Search results for: weighted mean curvature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 737

Search results for: weighted mean curvature

377 High-Capacity Image Steganography using Wavelet-based Fusion on Deep Convolutional Neural Networks

Authors: Amal Khalifa, Nicolas Vana Santos

Abstract:

Steganography has been known for centuries as an efficient approach for covert communication. Due to its popularity and ease of access, image steganography has attracted researchers to find secure techniques for hiding information within an innocent looking cover image. In this research, we propose a novel deep-learning approach to digital image steganography. The proposed method, DeepWaveletFusion, uses convolutional neural networks (CNN) to hide a secret image into a cover image of the same size. Two CNNs are trained back-to-back to merge the Discrete Wavelet Transform (DWT) of both colored images and eventually be able to blindly extract the hidden image. Based on two different image similarity metrics, a weighted gain function is used to guide the learning process and maximize the quality of the retrieved secret image and yet maintaining acceptable imperceptibility. Experimental results verified the high recoverability of DeepWaveletFusion which outperformed similar deep-learning-based methods.

Keywords: deep learning, steganography, image, discrete wavelet transform, fusion

Procedia PDF Downloads 96
376 Energy-Efficient Clustering Protocol in Wireless Sensor Networks for Healthcare Monitoring

Authors: Ebrahim Farahmand, Ali Mahani

Abstract:

Wireless sensor networks (WSNs) can facilitate continuous monitoring of patients and increase early detection of emergency conditions and diseases. High density WSNs helps us to accurately monitor a remote environment by intelligently combining the data from the individual nodes. Due to energy capacity limitation of sensors, enhancing the lifetime and the reliability of WSNs are important factors in designing of these networks. The clustering strategies are verified as effective and practical algorithms for reducing energy consumption in WSNs and can tackle WSNs limitations. In this paper, an Energy-efficient weight-based Clustering Protocol (EWCP) is presented. Artificial retina is selected as a case study of WSNs applied in body sensors. Cluster heads’ (CHs) selection is equipped with energy efficient parameters. Moreover, cluster members are selected based on their distance to the selected CHs. Comparing with the other benchmark protocols, the lifetime of EWCP is improved significantly.

Keywords: WSN, healthcare monitoring, weighted based clustering, lifetime

Procedia PDF Downloads 311
375 A Fuzzy Satisfactory Optimization Method Based on Stress Analysis for a Hybrid Composite Flywheel

Authors: Liping Yang, Curran Crawford, Jr. Ren, Zhengyi Ren

Abstract:

Considering the cost evaluation and the stress analysis, a fuzzy satisfactory optimization (FSO) method has been developed for a hybrid composite flywheel. To evaluate the cost, the cost coefficients of the flywheel components are obtained through calculating the weighted sum of the scores of the material manufacturability, the structure character, and the material price. To express the satisfactory degree of the energy, the cost, and the mass, the satisfactory functions are proposed by using the decline function and introducing a satisfactory coefficient. To imply the different significance of the objectives, the object weight coefficients are defined. Based on the stress analysis of composite material, the circumferential and radial stresses are considered into the optimization formulation. The simulations of the FSO method with different weight coefficients and storage energy density optimization (SEDO) method of a flywheel are contrasted. The analysis results show that the FSO method can satisfy different requirements of the designer and the FSO method with suitable weight coefficients can replace the SEDO method.

Keywords: flywheel energy storage, fuzzy, optimization, stress analysis

Procedia PDF Downloads 351
374 Optimizing Skill Development in Golf Putting: An Investigation of Blocked, Random, and Increasing Practice Schedules

Authors: John White

Abstract:

This study investigated the effects of practice schedules on learning and performance in golf putting, specifically focusing on the impact of increasing contextual interference (CI). University students (n=7) were randomly assigned to blocked, random, or increasing practice schedules. During acquisition, participants performed 135 putting trials using different weighted golf balls. The blocked group followed a specific sequence of ball weights, while the random group practiced with the balls in a random order. The increasing group started with a blocked schedule, transitioned to a serial schedule, and concluded with a random schedule. Retention and transfer tests were conducted 24 hours later. The results indicated that high levels of CI (random practice) were more beneficial for learning than low levels of CI (blocked practice). The increasing practice schedule, incorporating blocked, serial, and random practice, demonstrated advantages over traditional blocked and random schedules. Additionally, EEG was used to explore the neurophysiological effects of the increasing practice schedule.

Keywords: skill acquisition, motor control, learning, contextual interference

Procedia PDF Downloads 98
373 Digital Library Evaluation by SWARA-WASPAS Method

Authors: Mehmet Yörükoğlu, Serhat Aydın

Abstract:

Since the discovery of the manuscript, mechanical methods for storing, transferring and using the information have evolved into digital methods over the time. In this process, libraries that are the center of the information have also become digitized and become accessible from anywhere and at any time in the world by taking on a structure that has no physical boundaries. In this context, some criteria for information obtained from digital libraries have become more important for users. This paper evaluates the user criteria from different perspectives that make a digital library more useful. The Step-Wise Weight Assessment Ratio Analysis-Weighted Aggregated Sum Product Assessment (SWARA-WASPAS) method is used with flexibility and easy calculation steps for the evaluation of digital library criteria. Three different digital libraries are evaluated by information technology experts according to five conflicting main criteria, ‘interface design’, ‘effects on users’, ‘services’, ‘user engagement’ and ‘context’. Finally, alternatives are ranked in descending order.

Keywords: digital library, multi criteria decision making, SWARA-WASPAS method

Procedia PDF Downloads 156
372 Low Density Parity Check Codes

Authors: Kassoul Ilyes

Abstract:

The field of error correcting codes has been revolutionized by the introduction of iteratively decoded codes. Among these, LDPC codes are now a preferred solution thanks to their remarkable performance and low complexity. The binary version of LDPC codes showed even better performance, although it’s decoding introduced greater complexity. This thesis studies the performance of binary LDPC codes using simplified weighted decisions. Information is transported between a transmitter and a receiver by digital transmission systems, either by propagating over a radio channel or also by using a transmission medium such as the transmission line. The purpose of the transmission system is then to carry the information from the transmitter to the receiver as reliably as possible. These codes have not generated enough interest within the coding theory community. This forgetfulness will last until the introduction of Turbo-codes and the iterative principle. Then it was proposed to adopt Pearl's Belief Propagation (BP) algorithm for decoding these codes. Subsequently, Luby introduced irregular LDPC codes characterized by a parity check matrix. And finally, we study simplifications on binary LDPC codes. Thus, we propose a method to make the exact calculation of the APP simpler. This method leads to simplifying the implementation of the system.

Keywords: LDPC, parity check matrix, 5G, BER, SNR

Procedia PDF Downloads 159
371 Fluid Structure Interaction of Flow and Heat Transfer around a Microcantilever

Authors: Khalil Khanafer

Abstract:

This study emphasizes on analyzing the effect of flow conditions and the geometric variation of the microcantilever’s bluff body on the microcantilever detection capabilities within a fluidic device using a finite element fluid-structure interaction model. Such parameters include inlet velocity, flow direction, and height of the microcantilever’s supporting system within the fluidic cell. The transport equations are solved using a finite element formulation based on the Galerkin method of weighted residuals. For a flexible microcantilever, a fully coupled fluid-structure interaction (FSI) analysis is utilized and the fluid domain is described by an Arbitrary-Lagrangian–Eulerian (ALE) formulation that is fully coupled to the structure domain. The results of this study showed a profound effect on the magnitude and direction of the inlet velocity and the height of the bluff body on the deflection of the microcantilever. The vibration characteristics were also investigated in this study. This work paves the road for researchers to design efficient microcantilevers that display least errors in the measurements.

Keywords: fluidic cell, FSI, microcantilever, flow direction

Procedia PDF Downloads 376
370 Management Effects on Different Sustainable Agricultural with Diverse Topography

Authors: Kusay Wheib, Alexandra Krvchenko

Abstract:

Crop yields are influenced by many factors, including natural ones, such as soil and environmental characteristics of the agricultural land, as well as manmade ones, such as management applications. One of the factors that frequently affect crop yields in undulating Midwest landscapes is topography, which controls the movement of water and nutrients necessary for plant life. The main objective of this study is to examine how field topography influences performance of different management practices in undulated terrain of southwest Michigan. A total of 26 agricultural fields, ranging in size from 1.1 to 7.4 ha, from the Scale-Up at Kellogg Biological Station were included in the study. The two studied factors were crop species with three levels, i.e., corn (Zea mays L.) soybean (Glycine max L.), and wheat (Triticum aestivum L.), and management practice with three levels, i.e., conventional, low input, and organic managements. They were compared under three contrasting topographical settings, namely, summit (includes summits and shoulders), slope (includes backslopes), and depression (includes footslope and toeslope). Yield data of years 2007 through 2012 was processed, cleaned, and filtered, average yield then was calculated for each field, topographic setting, and year. Topography parameters, including terrain, slope, curvature, flow direction and wetness index were computed under ArcGIS environment for each topographic class of each field to seek their effects on yield. Results showed that topographical depressions produced greatest yields in most studied fields, while managements with chemical inputs, both low input and conventional, resulted in higher yields than the organic management.

Keywords: sustainable agriculture, precision agriculture, topography, yield

Procedia PDF Downloads 115
369 The Number of Corona Virus Infections in 2020

Authors: Yasaswi Vengalasetti, Jacob Eisenach, Jay Bhattacharya

Abstract:

Seroprevalence studies can provide an estimation of the Infection Fatality Rate (IFR), the probability of death given infection. Measuring the seroprevalence and reported deaths of an area within a given time frame an IFR can be estimated. With this IFR calculation, we can then observe COVID-19 death figures in different countries around the world and estimate the number of cases since the onset of the pandemic. There is a large range for estimated COVID-19 infections across different countries. This ranged from 0.659 million infections in Hong Kong to 277 million infections in India. The largest estimated share of the population infected is 63% in Peru and the lowest is 3% in Norway. For younger populations, COVID-19 is most fatal in South America; for older populations, it is most fatal in North America. The Asian regions stand out with significantly lower IFRs in older populations: at 80 years old, COVID-19 is about three times as fatal than in South Asia and about twelve times as fatal than in East Asia. The weighted average for the share of the population infected, the sum of infections divided by the sum of populations across all countries, is 23%.

Keywords: epidemiology, seroprevalence, covid-19, infection fatality rate

Procedia PDF Downloads 129
368 Comparative Study of Propensity for Amyloidogenesis in Male and Female Mice

Authors: Keivan Jamshidi, Afshin Zahedi

Abstract:

Reactive amyloidosis is a condition that complicates a long list of chronic inflammation, chronic infectious, malignant, and hereditary disorders. In the present study the propensity for amyloidogenesis in male and female rats on spatio-temporal pattern was evaluated. For this purpose a total of 40 male and female Swiss mice, obtained from Pasteur Institute Tehran, after being weighted were randomly divided into 4 groups including 2 treatment groups [ 10 male (Group A1) and 10 female (Group B1) each], and 2 control groups [10 male (Group A2) and 10 female (Group B2) each]. At the end of 3rd, 5th and 7th weeks of experiment 3 mice were randomly selected and euthnised. Spleen samples of each animal were obtained and preserved in 10% neutral buffer formalin. Sample were then processed through different stages of dehydration, clearing and impregnation and finally embedded in paraffin blocks. Sections of 5µm thickness then cut and stained by alkaline Congo red techniques. The data obtained from polarized microscopic quantitative analysis did show significant differences between groups A1 and B1. A preferential expression of reactive amyloidosis is concluded in male, indicating sex differences in amyloidosis.

Keywords: amyloidosis, amyloidogenesis, mice, gender

Procedia PDF Downloads 598
367 Magneto-Convective Instability in a Horizontal Power-Law Nanofluid Saturated Porous Layer

Authors: Norazuwin Najihah Mat Tahir, Fuziyah Ishak, Seripah Awang Kechil

Abstract:

The onset of the convective instability in the horizontal through flow of a power-law nanofluid saturated by porous layer heated from below under the influences of magnetic field are investigated in this study. The linear stability theory is used for the transformation of the partial differential equations to system of ordinary differential equations through infinitesimal perturbations, scaling, linearization and method of normal modes with two-dimensional periodic waves. The system is solved analytically for the closed form solution of the Rayleigh number by using the Galerkin-type weighted residuals method to investigate the onset of both traveling wave and oscillatory convection. The effects of the power-law index, Lewis number and Peclet number on the stability of the system were investigated. The Lewis number stabilizes while the power-law index and Peclet number destabilize the nanofluid system. The system in the presence of magnetic field is more stable than the system in the absence of magnetic field.

Keywords: convection, instability, magnetic field, nanofluid, power-law

Procedia PDF Downloads 272
366 Modified Design of Flyer with Reduced Weight for Use in Textile Machinery

Authors: Payal Patel

Abstract:

Textile machinery is one of the fastest evolving areas which has an application of mechanical engineering. The modular approach towards the processing right from the stage of cotton to the fabric, allows us to observe the result of each process on its input. Cost and space being the major constraints. The flyer is a component of roving machine, which is used as a part of spinning process. In the present work using the application of Hyper Works, the flyer arm has been modified which saves the material used for manufacturing the flyer. The size optimization of the flyer is carried out with the objective of reduction in weight under the constraints of standard operating conditions. The new design of the flyer is proposed and validated using the module of HyperWorks which is equally strong, but light weighted compared to the existing design. Dynamic balancing of the optimized model is carried out to align a principal inertia axis with the geometric axis of rotation. For the balanced geometry of flyer, air resistance is obtained theoretically and with Gambit and Fluent. Static analysis of the balanced geometry has been done to verify the constraint of operating condition. Comparison of weight, deflection, and factor of safety has been made for different aluminum alloys.

Keywords: flyer, size optimization, textile, weight

Procedia PDF Downloads 220
365 Building Green Infrastructure Networks Based on Cadastral Parcels Using Network Analysis

Authors: Gon Park

Abstract:

Seoul in South Korea established the 2030 Seoul City Master Plan that contains green-link projects to connect critical green areas within the city. However, the plan does not have detailed analyses for green infrastructure to incorporate land-cover information to many structural classes. This study maps green infrastructure networks of Seoul for complementing their green plans with identifying and raking green areas. Hubs and links of main elements of green infrastructure have been identified from incorporating cadastral data of 967,502 parcels to 135 of land use maps using geographic information system. Network analyses were used to rank hubs and links of a green infrastructure map with applying a force-directed algorithm, weighted values, and binary relationships that has metrics of density, distance, and centrality. The results indicate that network analyses using cadastral parcel data can be used as the framework to identify and rank hubs, links, and networks for the green infrastructure planning under a variable scenarios of green areas in cities.

Keywords: cadastral data, green Infrastructure, network analysis, parcel data

Procedia PDF Downloads 210
364 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis

Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu

Abstract:

Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.

Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing

Procedia PDF Downloads 141
363 Assessment of Body Mass Index among Children of Primary School in Behbahan City

Authors: Hosseini Siahi Zohreh, Sana Mohammad Jafar

Abstract:

With increase in fat and over weight in children and its undesirable effects on different organisms of the body and since many of the sicknesses are due to over weight and with losing weight these sicknesses disappear, and on the other hand with mal nutrition and under weight in children other kind of sicknesses such as derogation of body's security system, frequent infection, insufficient growth, shortness, and delay in maturity etc. are some of the signs of being under weight. Therefore recognition of signs of over weight and under weight and their prevalence in children are important. To determine this difficulty we have used the body mass index as screening tool since it is very prevalent and a good and important guide and has very good relation with body fat in children. In this study 2321 students from primary schools in Behbahan have been chosen randomly and evaluated by height and weight and their body mass index have been calculated and then recorded on the BMI percentile diagram which is for age and gender. The following results obtained: The amount of total fat, over weight and slimness are 9.3, 12.1 and 12.32 percent respectively. Therefore 21.4% of the children were over weighted. It did not show any meaningful statistical relation in fat conditions among boys and girls, but there has been a meaningful statistical relation in slimness among boys and girls.

Keywords: assessment, students, Behbahan, Body Mass Index

Procedia PDF Downloads 520
362 Comparison of Carcass Weight of Pure and Mixed Races Namebar 30-Day Squabs

Authors: Sepehr Moradi, Mehdi Asadi Rad

Abstract:

The aim of this study is to evaluate and compare carcass weight of pure and mixed races Namebar 30-day pigeons to investigate about their sex, race, and some auxiliary variables. In this paper, 68 pieces of pigeons as 34 male and female pairs with equal age are studied randomly. A natural incubation was done from each pair. All produced chickens were slaughtered at 30 days age after 12 hours hunger. Then their carcasses were weighted by a scale with one gram precision. A covariance analysis was used since there were many auxiliary variables and unequal observations. SAS software was used for statistical analysis. Mean weight of carcass in pure race (Namebar-Namebar) with 8 records, 219.5±61.3 gr and mixed races of Kabood-Namebar, Parvazy-Namebar, Tizpar-Namebar, Namebar-Kabood, Namebar-Tizpar, and Namebar-Parvazy with 8, 10, 8, 12, 12, and 10 records were 369.9±54.6, 338.3±52.7, 224.5±73.6, 142.3±67.8, 155.6±56.2, and 170.2±55 gr, respectively.. Difference carcass weight of 30-day of Namebar-Namebar race with Namebar-Kabood, Namebar-Parvazy, Namebar-Tizpar, Parvazy-Namebar and Tizpar-Namebar mixed races was not significant, and was significant in level 5% with Kabood- Namebar (P < 0.05). Effect of sex and age were also significant in 1% level (P < 0.01), but mutual effect of sex and race was not significant. The results showed that most and least weights of carcass belonged to Kabood-Namebar and Namebar-Kabood.

Keywords: squab, Namebar race, 30-day carcass weight, pigeons

Procedia PDF Downloads 181
361 Influence of Mass Flow Rate on Forced Convective Heat Transfer through a Nanofluid Filled Direct Absorption Solar Collector

Authors: Salma Parvin, M. A. Alim

Abstract:

The convective and radiative heat transfer performance and entropy generation on forced convection through a direct absorption solar collector (DASC) is investigated numerically. Four different fluids, including Cu-water nanofluid, Al2O3-waternanofluid, TiO2-waternanofluid, and pure water are used as the working fluid. Entropy production has been taken into account in addition to the collector efficiency and heat transfer enhancement. Penalty finite element method with Galerkin’s weighted residual technique is used to solve the governing non-linear partial differential equations. Numerical simulations are performed for the variation of mass flow rate. The outcomes are presented in the form of isotherms, average output temperature, the average Nusselt number, collector efficiency, average entropy generation, and Bejan number. The results present that the rate of heat transfer and collector efficiency enhance significantly for raising the values of m up to a certain range.

Keywords: DASC, forced convection, mass flow rate, nanofluid

Procedia PDF Downloads 295
360 Optimization of Assembly and Welding of Complex 3D Structures on the Base of Modeling with Use of Finite Elements Method

Authors: M. N. Zelenin, V. S. Mikhailov, R. P. Zhivotovsky

Abstract:

It is known that residual welding deformations give negative effect to processability and operational quality of welded structures, complicating their assembly and reducing strength. Therefore, selection of optimal technology, ensuring minimum welding deformations, is one of the main goals in developing a technology for manufacturing of welded structures. Through years, JSC SSTC has been developing a theory for estimation of welding deformations and practical activities for reducing and compensating such deformations during welding process. During long time a methodology was used, based on analytic dependence. This methodology allowed defining volumetric changes of metal due to welding heating and subsequent cooling. However, dependences for definition of structures deformations, arising as a result of volumetric changes of metal in the weld area, allowed performing calculations only for simple structures, such as units, flat sections and sections with small curvature. In case of complex 3D structures, estimations on the base of analytic dependences gave significant errors. To eliminate this shortage, it was suggested to use finite elements method for resolving of deformation problem. Here, one shall first calculate volumes of longitudinal and transversal shortenings of welding joints using method of analytic dependences and further, with obtained shortenings, calculate forces, which action is equivalent to the action of active welding stresses. Further, a finite-elements model of the structure is developed and equivalent forces are added to this model. Having results of calculations, an optimal sequence of assembly and welding is selected and special measures to reduce and compensate welding deformations are developed and taken.

Keywords: residual welding deformations, longitudinal and transverse shortenings of welding joints, method of analytic dependences, finite elements method

Procedia PDF Downloads 412
359 Modelling of Aerosols in Absorption Column

Authors: Hammad Majeed, Hanna Knuutila, Magne Hillestad, Hallvard F. Svendsen

Abstract:

Formation of aerosols can cause serious complications in industrial exhaust gas cleaning processes. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this, aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. The model predicts the droplet size, the droplet internal variable profiles, and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and describes how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles.

Keywords: absorption columns, aerosol formation, amine emissions, internal droplet profiles, monoethanolamine (MEA), post combustion CO2 capture, simulation

Procedia PDF Downloads 245
358 Towards an Effective Approach for Modelling near Surface Air Temperature Combining Weather and Satellite Data

Authors: Nicola Colaninno, Eugenio Morello

Abstract:

The urban environment affects local-to-global climate and, in turn, suffers global warming phenomena, with worrying impacts on human well-being, health, social and economic activities. Physic-morphological features of the built-up space affect urban air temperature, locally, causing the urban environment to be warmer compared to surrounding rural. This occurrence, typically known as the Urban Heat Island (UHI), is normally assessed by means of air temperature from fixed weather stations and/or traverse observations or based on remotely sensed Land Surface Temperatures (LST). The information provided by ground weather stations is key for assessing local air temperature. However, the spatial coverage is normally limited due to low density and uneven distribution of the stations. Although different interpolation techniques such as Inverse Distance Weighting (IDW), Ordinary Kriging (OK), or Multiple Linear Regression (MLR) are used to estimate air temperature from observed points, such an approach may not effectively reflect the real climatic conditions of an interpolated point. Quantifying local UHI for extensive areas based on weather stations’ observations only is not practicable. Alternatively, the use of thermal remote sensing has been widely investigated based on LST. Data from Landsat, ASTER, or MODIS have been extensively used. Indeed, LST has an indirect but significant influence on air temperatures. However, high-resolution near-surface air temperature (NSAT) is currently difficult to retrieve. Here we have experimented Geographically Weighted Regression (GWR) as an effective approach to enable NSAT estimation by accounting for spatial non-stationarity of the phenomenon. The model combines on-site measurements of air temperature, from fixed weather stations and satellite-derived LST. The approach is structured upon two main steps. First, a GWR model has been set to estimate NSAT at low resolution, by combining air temperature from discrete observations retrieved by weather stations (dependent variable) and the LST from satellite observations (predictor). At this step, MODIS data, from Terra satellite, at 1 kilometer of spatial resolution have been employed. Two time periods are considered according to satellite revisit period, i.e. 10:30 am and 9:30 pm. Afterward, the results have been downscaled at 30 meters of spatial resolution by setting a GWR model between the previously retrieved near-surface air temperature (dependent variable), the multispectral information as provided by the Landsat mission, in particular the albedo, and Digital Elevation Model (DEM) from the Shuttle Radar Topography Mission (SRTM), both at 30 meters. Albedo and DEM are now the predictors. The area under investigation is the Metropolitan City of Milan, which covers an area of approximately 1,575 km2 and encompasses a population of over 3 million inhabitants. Both models, low- (1 km) and high-resolution (30 meters), have been validated according to a cross-validation that relies on indicators such as R2, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). All the employed indicators give evidence of highly efficient models. In addition, an alternative network of weather stations, available for the City of Milano only, has been employed for testing the accuracy of the predicted temperatures, giving and RMSE of 0.6 and 0.7 for daytime and night-time, respectively.

Keywords: urban climate, urban heat island, geographically weighted regression, remote sensing

Procedia PDF Downloads 200
357 Bounds on the Laplacian Vertex PI Energy

Authors: Ezgi Kaya, A. Dilek Maden

Abstract:

A topological index is a number related to graph which is invariant under graph isomorphism. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds. Let G be a graph with n vertices and m edges. For a given edge uv, the quantity nu(e) denotes the number of vertices closer to u than v, the quantity nv(e) is defined analogously. The vertex PI index defined as the sum of the nu(e) and nv(e). Here the sum is taken over all edges of G. The energy of a graph is defined as the sum of the eigenvalues of adjacency matrix of G and the Laplacian energy of a graph is defined as the sum of the absolute value of difference of laplacian eigenvalues and average degree of G. In theoretical chemistry, the π-electron energy of a conjugated carbon molecule, computed using the Hückel theory, coincides with the energy. Hence results on graph energy assume special significance. The Laplacian matrix of a graph G weighted by the vertex PI weighting is the Laplacian vertex PI matrix and the Laplacian vertex PI eigenvalues of a connected graph G are the eigenvalues of its Laplacian vertex PI matrix. In this study, Laplacian vertex PI energy of a graph is defined of G. We also give some bounds for the Laplacian vertex PI energy of graphs in terms of vertex PI index, the sum of the squares of entries in the Laplacian vertex PI matrix and the absolute value of the determinant of the Laplacian vertex PI matrix.

Keywords: energy, Laplacian energy, laplacian vertex PI eigenvalues, Laplacian vertex PI energy, vertex PI index

Procedia PDF Downloads 248
356 A Neural Network Approach to Evaluate Supplier Efficiency in a Supply Chain

Authors: Kishore K. Pochampally

Abstract:

The success of a supply chain heavily relies on the efficiency of the suppliers involved. In this paper, we propose a neural network approach to evaluate the efficiency of a supplier, which is being considered for inclusion in a supply chain, using the available linguistic (fuzzy) data of suppliers that already exist in the supply chain. The approach is carried out in three phases, as follows: In phase one, we identify criteria for evaluation of the supplier of interest. Then, in phase two, we use performance measures of already existing suppliers to construct a neural network that gives weights (importance values) of criteria identified in phase one. Finally, in phase three, we calculate the overall rating of the supplier of interest. The following are the major findings of the research conducted for this paper: (i) linguistic (fuzzy) ratings of suppliers such as 'good', 'bad', etc., can be converted (defuzzified) to numerical ratings (1 – 10 scale) using fuzzy logic so that those ratings can be used for further quantitative analysis; (ii) it is possible to construct and train a multi-level neural network in order to determine the weights of the criteria that are used to evaluate a supplier; and (iii) Borda’s rule can be used to group the weighted ratings and calculate the overall efficiency of the supplier.

Keywords: fuzzy data, neural network, supplier, supply chain

Procedia PDF Downloads 118
355 Comparison Of Data Mining Models To Predict Future Bridge Conditions

Authors: Pablo Martinez, Emad Mohamed, Osama Mohsen, Yasser Mohamed

Abstract:

Highway and bridge agencies, such as the Ministry of Transportation in Ontario, use the Bridge Condition Index (BCI) which is defined as the weighted condition of all bridge elements to determine the rehabilitation priorities for its bridges. Therefore, accurate forecasting of BCI is essential for bridge rehabilitation budgeting planning. The large amount of data available in regard to bridge conditions for several years dictate utilizing traditional mathematical models as infeasible analysis methods. This research study focuses on investigating different classification models that are developed to predict the bridge condition index in the province of Ontario, Canada based on the publicly available data for 2800 bridges over a period of more than 10 years. The data preparation is a key factor to develop acceptable classification models even with the simplest one, the k-NN model. All the models were tested, compared and statistically validated via cross validation and t-test. A simple k-NN model showed reasonable results (within 0.5% relative error) when predicting the bridge condition in an incoming year.

Keywords: asset management, bridge condition index, data mining, forecasting, infrastructure, knowledge discovery in databases, maintenance, predictive models

Procedia PDF Downloads 194
354 The Use of Stochastic Gradient Boosting Method for Multi-Model Combination of Rainfall-Runoff Models

Authors: Phanida Phukoetphim, Asaad Y. Shamseldin

Abstract:

In this study, the novel Stochastic Gradient Boosting (SGB) combination method is addressed for producing daily river flows from four different rain-runoff models of Ohinemuri catchment, New Zealand. The selected rainfall-runoff models are two empirical black-box models: linear perturbation model and linear varying gain factor model, two conceptual models: soil moisture accounting and routing model and Nedbør-Afrstrømnings model. In this study, the simple average combination method and the weighted average combination method were used as a benchmark for comparing the results of the novel SGB combination method. The models and combination results are evaluated using statistical and graphical criteria. Overall results of this study show that the use of combination technique can certainly improve the simulated river flows of four selected models for Ohinemuri catchment, New Zealand. The results also indicate that the novel SGB combination method is capable of accurate prediction when used in a combination method of the simulated river flows in New Zealand.

Keywords: multi-model combination, rainfall-runoff modeling, stochastic gradient boosting, bioinformatics

Procedia PDF Downloads 343
353 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 241
352 Effect of Sex and Breed on Live Weight of Adult Iranian Pigeons

Authors: Sepehr Moradi, Mehdi Asadi Rad

Abstract:

This study is to evaluate the live weight of adult pigeons to investigate about their sex, race, their mutual effects and some auxiliary variables in 4 races of Kabood, Tizpar, Parvazy, and Namebar. In this paper, 152 pieces of pigeons as 76 male and female pairs with equal age are studied randomly. Then the birds were weighted by a scale with one gram precision. Software was used for statistical analysis. Mean live weight of adult male and female pigeons in 4 races (Kabood, Tizpar, Parvazy and Namebar with (15, 20, 20, 21) and (20, 21, 18, 17) records were, (530±56, 388.75±32, 392±34, 552±48) and (446±34, 342±32, 341±46, 457±57) gr, respectively. Difference weight of adult live of male with female was significant in 1% level (P < 0.01). Difference live weight of male adult pigeon was significant in 5% level (P < 0.05). Different live weight of female adult pigeon between Kabood, Parvazy and Tizpar races were significant in 5% level (P < 0.05) but mean live weight Kabood race with Namebar race and Parvazy with Tizpar were not significant. The results showed that most and least mean live weights belonged to Namebar of the male pigeon race and Parvazy of the female pigeon race.

Keywords: Iranian Native Pigeons, adult weight, live weight, adult pigeons

Procedia PDF Downloads 205
351 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.

Keywords: apartment complex, big data, life-cycle building value analysis, machine learning

Procedia PDF Downloads 375
350 Dynamic Correlations and Portfolio Optimization between Islamic and Conventional Equity Indexes: A Vine Copula-Based Approach

Authors: Imen Dhaou

Abstract:

This study examines conditional Value at Risk by applying the GJR-EVT-Copula model, and finds the optimal portfolio for eight Dow Jones Islamic-conventional pairs. Our methodology consists of modeling the data by a bivariate GJR-GARCH model in which we extract the filtered residuals and then apply the Peak over threshold model (POT) to fit the residual tails in order to model marginal distributions. After that, we use pair-copula to find the optimal portfolio risk dependence structure. Finally, with Monte Carlo simulations, we estimate the Value at Risk (VaR) and the conditional Value at Risk (CVaR). The empirical results show the VaR and CVaR values for an equally weighted portfolio of Dow Jones Islamic-conventional pairs. In sum, we found that the optimal investment focuses on Islamic-conventional US Market index pairs because of high investment proportion; however, all other index pairs have low investment proportion. These results deliver some real repercussions for portfolio managers and policymakers concerning to optimal asset allocations, portfolio risk management and the diversification advantages of these markets.

Keywords: CVaR, Dow Jones Islamic index, GJR-GARCH-EVT-pair copula, portfolio optimization

Procedia PDF Downloads 260
349 Analysis of Weather Variability Impact on Yields of Some Crops in Southwest, Nigeria

Authors: Olumuyiwa Idowu Ojo, Oluwatobi Peter Olowo

Abstract:

The study developed a Geographical Information Systems (GIS) database and mapped inter-annual changes in crop yields of cassava, cowpea, maize, rice, melon and yam as a response to inter-annual rainfall and temperature variability in Southwest, Nigeria. The aim of this project is to study the comparative analysis of the weather variability impact of six crops yield (Rice, melon, yam, cassava, Maize and cowpea) in South Western States of Nigeria (Oyo, Osun, Ekiti, Ondo, Ogun and Lagos) from 1991 – 2007. The data was imported and analysed in the Arch GIS 9 – 3 software environment. The various parameters (temperature, rainfall, crop yields) were interpolated using the kriging method. The results generated through interpolation were clipped to the study area. Geographically weighted regression was chosen from the spatial statistics toolbox in Arch GIS 9.3 software to analyse and predict the relationship between temperature, rainfall and the different crops (Cowpea, maize, rice, melon, yam, and cassava).

Keywords: GIS, crop yields, comparative analysis, temperature, rainfall, weather variability

Procedia PDF Downloads 328
348 Comparison of Live Weight of Pure and Mixed Races Tizpar 30-Day Squabs

Authors: Sepehr Moradi, Mehdi Asadi Rad

Abstract:

The aim of this study is to evaluate and compare live weight of pure and mixed races Tizpar 30-day pigeons to investigate about their sex, race, and some auxiliary variables. In this paper, 70 pieces of pigeons as 35 male and female pairs with equal age are studied randomly. A natural incubation was done from each pair. All produced chickens were weighted at 30 days age before and after hunger by a scale with one gram precision. A covariance analysis was used since there were many auxiliary variables and unequal observations. SAS software was used for statistical analysis. Mean weight of live in pure race (Tizpar-Tizpar) with 12 records, 182.3±60.9 gr and mixed races of Tizpar-Kabood, Tizpar-Parvazy, Tizpar-Namebar, Kabood-Tizpar, Namebar-Tizpar, and Parvazy-Tizpar with 10, 10, 8, 6, 12, and 12 records were 114.3±71.6, 210.6±71.7, 353.2±86, 520.8±81.5, 288.3±65.6, and 382.6±70.4 gr, respectively. Effects of sex, race and some auxiliary variables were also significant in 1% level (P < 0.01). Difference live weight of 30-day of Tizpar-Tizpar race with Tizpar-Namebar and Parvazi-Tizpar mixed races was significant in 5% level (P < 0.05) and with Kabood-Tizpar mixed races was significant in 1% level (P < 0.01) but with Tizpar-Kabood, Nmaebar-Tizpar and Tizpar-Parvazy mixed races was not significant. The results showed that most and least weights of live belonged to Kabood-Tizpar and Tizpar-Kabood.

Keywords: squabs, Tizpar race, 30-day live weight, pigeons

Procedia PDF Downloads 179