tunnel structure can be regarded as a subsurface cavity. The presence of the subsurface cavity affects the strength of the rock mass and changes the deformation and failure characteristics. Moreover, the scattering of the elastic waves by underground structures usually interacts with local terrains, which leads to a significant influence on the surface displacement of the terrains. Therefore, it is of great practical significance to study the surface displacement of local terrains with underground tunnels in earthquake engineering and seismology. In this work, the region is divided into three regions by the method of region matching. By using the fractional Bessel function and Hankel function, the complex function method, and the wave function expansion method, the wavefield expression of SH waves is introduced. With the help of a constitutive relation between the displacement and the stress components, the hoop stress and radial stress is obtained subsequently. Then, utilizing the continuous condition at different region boundaries, the undetermined coefficients in wave fields are solved by the Fourier series expansion and truncation of the finite term. Finally, the validity of the method is verified, and the surface displacement amplitude is calculated. The surface displacement amplitude curve is discussed in the numerical results. The results show that different parameters, such as radius and buried depth of the tunnel, wave number, and incident angle of the SH wave, have a significant influence on the amplitude of surface displacement. For the underground tunnel, the increase of buried depth will make the response of surface displacement amplitude increases at first and then decreases. However, the increase of radius leads the response of surface displacement amplitude to appear an opposite phenomenon. The increase of SH wave number can enlarge the amplitude of surface displacement, and the change of incident angle can obviously affect the amplitude fluctuation.Keywords: method of region matching, scattering of SH wave, subsurface cavity, trapezoidal hill
Procedia PDF Downloads 135254 Beyond the “Breakdown” of Karman Vortex Street
Authors: Ajith Kumar S., Sankaran Namboothiri, Sankrish J., SarathKumar S., S. Anil Lal
Abstract:
A numerical analysis of flow over a heated circular cylinder is done in this paper. The governing equations, Navier-Stokes, and energy equation within the Boussinesq approximation along with continuity equation are solved using hybrid FEM-FVM technique. The density gradient created due to the heating of the cylinder will induce buoyancy force, opposite to the direction of action of acceleration due to gravity, g. In the present work, the flow direction and the direction of buoyancy force are taken as same (vertical flow configuration), so that the buoyancy force accelerates the mean flow past the cylinder. The relative dominance of the buoyancy force over the inertia force is characterized by the Richardson number (Ri), which is one of the parameter that governs the flow dynamics and heat transfer in this analysis. It is well known that above a certain value of Reynolds number, Re (ratio of inertia force over the viscous forces), the unsteady Von Karman vortices can be seen shedding behind the cylinder. The shedding wake patterns could be seriously altered by heating/cooling the cylinder. The non-dimensional shedding frequency called the Strouhal number is found to be increasing as Ri increases. The aerodynamic force coefficients CL and CD are observed to change its value. In the present vertical configuration of flow over the cylinder, as Ri increases, shedding frequency gets increased and suddenly drops down to zero at a critical value of Richardson number. The unsteady vortices turn to steady standing recirculation bubbles behind the cylinder after this critical Richardson number. This phenomenon is well known in literature as "Breakdown of the Karman Vortex Street". It is interesting to see the flow structures on further increase in the Richardson number. On further heating of the cylinder surface, the size of the recirculation bubble decreases without loosing its symmetry about the horizontal axis passing through the center of the cylinder. The separation angle is found to be decreasing with Ri. Finally, we observed a second critical Richardson number, after which the the flow will be attached to the cylinder surface without any wake behind it. The flow structures will be symmetrical not only about the horizontal axis, but also with the vertical axis passing through the center of the cylinder. At this stage, there will be a "single plume" emanating from the rear stagnation point of the cylinder. We also observed the transition of the plume is a strong function of the Richardson number.Keywords: drag reduction, flow over circular cylinder, flow control, mixed convection flow, vortex shedding, vortex breakdown
Procedia PDF Downloads 404253 Freedom, Thought, and the Will: A Philosophical Reconstruction of Muhammad Iqbal’s Conception of Human Agency
Authors: Anwar ul Haq
Abstract:
Muhammad Iqbal was arguably the most significant South Asian Islamic philosopher of the last two centuries. While he is the most revered philosopher of the region, particularly in Pakistan, he is probably the least studied philosopher outside the region. The paper offers a philosophical reconstruction of Iqbal’s view of human agency; it has three sections. Section 1 focuses on Iqbal’s starting point of reflection in practical philosophy (inspired by Kant): our consciousness of ourselves as free agents. The paper brings out Iqbal’s continuity with Kant but also his divergence, in particular his non-Kantian view that we possess a non-sensory intuition of ourselves as free personal causes. It also offer an argument on Iqbal’s behalf for this claim, which is meant as a defense against a Kantian objection to the possibility of intuition of freedom and a skeptic’s challenge to the possibility of freedom in general. Remaining part of the paper offers a reconstruction of Iqbal’s two preconditions of the possibility of free agency. Section 2 discusses the first precondition, namely, the unity of consciousness involved in thought (this is a precondition of agency whether or not it is free). The unity has two aspects, a quantitative (or numerical) aspect and a qualitative (or rational) one. Section 2 offers a defense of these two aspects of the unity of consciousness presupposed by agency by focusing, with Iqbal, on the case of inference.Section 3 discusses a second precondition of the possibility of free agency, that thought and will must be identical in a free agent. Iqbal offers this condition in relief against Bergson’s view. Bergson (on Iqbal’s reading of him) argues that freedom of the will is possible only if the will’s ends are entirely its own and are wholly undetermined by anything from without, not even by thought. Iqbal observes that Bergson’s position ends in an insurmountable dualism of will and thought. Bergson’s view, Iqbal argues in particular, rests on an untenable conception of what an end consists in. An end, correctly understood, is framed by a thinking faculty, the intellect, and not by an extra-rational faculty. The present section outlines Iqbal’s argument for this claim, which rests on the premise that ends possess a certain unity which is intrinsic to particular ends and holds together different ends, and this unity is none other than the quantitative and qualitative unity of a thinking consciousness but in its practical application. Having secured the rational origin of ends, Iqbal argues that a free will must be identical with thought, or else it will be determined from without and won’t be free on that account. Freedom of the self is not a freedom from thought but a freedom in thought: it involves the ability to live a thoughtful life.Keywords: iqbal, freedom, will, self
Procedia PDF Downloads 72252 Analysis and Design of Exo-Skeleton System Based on Multibody Dynamics
Authors: Jatin Gupta, Bishakh Bhattacharya
Abstract:
With the aging process, many people start suffering from the problem of weak limbs resulting in mobility disorders and loss of sensory and motor function of limbs. Wearable robotic devices are viable solutions to help people suffering from these issues by augmenting their strength. These robotic devices, popularly known as exoskeletons aides user by providing external power and controlling the dynamics so as to achieve desired motion. Present work studies a simplified dynamic model of the human gait. A four link open chain kinematic model is developed to describe the dynamics of Single Support Phase (SSP) of the human gait cycle. The dynamic model is developed integrating mathematical models of the motion of inverted and triple pendulums. Stance leg is modeled as inverted pendulum having single degree of freedom and swing leg as triple pendulum having three degrees of freedom viz. thigh, knee, and ankle joints. The kinematic model is formulated using forward kinematics approach. Lagrangian approach is used to formulate governing dynamic equation of the model. For a system of nonlinear differential equations, numerical method is employed to obtain system response. Reference trajectory is generated using human body simulator, LifeMOD. For optimal mechanical design and controller design of exoskeleton system, it is imperative to study parameter sensitivity of the system. Six different parameters viz. thigh, shank, and foot masses and lengths are varied from 85% to 115% of the original value for the present work. It is observed that hip joint of swing leg is the most sensitive and ankle joint of swing leg is the least sensitive one. Changing link lengths causes more deviation in system response than link masses. Also, shank length and thigh mass are most sensitive parameters. Finally, the present study gives an insight on different factors that should be considered while designing a lower extremity exoskeleton.Keywords: lower limb exoskeleton, multibody dynamics, energy based formulation, optimal design
Procedia PDF Downloads 202251 Experiments to Study the Vapor Bubble Dynamics in Nucleate Pool Boiling
Authors: Parul Goel, Jyeshtharaj B. Joshi, Arun K. Nayak
Abstract:
Nucleate boiling is characterized by the nucleation, growth and departure of the tiny individual vapor bubbles that originate in the cavities or imperfections present in the heating surface. It finds a wide range of applications, e.g. in heat exchangers or steam generators, core cooling in power reactors or rockets, cooling of electronic circuits, owing to its highly efficient transfer of large amount of heat flux over small temperature differences. Hence, it is important to be able to predict the rate of heat transfer and the safety limit heat flux (critical heat flux, heat flux higher than this can lead to damage of the heating surface) applicable for any given system. A large number of experimental and analytical works exist in the literature, and are based on the idea that the knowledge of the bubble dynamics on the microscopic scale can lead to the understanding of the full picture of the boiling heat transfer. However, the existing data in the literature are scattered over various sets of conditions and often in disagreement with each other. The correlations obtained from such data are also limited to the range of conditions they were established for and no single correlation is applicable over a wide range of parameters. More recently, a number of researchers have been trying to remove empiricism in the heat transfer models to arrive at more phenomenological models using extensive numerical simulations; these models require state-of-the-art experimental data for a wide range of conditions, first for input and later, for their validation. With this idea in mind, experiments with sub-cooled and saturated demineralized water have been carried out under atmospheric pressure to study the bubble dynamics- growth rate, departure size and frequencies for nucleate pool boiling. A number of heating elements have been used to study the dependence of vapor bubble dynamics on the heater surface finish and heater geometry along with the experimental conditions like the degree of sub-cooling, super heat and the heat flux. An attempt has been made to compare the data obtained with the existing data and the correlations in the literature to generate an exhaustive database for the pool boiling conditions.Keywords: experiment, boiling, bubbles, bubble dynamics, pool boiling
Procedia PDF Downloads 302250 Approximate Spring Balancing for Swimming Pool Lift Mechanism to Reduce Actuator Torque
Authors: Apurva Patil, Sujatha Srinivasan
Abstract:
Reducing actuator loads is important for applications in which human effort is required for actuation. The potential benefit of applying spring balancing to rehabilitation devices which work against gravity on a nonhorizontal plane is well recognized, but practical applications have been elusive. Although existing methods provide exact spring balance, they require additional masses or auxiliary links, or all the springs used originate from the ground, which makes the resulting device bulky and space-inefficient. This paper uses a method of static balancing of mechanisms with conservative loads such as gravity and spring loads using non-zero-free-length springs and no auxiliary links. Application of this method to a manually operated swimming pool lift mechanism which lowers and raises the physically challenged users into or out of the swimming pool is presented here. Various possible configurations using extension and compression springs as well as gas spring in the mechanism are compared. This work involves approximate spring balancing of the mechanism using minimization of potential energy variance. It uses the approach of flattening the potential energy distribution over the workspace and fuses it with numerical optimization. The results show the considerable reduction in actuator torque requirement with practical spring design and arrangement. Although the method provides only an approximate balancing, it is versatile, flexible in choosing appropriate control variables that are relevant to the design problem and easy to implement. The true potential of this technique lies in the fact that it uses a very simple optimization to find the spring constant, free length of the spring and the optimal attachment points subject to the optimization constraints. Also, it uses physically realizable non-zero-free-length springs directly, thereby reducing the complexity involved in simulating zero-free-length springs from non-zero-free-length springs. This method allows springs to be attached inside the mechanism, which makes the implementation of spring balancing practical. Because auxiliary linkages can be avoided, the resultant swimming pool lift mechanism is compact. The cost benefits and reduced complexity can be significant advantages in the development of this user-actuated swimming pool lift for developing countries.Keywords: gas spring, rehabilitation device, spring balancing, swimming pool lift
Procedia PDF Downloads 242249 Semantic-Based Collaborative Filtering to Improve Visitor Cold Start in Recommender Systems
Authors: Baba Mbaye
Abstract:
In collaborative filtering recommendation systems, a user receives suggested items based on the opinions and evaluations of a community of users. This type of recommendation system uses only the information (notes in numerical values) contained in a usage matrix as input data. This matrix can be constructed based on users' behaviors or by offering users to declare their opinions on the items they know. The cold start problem leads to very poor performance for new users. It is a phenomenon that occurs at the beginning of use, in the situation where the system lacks data to make recommendations. There are three types of cold start problems: cold start for a new item, a new system, and a new user. We are interested in this article at the cold start for a new user. When the system welcomes a new user, the profile exists but does not have enough data, and its communities with other users profiles are still unknown. This leads to recommendations not adapted to the profile of the new user. In this paper, we propose an approach that improves cold start by using the notions of similarity and semantic proximity between users profiles during cold start. We will use the cold-metadata available (metadata extracted from the new user's data) useful in positioning the new user within a community. The aim is to look for similarities and semantic proximities with the old and current user profiles of the system. Proximity is represented by close concepts considered to belong to the same group, while similarity groups together elements that appear similar. Similarity and proximity are two close but not similar concepts. This similarity leads us to the construction of similarity which is based on: a) the concepts (properties, terms, instances) independent of ontology structure and, b) the simultaneous representation of the two concepts (relations, presence of terms in a document, simultaneous presence of the authorities). We propose an ontology, OIVCSRS (Ontology of Improvement Visitor Cold Start in Recommender Systems), in order to structure the terms and concepts representing the meaning of an information field, whether by the metadata of a namespace, or the elements of a knowledge domain. This approach allows us to automatically attach the new user to a user community, partially compensate for the data that was not initially provided and ultimately to associate a better first profile with the cold start. Thus, the aim of this paper is to propose an approach to improving cold start using semantic technologies.Keywords: visitor cold start, recommender systems, collaborative filtering, semantic filtering
Procedia PDF Downloads 218248 Chronological Skin System Aging: Improvements in Reversing Markers with Different Routes of Green Tea Extract Administration
Authors: Aliaa Mahmoud Issa
Abstract:
Green tea may provide an alternative treatment for many skin system disorders. Intrinsic or chronological aging represents the structural, functional, and metabolic changes in the skin, which depend on the passage of time per se. The aim of the present study is to compare the effect of green tea extract administration, in drinking water or topically, on the chronological changes of the old Swiss albino mice skin. A total number of forty Swiss albino female mice (Mus musculus) were used; thirty were old females, 50-52 weeks old and the remaining ten young females were about 10 weeks old. The skin of the back of all the studied mice was dehaired with a topical depilatory cream. Treatment with green tea extract was applied in two different ways: in the drinking water (0.5mg/ml/day) or topically, applied to the skin of the dorsal side (6mg/ml water). They were divided into four main groups each of 10 animals: Group I: young untreated, Group II: old untreated groups, Group III: tea-drinking (TD) group, and Group IV: topical tea (TT) group. The animals were euthanized after 3 and 6 weeks from the beginning of green tea extract treatment. The skin was subject to morphometric (epidermal, dermal, and stratum corneum thicknesses; collagen and elastin content) studies. The skin ultrastructure of the groups treated for 6 weeks with the green tea extract was also examined. The old mouse skin was compared to the young one to investigate the chronological changes of the tissue. The results revealed that the skin of mice treated with green tea extract, either topically or to less extent in drinking water, showed a reduction in the aging features manifested by a numerical but statistically insignificant improvement in the morphometric measurements. A remarkable amelioration in the ultrastructure of the old skin was also observed. Generally, green tea extract in the drinking water revealed inconsistent results. The topical application of green tea extract to the skin revealed that the epidermal, dermal and stratum corneum thicknesses and the elastin content, that were statistically significant, approach those of the young group. The ultrastructural study revealed the same observations. The disjunction of the lower epidermal keratinocytes was reduced. It could be concluded that the topical application of green tea extract to the skin of old mice showed improvement in reversing markers of skin system aging more than using the extract in the drinking water.Keywords: aging, green tea extract, morphometry, skin, ultrastructure
Procedia PDF Downloads 132247 Parameter Fitting of the Discrete Element Method When Modeling the DISAMATIC Process
Authors: E. Hovad, J. H. Walther, P. Larsen, J. Thorborg, J. H. Hattel
Abstract:
In sand casting of metal parts for the automotive industry such as brake disks and engine blocks, the molten metal is poured into a sand mold to get its final shape. The DISAMATIC molding process is a way to construct these sand molds for casting of steel parts and in the present work numerical simulations of this process are presented. During the process green sand is blown into a chamber and subsequently squeezed to finally obtain the sand mould. The sand flow is modelled with the Discrete Element method (DEM) and obtaining the correct material parameters for the simulation is the main goal. Different tests will be used to find or calibrate the DEM parameters needed; Poisson ratio, Young modulus, rolling friction coefficient, sliding friction coefficient and coefficient of restitution (COR). The Young modulus and Poisson ratio are found from compression tests of the bulk material and subsequently used in the DEM model according to the Hertz-Mindlin model. The main focus will be on calibrating the rolling resistance and sliding friction in the DEM model with respect to the behavior of “real” sand piles. More specifically, the surface profile of the “real” sand pile will be compared to the sand pile predicted with the DEM for different values of the rolling and sliding friction coefficients. When the DEM parameters are found for the particle-particle (sand-sand) interaction, the particle-wall interaction parameter values are also found. Here the sliding coefficient will be found from experiments and the rolling resistance is investigated by comparing with observations of how the green sand interacts with the chamber wall during experiments and the DEM simulations will be calibrated accordingly. The coefficient of restitution will be tested with different values in the DEM simulations and compared to video footages of the DISAMATIC process. Energy dissipation will be investigated in these simulations for different particle sizes and coefficient of restitution, where scaling laws will be considered to relate the energy dissipation for these parameters. Finally, the found parameter values are used in the overall discrete element model and compared to the video footage of the DISAMATIC process.Keywords: discrete element method, physical properties of materials, calibration, granular flow
Procedia PDF Downloads 482246 Assessment of Interior Environmental Quality and Airborne Infectious Risk in a Commuter Bus Cabin by Using Computational Fluid Dynamics with Computer Simulated Person
Authors: Yutaro Kyuma, Sung-Jun Yoo, Kazuhide Ito
Abstract:
A commuter bus remains important as a means to network public transportation between railway stations and terminals within cities. In some cases, the boarding time becomes longer, and the boarding rate tends to be higher corresponding to the development of urban cities. The interior environmental quality, e.g. temperature and air quality, in a commuter bus is relatively heterogeneous and complex compared to that of an indoor environment in buildings due to several factors: solar radiative heat – which comes from large-area windows –, inadequate ventilation rate caused by high density of commuters, and metabolic heat generation from travelers themselves. In addition to this, under conditions where many passengers ride in the enclosed space, contact and airborne infectious risk have attracted considerable attention in terms of public health. From this point of view, it is essential to develop the prediction method for assessment of interior environmental quality and infection risk in commuter bus cabins. In this study, we developed a numerical commuter bus model integrated with computer simulated persons to reproduce realistic indoor environment conditions with high occupancy during commuting. Here, computer simulated persons were newly designed considering different types of geometries, e.g., standing position, seating position, and individual differences. Here we conducted coupled computational fluid dynamics (CFD) analysis with radiative heat transfer analysis under steady state condition. Distributions of heterogeneous air flow patterns, temperature, and moisture surrounding the human body under some different ventilation system were analyzed by using CFD technique, and skin surface temperature distributions were analyzed using thermoregulation model that integrated into computer simulated person. Through these analyses, we discussed the interior environmental quality in specific commuter bus cabins. Further, inhaled air quality of each passenger was also analyzed. This study may have possibility to design the ventilation system in bus for improving thermal comfort of occupants.Keywords: computational fluid dynamics, CFD, computer simulated person, CSP, contaminant, indoor environment, public health, ventilation
Procedia PDF Downloads 252245 Investigating the Sloshing Characteristics of a Liquid by Using an Image Processing Method
Authors: Ufuk Tosun, Reza Aghazadeh, Mehmet Bülent Özer
Abstract:
This study puts forward a method to analyze the sloshing characteristics of liquid in a tuned sloshing absorber system by using image processing tools. Tuned sloshing vibration absorbers have recently attracted researchers’ attention as a seismic load damper in constructions due to its practical and logistical convenience. The absorber is liquid which sloshes and applies a force in opposite phase to the motion of structure. Experimentally characterization of the sloshing behavior can be utilized as means of verifying the results of numerical analysis. It can also be used to identify the accuracy of assumptions related to the motion of the liquid. There are extensive theoretical and experimental studies in the literature related to the dynamical and structural behavior of tuned sloshing dampers. In most of these works there are efforts to estimate the sloshing behavior of the liquid such as free surface motion and total force applied by liquid to the wall of container. For these purposes the use of sensors such as load cells and ultrasonic sensors are prevalent in experimental works. Load cells are only capable of measuring the force and requires conducting tests both with and without liquid to obtain pure sloshing force. Ultrasonic level sensors give point-wise measurements and hence they are not applicable to measure the whole free surface motion. Furthermore, in the case of liquid splashing it may give incorrect data. In this work a method for evaluating the sloshing wave height by using camera records and image processing techniques is presented. In this method the motion of the liquid and its container, made of a transparent material, is recorded by a high speed camera which is aligned to the free surface of the liquid. The video captured by the camera is processed frame by frame by using MATLAB Image Processing toolbox. The process starts with cropping the desired region. By recognizing the regions containing liquid and eliminating noise and liquid splashing, the final picture depicting the free surface of liquid is achieved. This picture then is used to obtain the height of the liquid through the length of container. This process is verified by ultrasonic sensors that measured fluid height on the surface of liquid.Keywords: fluid structure interaction, image processing, sloshing, tuned liquid damper
Procedia PDF Downloads 345244 Ship Roll Reduction Using Water-Flow Induced Coriolis Effect
Authors: Mario P. Walker, Masaaki Okuma
Abstract:
Ships are subjected to motions which can disrupt on-board operations and damage equipment. Roll motion, in particular, is of great interest due to low damping conditions which may lead to capsizing. Therefore finding ways to reduce this motion is important in ship designs. Several techniques have been investigated to reduce rolling. These include the commonly used anti-roll tanks, fin stabilizers and bilge keels. However, these systems are not without their challenges. For example, water-flow in anti-roll tanks creates complications, and for fin stabilizers and bilge keels, an extremely large size is required to produce any significant damping creating operational challenges. Additionally, among these measures presented above only anti-roll tanks are effective in zero forward motion of the vessels. This paper proposes and investigates a method to reduce rolling by inducing Coriolis effect using water-flow in the radial direction. Motion in the radial direction of a rolling structure will induce Coriolis force and, depending on the direction of flow will either amplify or attenuate the structure. The system is modelled with two degrees of freedom, having rotational motion for parametric rolling and radial motion of the water-flow. Equations of motion are derived and investigated. Numerical examples are analyzed in detail. To demonstrate applicability parameters from a Ro-Ro vessel are used as extensive research have been conducted on these over the years. The vessel is investigated under free and forced roll conditions. Several models are created using various masses, heights, and velocities of water-flow at a given time. The proposed system was found to produce substantial roll reduction which increases with increase in any of the parameters varied as stated above, with velocity having the most significant effect. The proposed system provides a simple approach to reduce ship rolling. Water-flow control is very simple as the water flows in only one direction with constant velocity. Only needing to control the time at which the system should be turned on or off. Furthermore, the proposed system is effective in both forward and zero forward motion of the ship, and provides no hydrodynamic drag. This is a starting point for designing an effective and practical system. For this to be a viable approach further investigations are needed to address challenges that present themselves.Keywords: Coriolis effect, damping, rolling, water-flow
Procedia PDF Downloads 450243 The Investigation of Work Stress and Burnout in Nurse Anesthetists: A Cross-Sectional Study
Authors: Yen Ling Liu, Shu-Fen Wu, Chen-Fuh Lam, I-Ling Tsai, Chia-Yu Chen
Abstract:
Purpose: Nurse anesthetists are confronting extraordinarily high job stress in their daily practice, deriving from the fast-track anesthesia care, risk of perioperative complications, routine rotating shifts, teaching programs and interactions with the surgical team in the operating room. This study investigated the influence of work stress on the burnout and turnover intention of nurse anesthetists in a regional general hospital in Southern Taiwan. Methods: This was a descriptive correlational study carried out in 66 full-time nurse anesthetists. Data was collected from March 2017 to June 2017 by in-person interview, and a self-administered structured questionnaire was completed by the interviewee. Outcome measurements included the Practice Environment Scale of the Nursing Work Index (PES-NWI), Maslach Burnout Inventory (MBI) and nursing staff turnover intention. Numerical data were analyzed by descriptive statistics, independent t test, or one-way ANOVA. Categorical data were compared using the chi-square test (x²). Datasets were computed with Pearson product-moment correlation and linear regression. Data were analyzed by using SPSS 20.0 software. Results: The average score for job burnout was 68.7916.67 (out of 100). The three major components of burnout, including emotional depletion (mean score of 26.32), depersonalization (mean score of 13.65), and personal(mean score of 24.48). These average scores suggested that these nurse anesthetists were at high risk of burnout and inversely correlated with turnover intention (t = -4.048, P < 0.05). Using linear regression model, emotional exhaustion and depersonalization were the two independent factors that predicted turnover intention in the nurse anesthetists (19.1% in total variance). Conclusion/Implications for Practice: The study identifies that the high risk of job burnout in the nurse anesthetists is not simply derived from physical overload, but most likely resulted from the additional emotional and psychological stress. The occurrence of job burnout may affect the quality of nursing work, and also influence family harmony, in turn, may increase the turnover rate. Multimodal approach is warranted to reduce work stress and job burnout in nurse anesthetists to enhance their willingness to contribute in anesthesia care.Keywords: anesthesia nurses, burnout, job, turnover intention
Procedia PDF Downloads 297242 Intensity of Dyspnea and Anxiety in Seniors in the Terminal Phase of the Disease
Authors: Mariola Głowacka
Abstract:
Aim: The aim of this study was to present the assessment of dyspnea and anxiety in seniors staying in the hospice in the context of the nurse's tasks. Materials and methods: The presented research was carried out at the "Hospicjum Płockie" Association of St. Urszula Ledóchowska in Płock, in a stationary ward, for adults. The research group consisted of 100 people, women, and men. In the study described in this paper, the method of diagnostic survey, the method of estimation and analysis of patient records were used, and the research tools were the numerical scale of the NRS assessment, the modified Borg scale to assess dyspnea, the Trait Anxiety scale to test the intensity of anxiety and the sociodemographic assessment of the respondent. Results: Among the patients, the greatest number were people without dyspnoea (38 people) and with average levels of dyspnoea (26 people). People with lung cancer had a higher level of breathlessness than people with other cancers. Half of the patients included in the study felt anxiety at a low level. On average, men had a higher level of anxiety than women. Conclusion: 1) Patients staying in the hospice require comprehensive nursing care due to the underlying disease, comorbidities, and a wide range of medications taken, which aggravate the feeling of dyspnea and anxiety. 2) The study showed that in patients staying in the hospice, the level of dyspnea was of varying severity. The greatest number of people were without dyspnea (38) and patients with a low level of dyspnea (34). There were 12 people experiencing an average level of dyspnea and a high level of dyspnea 15. 3) The main factor influencing the severity of dyspnea in patients was the location of cancer. There was no significant relationship between the intensity of dyspnea and the age, gender of the patient, and time from diagnosis. 4) The study showed that in patients staying in the hospice, the level of anxiety was of varying severity. Most people experience a low level of anxiety (51). There were 16 people with a high level of anxiety, while there were 33 people experiencing anxiety at an average level. 5) The patient's gender was the main factor influencing the increase in anxiety intensity. Men had higher levels of anxiety than women. There was no significant correlation between the intensity of anxiety and the age of the respondents, as well as the type of cancer and time since diagnosis. 6) The intensity of dyspnea depended on the type of cancer the subjects had. People with lung cancer had a higher level of breathlessness than those with breast cancer and bowel cancer. It was not found that the anxiety increased depending on the type of cancer and comorbidities of the examined person.Keywords: cancer, shortness of breath, anxiety, senior, hospice
Procedia PDF Downloads 94241 Modeling the Downstream Impacts of River Regulation on the Grand Lake Meadows Complex using Delft3D FM Suite
Authors: Jaime Leavitt, Katy Haralampides
Abstract:
Numerical modelling has been used to investigate the long-term impact of a large dam on downstream wetland areas, specifically in terms of changing sediment dynamics in the system. The Mactaquac Generating Station (MQGS) is a 672MW run-of-the-river hydroelectric facility, commissioned in 1968 on the mainstem of the Wolastoq|Saint John River in New Brunswick, Canada. New Brunswick Power owns and operates the dam and has been working closely with the Canadian Rivers Institute at UNB Fredericton on a multi-year, multi-disciplinary project investigating the impact the dam has on its surrounding environment. With focus on the downstream river, this research discusses the initialization, set-up, calibration, and preliminary results of a 2-D hydrodynamic model using the Delft3d Flexible Mesh Suite (successor of the Delft3d 4 Suite). The flexible mesh allows the model grid to be structured in the main channel and unstructured in the floodplains and other downstream regions with complex geometry. The combination of grid types improves computational time and output. As the movement of water governs the movement of sediment, the calibrated and validated hydrodynamic model was applied to sediment transport simulations, particularly of the fine suspended sediments. Several provincially significant Protected Natural Areas and federally significant National Wildlife Areas are located 60km downstream of the MQGS. These broad, low-lying floodplains and wetlands are known as the Grand Lake Meadows Complex (GLM Complex). There is added pressure to investigate the impacts of river regulation on these protected regions that rely heavily on natural river processes like sediment transport and flooding. It is hypothesized that the fine suspended sediment would naturally travel to the floodplains for nutrient deposition and replenishment, particularly during the freshet and large storms. The purpose of this research is to investigate the impacts of river regulation on downstream environments and use the model as a tool for informed decision making to protect and maintain biologically productive wetlands and floodplains.Keywords: hydrodynamic modelling, national wildlife area, protected natural area, sediment transport.
Procedia PDF Downloads 11240 Performance of a Sailing Vessel with a Solid Wing Sail Compared to a Traditional Sail
Authors: William Waddington, M. Jahir Rizvi
Abstract:
Sail used to propel a vessel functions in a similar way to an aircraft wing. Traditionally, cloth and ropes were used to produce sails. However, there is one major problem with traditional sail design, the increase in turbulence and flow separation when compared to that of an aircraft wing with the same camber. This has led to the development of the solid wing sail focusing mainly on the sail shape. Traditional cloth sails are manufactured as a single element whereas solid wing sail is made of two segments. To the authors’ best knowledge, the phenomena behind the performances of this type of sail at various angles of wind direction with respect to a sailing vessel’s direction (known as the angle of attack) is still an area of mystery. Hence, in this study, the thrusts of a sailing vessel produced by wing sails constructed with various angles (22°, 24°, 26° and 28°) between the two segments have been compared to that of a traditional cloth sail made of carbon-fiber material. The reason for using carbon-fiber material is to achieve the correct and the exact shape of a commercially available mainsail. NACA 0024 and NACA 0016 foils have been used to generate two-segment wing sail shape which incorporates a flap between the first and the second segments. Both the two-dimensional and the three-dimensional sail models designed in commercial CAD software Solidworks have been analyzed through Computational Fluid Dynamics (CFD) techniques using Ansys CFX considering an apparent wind speed of 20.55 knots with an apparent wind angle of 31°. The results indicate that the thrust from traditional sail increases from 8.18 N to 8.26 N when the angle of attack is increased from 5° to 7°. However, the thrust value decreases if the angle of attack is further increased. A solid wing sail which possesses 20° angle between its two segments, produces thrusts from 7.61 N to 7.74 N with an increase in the angle of attack from 7° to 8°. The thrust remains steady up to 9° angle of attack and drops dramatically beyond 9°. The highest thrust values that can be obtained for the solid wing sails with 22°, 24°, 26° and 28° angle respectively between the two segments are 8.75 N, 9.10 N, 9.29 N and 9.19 N respectively. The optimum angle of attack for each of the solid wing sails is identified as 7° at which these thrust values are obtained. Therefore, it can be concluded that all the thrust values predicted for the solid wing sails of angles between the two segments above 20° are higher compared to the thrust predicted for the traditional sail. However, the best performance from a solid wing sail is expected when the sail is created with an angle between the two segments above 20° but below or equal to 26°. In addition, 1/29th scale models in the wind tunnel have been tested to observe the flow behaviors around the sails. The experimental results support the numerical observations as the flow behaviors are exactly the same.Keywords: CFD, drag, sailing vessel, thrust, traditional sail, wing sail
Procedia PDF Downloads 281239 The Use of Random Set Method in Reliability Analysis of Deep Excavations
Authors: Arefeh Arabaninezhad, Ali Fakher
Abstract:
Since the deterministic analysis methods fail to take system uncertainties into account, probabilistic and non-probabilistic methods are suggested. Geotechnical analyses are used to determine the stress and deformation caused by construction; accordingly, many input variables which depend on ground behavior are required for geotechnical analyses. The Random Set approach is an applicable reliability analysis method when comprehensive sources of information are not available. Using Random Set method, with relatively small number of simulations compared to fully probabilistic methods, smooth extremes on system responses are obtained. Therefore random set approach has been proposed for reliability analysis in geotechnical problems. In the present study, the application of random set method in reliability analysis of deep excavations is investigated through three deep excavation projects which were monitored during the excavating process. A finite element code is utilized for numerical modeling. Two expected ranges, from different sources of information, are established for each input variable, and a specific probability assignment is defined for each range. To determine the most influential input variables and subsequently reducing the number of required finite element calculations, sensitivity analysis is carried out. Input data for finite element model are obtained by combining the upper and lower bounds of the input variables. The relevant probability share of each finite element calculation is determined considering the probability assigned to input variables present in these combinations. Horizontal displacement of the top point of excavation is considered as the main response of the system. The result of reliability analysis for each intended deep excavation is presented by constructing the Belief and Plausibility distribution function (i.e. lower and upper bounds) of system response obtained from deterministic finite element calculations. To evaluate the quality of input variables as well as applied reliability analysis method, the range of displacements extracted from models has been compared to the in situ measurements and good agreement is observed. The comparison also showed that Random Set Finite Element Method applies to estimate the horizontal displacement of the top point of deep excavation. Finally, the probability of failure or unsatisfactory performance of the system is evaluated by comparing the threshold displacement with reliability analysis results.Keywords: deep excavation, random set finite element method, reliability analysis, uncertainty
Procedia PDF Downloads 268238 Understanding the Effect of Material and Deformation Conditions on the “Wear Mode Diagram”: A Numerical Study
Authors: A. Mostaani, M. P. Pereira, B. F. Rolfe
Abstract:
The increasing application of Advanced High Strength Steel (AHSS) in the automotive industry to fulfill crash requirements has introduced higher levels of wear in stamping dies and parts. Therefore, understanding wear behaviour in sheet metal forming is of great importance as it can help to reduce the high costs currently associated with tool wear. At the contact between the die and the sheet, the tips of hard tool asperities interact with the softer sheet material. Understanding the deformation that occurs during this interaction is important for our overall understanding of the wear mechanisms. For these reasons, the scratching of a perfectly plastic material by a rigid indenter has been widely examined in the literature; with finite element modelling (FEM) used in recent years to further understand the behaviour. The ‘wear mode diagram’ has been commonly used to classify the deformation regime of the soft work-piece during scratching, into three modes: ploughing, wedge formation, and cutting. This diagram, which is based on 2D slip line theory and upper bound method for perfectly plastic work-piece and rigid indenter, relates different wear modes to attack angle and interfacial strength. This diagram has been the basis for many wear studies and wear models to date. Additionally, it has been concluded that galling is most likely to occur during the wedge formation mode. However, there has been little analysis in the literature of how the material behaviour and deformation conditions associated with metal forming processes influence the wear behaviour. Therefore, the first aim of this work is first to use a commercial FEM package (Abaqus/Explicit) to build a 3D model to capture wear modes during scratching with indenters with different attack angles and different interfacial strengths. The second goal is to utilise the developed model to understand how wear modes might change in the presence of bulk deformation of the work-piece material as a result of the metal forming operation. Finally, the effect of the work-piece material properties, including strain hardening, will be examined to understand how these influence the wear modes and wear behaviour. The results show that both strain hardening and substrate deformation can change the critical attack angle at which the wedge formation regime is activated.Keywords: finite element, pile-up, scratch test, wear mode
Procedia PDF Downloads 329