Search results for: stiff ordinary differential equation
3530 On the Grid Technique by Approximating the Derivatives of the Solution of the Dirichlet Problems for (1+1) Dimensional Linear Schrodinger Equation
Authors: Lawrence A. Farinola
Abstract:
Four point implicit schemes for the approximation of the first and pure second order derivatives for the solution of the Dirichlet problem for one dimensional Schrodinger equation with respect to the time variable t were constructed. Also, special four-point implicit difference boundary value problems are proposed for the first and pure second derivatives of the solution with respect to the spatial variable x. The Grid method is also applied to the mixed second derivative of the solution of the Linear Schrodinger time-dependent equation. It is assumed that the initial function belongs to the Holder space C⁸⁺ᵃ, 0 < α < 1, the Schrodinger wave function given in the Schrodinger equation is from the Holder space Cₓ,ₜ⁶⁺ᵃ, ³⁺ᵃ/², the boundary functions are from C⁴⁺ᵃ, and between the initial and the boundary functions the conjugation conditions of orders q = 0,1,2,3,4 are satisfied. It is proven that the solution of the proposed difference schemes converges uniformly on the grids of the order O(h²+ k) where h is the step size in x and k is the step size in time. Numerical experiments are illustrated to support the analysis made.Keywords: approximation of derivatives, finite difference method, Schrödinger equation, uniform error
Procedia PDF Downloads 1203529 Mapping Methods to Solve a Modified Korteweg de Vries Type Equation
Authors: E. V. Krishnan
Abstract:
In this paper, we employ mapping methods to construct exact travelling wave solutions for a modified Korteweg-de Vries equation. We have derived periodic wave solutions in terms of Jacobi elliptic functions, kink solutions and singular wave solutions in terms of hyperbolic functions.Keywords: travelling wave solutions, Jacobi elliptic functions, solitary wave solutions, Korteweg-de Vries equation
Procedia PDF Downloads 3313528 Bright, Dark N-Soliton Solution of Fokas-Lenells Equation Using Hirota Bilinearization Method
Authors: Sagardeep Talukdar, Riki Dutta, Gautam Kumar Saharia, Sudipta Nandy
Abstract:
In non-linear optics, the Fokas-Lenells equation (FLE) is a well-known integrable equation that describes how ultrashort pulses move across the optical fiber. It admits localized wave solutions, just like any other integrable equation. We apply the Hirota bilinearization method to obtain the soliton solution of FLE. The proposed bilinearization makes use of an auxiliary function. We apply the method to FLE with a vanishing boundary condition, that is, to obtain a bright soliton solution. We have obtained bright 1-soliton and 2-soliton solutions and propose a scheme for obtaining an N-soliton solution. We have used an additional parameter that is responsible for the shift in the position of the soliton. Further analysis of the 2-soliton solution is done by asymptotic analysis. In the non-vanishing boundary condition, we obtain the dark 1-soliton solution. We discover that the suggested bilinearization approach, which makes use of the auxiliary function, greatly simplifies the process while still producing the desired outcome. We think that the current analysis will be helpful in understanding how FLE is used in nonlinear optics and other areas of physics.Keywords: asymptotic analysis, fokas-lenells equation, hirota bilinearization method, soliton
Procedia PDF Downloads 1123527 Caputo-Type Fuzzy Fractional Riccati Differential Equations with Fuzzy Initial Conditions
Authors: Trilok Mathur, Shivi Agarwal
Abstract:
This paper deals with the solutions of fuzzy-fractional-order Riccati equations under Caputo-type fuzzy fractional derivatives. The Caputo-type fuzzy fractional derivatives are defined based on Hukuhura difference and strongly generalized fuzzy differentiability. The Laplace-Adomian-Pade method is used for solving fractional Riccati-type initial value differential equations of fractional order. Moreover, we also displayed some examples to illustrate our methods.Keywords: Caputo-type fuzzy fractional derivative, Fractional Riccati differential equations, Laplace-Adomian-Pade method, Mittag Leffler function
Procedia PDF Downloads 3953526 Forced Convection Boundary Layer Flow of a Casson Fluid over a Moving Permeable Flat Plate beneath a Uniform Free Stream
Authors: N. M. Arifin, S. P. M. Isa, R. Nazar, N. Bachok, F. M. Ali, I. Pop
Abstract:
In this paper, the steady forced convection boundary layer flow of a Casson fluid past a moving permeable semi-infinite flat plate beneath a uniform free stream is investigated. The mathematical problem reduces to a pair of noncoupled ordinary differential equations by similarity transformation, which is then solved numerically using the shooting method. Both the cases when the plate moves into or out of the origin are considered. Effects of the non-Newtonian (Casson) parameter, moving parameter, suction or injection parameter and Eckert number on the flow and heat transfer characteristics are thoroughly examined. Dual solutions are found to exist for each value of the governing parameters.Keywords: forced convection, Casson fluids, moving flat plate, boundary layer
Procedia PDF Downloads 4663525 Comparative Analysis of DTC Based Switched Reluctance Motor Drive Using Torque Equation and FEA Models
Authors: P. Srinivas, P. V. N. Prasad
Abstract:
Since torque ripple is the main cause of noise and vibrations, the performance of Switched Reluctance Motor (SRM) can be improved by minimizing its torque ripple using a novel control technique called Direct Torque Control (DTC). In DTC technique, torque is controlled directly through control of magnitude of the flux and change in speed of the stator flux vector. The flux and torque are maintained within set hysteresis bands. The DTC of SRM is analysed by two methods. In one of the methods, the actual torque is computed by conducting Finite Element Analysis (FEA) on the design specifications of the motor. In the other method, the torque is computed by Simplified Torque Equation. The variation of peak current, average current, torque ripple and speed settling time with Simplified Torque Equation model is compared with FEA based model.Keywords: direct toque control, simplified torque equation, finite element analysis, torque ripple
Procedia PDF Downloads 4793524 Investigation on a Wave-Powered Electrical Generator Consisted of a Geared Motor-Generator Housed by a Double-Cone Rolling on Concentric Circular Rails
Authors: Barenten Suciu
Abstract:
An electrical generator able to harness energy from the water waves and designed as a double-cone geared motor-generator (DCGMG), is proposed and theoretically investigated. Similar to a differential gear mechanism, used in the transmission system of the auto vehicle wheels, an angular speed differential is created between the cones rolling on two concentric circular rails. Water wave acting on the floating DCGMG produces and a gear-box amplifies the speed differential to gain sufficient torque for power generation. A model that allows computation of the speed differential, torque, and power of the DCGMG is suggested. Influence of various parameters, regarding the construction of the DCGMG, as well as the contact between the double-cone and rails, on the electro-mechanical output, is emphasized. Results obtained indicate that the generated electrical power can be increased by augmenting the mass of the double-cone, the span of the rails, the apex angle of the cones, the friction between cones and rails, the amplification factor of the gear-box, and the efficiency of the motor-generator. Such findings are useful to formulate a design methodology for the proposed wave-powered generator.Keywords: amplification of angular speed differential, circular concentric rails, double-cone, wave-powered electrical generator
Procedia PDF Downloads 1563523 The Evaluation of Current Pile Driving Prediction Methods for Driven Monopile Foundations in London Clay
Authors: John Davidson, Matteo Castelletti, Ismael Torres, Victor Terente, Jamie Irvine, Sylvie Raymackers
Abstract:
The current industry approach to pile driving predictions consists of developing a model of the hammer-pile-soil system which simulates the relationship between soil resistance to driving (SRD) and blow counts (or pile penetration per blow). The SRD methods traditionally used are broadly based on static pile capacity calculations. The SRD is used in combination with the one-dimensional wave equation model to indicate the anticipated blowcounts with depth for specific hammer energy settings. This approach has predominantly been calibrated on relatively long slender piles used in the oil and gas industry but is now being extended to allow calculations to be undertaken for relatively short rigid large diameter monopile foundations. This paper evaluates the accuracy of current industry practice when applied to a site where large diameter monopiles were installed in predominantly stiff fissured clay. Actual geotechnical and pile installation data, including pile driving records and signal matching analysis (based upon pile driving monitoring techniques), were used for the assessment on the case study site.Keywords: driven piles, fissured clay, London clay, monopiles, offshore foundations
Procedia PDF Downloads 2243522 Image Segmentation of Visual Markers in Robotic Tracking System Based on Differential Evolution Algorithm with Connected-Component Labeling
Authors: Shu-Yu Hsu, Chen-Chien Hsu, Wei-Yen Wang
Abstract:
Color segmentation is a basic and simple way for recognizing the visual markers in a robotic tracking system. In this paper, we propose a new method for color segmentation by incorporating differential evolution algorithm and connected component labeling to autonomously preset the HSV threshold of visual markers. To evaluate the effectiveness of the proposed algorithm, a ROBOTIS OP2 humanoid robot is used to conduct the experiment, where five most commonly used color including red, purple, blue, yellow, and green in visual markers are given for comparisons.Keywords: color segmentation, differential evolution, connected component labeling, humanoid robot
Procedia PDF Downloads 6053521 Study on the Influence of Different Lengths of Tunnel High Temperature Zones on Train Aerodynamic Resistance
Authors: Chong Hu, Tiantian Wang, Zhe Li, Ourui Huang, Yichen Pan
Abstract:
When the train is running in a high geothermal tunnel, changes in the temperature field will cause disturbances in the propagation and superposition of pressure waves in the tunnel, which in turn have an effect on the aerodynamic resistance of the train. The aim of this paper is to investigate the effect of the changes in the lengths of the high-temperature zone of the tunnel on the aerodynamic resistance of the train, clarifying the evolution mechanism of aerodynamic resistance of trains in tunnels with high ground temperatures. Firstly, moving model tests of trains passing through wall-heated tunnels were conducted to verify the reliability of the numerical method in this paper. Subsequently, based on the three-dimensional unsteady compressible RANS method and the standard k-ε two-equation turbulence model, the change laws of the average aerodynamic resistance under different high-temperature zone lengths were analyzed, and the influence of frictional resistance and pressure difference resistance on total resistance at different times was discussed. The results show that as the length of the high-temperature zone LH increases, the average aerodynamic resistance of a train running in a tunnel gradually decreases; when LH = 330 m, the aerodynamic resistance can be reduced by 5.7%. At the moment of maximum resistance, the total resistance, differential pressure resistance, and friction resistance all decrease gradually with the increase of LH and then remain basically unchanged. At the moment of the minimum value of resistance, with the increase of LH, the total resistance first increases and then slowly decreases; the differential pressure resistance first increases and then remains unchanged, while the friction resistance first remains unchanged and then gradually decreases, and the ratio of the differential pressure resistance to the total resistance gradually increases with the increase of LH. The results of this paper can provide guidance for scholars who need to investigate the mechanism of aerodynamic resistance change of trains in high geothermal environments, as well as provide a new way of thinking for resistance reduction in non-high geothermal tunnels.Keywords: high-speed trains, aerodynamic resistance, high-ground temperature, tunnel
Procedia PDF Downloads 673520 Controlled Chemotherapy Strategy Applied to HIV Model
Authors: Shohel Ahmed, Md. Abdul Alim, Sumaiya Rahman
Abstract:
Optimal control can be helpful to test and compare different vaccination strategies of a certain disease. The mathematical model of HIV we consider here is a set of ordinary differential equations (ODEs) describing the interactions of CD4+T cells of the immune system with the human immunodeficiency virus (HIV). As an early treatment setting, we investigate an optimal chemotherapy strategy where control represents the percentage of effect the chemotherapy has on the system. The aim is to obtain a new optimal chemotherapeutic strategy where an isoperimetric constraint on the chemotherapy supply plays a crucial role. We outline the steps in formulating an optimal control problem, derive optimality conditions and demonstrate numerical results of an optimal control for the model. Numerical results illustrate how such a constraint alters the optimal vaccination schedule and its effect on cell-virus interactions.Keywords: chemotherapy of HIV, optimal control involving ODEs, optimality conditions, Pontryagin’s maximum principle
Procedia PDF Downloads 3303519 A Coupled System of Caputo-Type Katugampola Fractional Differential Equations with Integral Boundary Conditions
Authors: Yacine Arioua
Abstract:
In this paper, we investigate the existence and uniqueness of solutions for a coupled system of nonlinear Caputo-type Katugampola fractional differential equations with integral boundary conditions. Based upon a contraction mapping principle, Schauders fixed point theorems, some new existence and uniqueness results of solutions for the given problems are obtained. For application, some examples are given to illustrate the usefulness of our main results.Keywords: fractional differential equations, coupled system, Caputo-Katugampola derivative, fixed point theorems, existence, uniqueness
Procedia PDF Downloads 2643518 Mathematical Models for Drug Diffusion Through the Compartments of Blood and Tissue Medium
Authors: M. A. Khanday, Aasma Rafiq, Khalid Nazir
Abstract:
This paper is an attempt to establish the mathematical models to understand the distribution of drug administration in the human body through oral and intravenous routes. Three models were formulated based on diffusion process using Fick’s principle and the law of mass action. The rate constants governing the law of mass action were used on the basis of the drug efficacy at different interfaces. The Laplace transform and eigenvalue methods were used to obtain the solution of the ordinary differential equations concerning the rate of change of concentration in different compartments viz. blood and tissue medium. The drug concentration in the different compartments has been computed using numerical parameters. The results illustrate the variation of drug concentration with respect to time using MATLAB software. It has been observed from the results that the drug concentration decreases in the first compartment and gradually increases in other subsequent compartments.Keywords: Laplace transform, diffusion, eigenvalue method, mathematical model
Procedia PDF Downloads 3343517 The Game of Dominoes as Teaching-Learning Method of Basic Concepts of Differential Calculus
Authors: Luis Miguel Méndez Díaz
Abstract:
In this article, a mathematics teaching-learning strategy will be presented, specifically differential calculus in one variable, in a fun and competitive space in which the action on the part of the student is manifested and not only the repetition of information on the part of the teacher. Said action refers to motivating, problematizing, summarizing, and coordinating a game of dominoes whose thematic cards are designed around the basic and main contents of differential calculus. The strategies for teaching this area are diverse and precisely the game of dominoes is one of the most used strategies in the practice of mathematics because it stimulates logical reasoning and mental abilities. The objective on this investigation is to identify the way in which the game of dominoes affects the learning and understanding of fundamentals concepts of differential calculus in one variable through experimentation carried out on students of the first semester of the School of Engineering and Sciences of the Technological Institute of Monterrey Campus Querétaro. Finally, the results of this study will be presented and the use of this strategy in other topics around mathematics will be recommended to facilitate logical and meaningful learning in students.Keywords: collaborative learning, logical-mathematical intelligence, mathematical games, multiple intelligences
Procedia PDF Downloads 843516 The Effects of the Introduction of a One-day Waiting Period on Absences for Ordinary Illness of Public Employees
Authors: Mohamed Ali Ben Halima, Malik Koubi, Joseph Lanfranchi, Yohan Wloczysiak
Abstract:
This article assesses the consequences on the frequency and duration of ordinary sick leave of the January 2012 and 2018 reforms modifying the scope of sick leave reimbursement in the French civil service. These reforms introduce a one-day waiting period which removes the compensation for the first day of ordinary sick leave. In order to evaluate these reforms, we use an administrative database from the National Pension Fund for local public employees (FPT). The first important result of our data analysis is that the one-day waiting period was not introduced at the same time in the French Local Public Service establishments, or even never in some. This peculiarity allows for an identification strategy using a difference-in-differences method based on the definition at each date of groups of employees treated and not treated by the reform, since establishments that apply the one-day waiting period coexist with establishments that do not apply it. Two types of estimators are used for this evaluation: individual and time fixed effects estimators and DIDM estimators which correct for the biases of the Two Way Fixed Effects one. The results confirm that the change in the sick pay system decreases the probability of having at least one ordinary sick leave as well as the number and duration of these episodes. On the other hand, the estimates show that longer leave episodes are not less affected than shorter ones. Finally, the validity tests of the estimators support the results obtained for the second period of 2018-2019, but suggest estimation biases for the period 2012-2013. The extent to which the endogeneity of the choices of implementation of the reform at the local level impact these estimates needs to be further tested.Keywords: sick leave, one-day waiting period, territorial civil service, public policy evaluation
Procedia PDF Downloads 833515 Development of 3D Particle Method for Calculating Large Deformation of Soils
Authors: Sung-Sik Park, Han Chang, Kyung-Hun Chae, Sae-Byeok Lee
Abstract:
In this study, a three-dimensional (3D) Particle method without using grid was developed for analyzing large deformation of soils instead of using ordinary finite element method (FEM) or finite difference method (FDM). In the 3D Particle method, the governing equations were discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. The Mohr-Coulomb failure criterion was incorporated into the 3D Particle method to determine soil failure. The yielding and hardening behavior of soil before failure was also considered by varying viscosity of soil. First of all, an unconfined compression test was carried out and the large deformation following soil yielding or failure was simulated by the developed 3D Particle method. The results were also compared with those of a commercial FEM software PLAXIS 3D. The developed 3D Particle method was able to simulate the 3D large deformation of soils due to soil yielding and calculate the variation of normal and shear stresses following clay deformation.Keywords: particle method, large deformation, soil column, confined compressive stress
Procedia PDF Downloads 5723514 Out-of-Plane Free Vibrations of Circular Rods
Authors: Faruk Firat Çalim, Nurullah Karaca, Hakan Tacettin Türker
Abstract:
In this study, out-of-plane free vibrations of a circular rods is investigated theoretically. The governing equations for naturally twisted and curved spatial rods are obtained using Timoshenko beam theory and rewritten for circular rods. Effects of the axial and shear deformations are considered in the formulations. Ordinary differential equations in scalar form are solved analytically by using transfer matrix method. The circular rods of the mass matrix are obtained by using straight rod of consistent mass matrix. Free vibrations frequencies obtained by solving eigenvalue problem. A computer program coded in MATHEMATICA language is prepared. Circular beams are analyzed through various examples for free vibrations analysis. Results are compared with ANSYS results based on finite element method and available in the literature.Keywords: circular rod, out-of-plane free vibration analysis, transfer matrix method
Procedia PDF Downloads 3083513 Migration as a Climate Change Adaptation Strategy: A Conceptual Equation for Analysis
Authors: Elisha Kyirem
Abstract:
Undoubtedly, climate change is a major global challenge that could threaten the very foundation upon which life on earth is anchored, with its impacts on human mobility attracting the attention of policy makers and researchers. There is an increasing body of literature and case studies suggesting that migration could be a way through which the vulnerable move away from areas exposed to climate extreme events to improve their lives and that of their families. This presents migration as a way through which people voluntarily move to seek opportunities that could help reduce their exposure and avoid danger from climate events. Thus, migration is seen as a proactive adaptation strategy aimed at building resilience and improving livelihoods to enable people to adapt to future changing events. However, there has not been any mathematical equation linking migration and climate change adaptation. Drawing from literature in development studies, this paper develops an equation that seeks to link the relationship between migration and climate change adaptation. The mathematical equation establishes the linkages between migration, resilience, poverty reduction and vulnerability, and these the paper maintains, are the key variables for conceptualizing the migration-climate change adaptation nexus. The paper then tests the validity of the equation using the sustainable livelihood framework and publicly available data on migration and tourism in Ghana.Keywords: migration, adaptation, climate change, adaptation, poverty reduction
Procedia PDF Downloads 3953512 Effect of Thermal Radiation on Flow, Heat, and Mass Transfer of a Nanofluid over a Stretching Horizontal Cylinder Embedded in a Porous Medium with Suction/Injection
Authors: Elsayed M. A. Elbashbeshy, T. G. Emam, M. S. El-Azab, K. M. Abdelgaber
Abstract:
The effect of thermal radiation on flow, heat and mass transfer of an incompressible viscous nanofluid over a stretching horizontal cylinder embedded in a porous medium with suction/injection is discussed numerically. The governing boundary layer equations are reduced to a system of ordinary differential equations. Mathematica has been used to solve such system after obtaining the missed initial conditions. Comparison of obtained numerical results is made with previously published results in some special cases, and found to be in a good agreement.Keywords: laminar flow, boundary layer, stretching horizontal cylinder, thermal radiation, suction/injection, nanofluid
Procedia PDF Downloads 3823511 Large Time Asymptotic Behavior to Solutions of a Forced Burgers Equation
Authors: Satyanarayana Engu, Ahmed Mohd, V. Murugan
Abstract:
We study the large time asymptotics of solutions to the Cauchy problem for a forced Burgers equation (FBE) with the initial data, which is continuous and summable on R. For which, we first derive explicit solutions of FBE assuming a different class of initial data in terms of Hermite polynomials. Later, by violating this assumption we prove the existence of a solution to the considered Cauchy problem. Finally, we give an asymptotic approximate solution and establish that the error will be of order O(t^(-1/2)) with respect to L^p -norm, where 1≤p≤∞, for large time.Keywords: Burgers equation, Cole-Hopf transformation, Hermite polynomials, large time asymptotics
Procedia PDF Downloads 3343510 Spatial Working Memory Is Enhanced by the Differential Outcome Procedure in a Group of Participants with Mild Cognitive Impairment
Authors: Ana B. Vivas, Antonia Ypsilanti, Aristea I. Ladas, Angeles F. Estevez
Abstract:
Mild Cognitive Impairment (MCI) is considered an intermediate stage between normal and pathological aging, as a substantial percentage of people diagnosed with MCI converts later to dementia of the Alzheimer’s type. Memory is of the first cognitive processes to deteriorate in this condition. In the present study we employed the differential outcomes procedure (DOP) to improve visuospatial memory in a group of participants with MCI. The DOP requires the structure of a conditional discriminative learning task in which a correct choice response to a specific stimulus-stimulus association is reinforced with a particular reinforcer or outcome. A group of 10 participants with MCI, and a matched control group had to learn and keep in working memory four target locations out of eight possible locations where a shape could be presented. Results showed that participants with MCI had a statistically significant better terminal accuracy when a unique outcome was paired with a location (76% accuracy) as compared to a non differential outcome condition (64%). This finding suggests that the DOP is useful in improving working memory in MCI patients, which may delay their conversion to dementia.Keywords: mild cognitive impairment, working memory, differential outcomes, cognitive process
Procedia PDF Downloads 4603509 Modeling of Nitrogen Solubility in Stainless Steel
Authors: Saeed Ghali, Hoda El-Faramawy, Mamdouh Eissa, Michael Mishreky
Abstract:
Scale-resistant austenitic stainless steel, X45CrNiW 18-9, has been developed, and modified steels produced through partial and total nickel replacement by nitrogen. These modified steels were produced in a 10 kg induction furnace under different nitrogen pressures and were cast into ingots. The produced modified stainless steels were forged, followed by air cooling. The phases of modified stainless steels have been investigated using the Schaeffler diagram, dilatometer, and microstructure observations. Both partial and total replacement of nickel using 0.33-0.50% nitrogen are effective in producing fully austenitic stainless steels. The nitrogen contents were determined and compared with those calculated using the Institute of Metal Science (IMS) equation. The results showed great deviations between the actual nitrogen contents and predicted values through IMS equation. So, an equation has been derived based on chemical composition, pressure, and temperature at 1600oC. [N%] = 0.0078 + 0.0406*X, where X is a function of chemical composition and nitrogen pressure. The derived equation has been used to calculate the nitrogen content of different steels using published data. The results reveal the difficulty of deriving a general equation for the prediction of nitrogen content covering different steel compositions. So, it is necessary to use a narrow composition range.Keywords: solubility, nitrogen, stainless steel, Schaeffler
Procedia PDF Downloads 2383508 Kirchoff Type Equation Involving the p-Laplacian on the Sierpinski Gasket Using Nehari Manifold Technique
Authors: Abhilash Sahu, Amit Priyadarshi
Abstract:
In this paper, we will discuss the existence of weak solutions of the Kirchhoff type boundary value problem on the Sierpinski gasket. Where S denotes the Sierpinski gasket in R² and S₀ is the intrinsic boundary of the Sierpinski gasket. M: R → R is a positive function and h: S × R → R is a suitable function which is a part of our main equation. ∆p denotes the p-Laplacian, where p > 1. First of all, we will define a weak solution for our problem and then we will show the existence of at least two solutions for the above problem under suitable conditions. There is no well-known concept of a generalized derivative of a function on a fractal domain. Recently, the notion of differential operators such as the Laplacian and the p-Laplacian on fractal domains has been defined. We recall the result first then we will address the above problem. In view of literature, Laplacian and p-Laplacian equations are studied extensively on regular domains (open connected domains) in contrast to fractal domains. In fractal domains, people have studied Laplacian equations more than p-Laplacian probably because in that case, the corresponding function space is reflexive and many minimax theorems which work for regular domains is applicable there which is not the case for the p-Laplacian. This motivates us to study equations involving p-Laplacian on the Sierpinski gasket. Problems on fractal domains lead to nonlinear models such as reaction-diffusion equations on fractals, problems on elastic fractal media and fluid flow through fractal regions etc. We have studied the above p-Laplacian equations on the Sierpinski gasket using fibering map technique on the Nehari manifold. Many authors have studied the Laplacian and p-Laplacian equations on regular domains using this Nehari manifold technique. In general Euler functional associated with such a problem is Frechet or Gateaux differentiable. So, a critical point becomes a solution to the problem. Also, the function space they consider is reflexive and hence we can extract a weakly convergent subsequence from a bounded sequence. But in our case neither the Euler functional is differentiable nor the function space is known to be reflexive. Overcoming these issues we are still able to prove the existence of at least two solutions of the given equation.Keywords: Euler functional, p-Laplacian, p-energy, Sierpinski gasket, weak solution
Procedia PDF Downloads 2343507 Spatial Distribution of Heavy Metals in Khark Island-Iran Using Geographic Information System
Authors: Abbas Hani, Maryam Jassasizadeh
Abstract:
The concentrations of Cd, Pb, and Ni were determined from 40 soil samples collected in surface soils of Khark Island. Geostatistic methods and GIS were used to identify heavy metal sources and their spatial pattern. Principal component analysis coupled with correlation between heavy metals showed that level of mentioned heavy metal was lower than the standard level. Then the data obtained from the soil analyzing were studied for the purposes of normal distribution. The best way of interior finding for cadmium and nickel was ordinary kriging and the best way of interpolation of lead was inverse distance weighted. The result of this study help us to understand heavy metals distribution and make decision for remediation of soil pollution.Keywords: geostatistics, ordinary kriging, heavy metals, GIS, Khark
Procedia PDF Downloads 1673506 Differential Approach to Technology Aided English Language Teaching: A Case Study in a Multilingual Setting
Authors: Sweta Sinha
Abstract:
Rapid evolution of technology has changed language pedagogy as well as perspectives on language use, leading to strategic changes in discourse studies. We are now firmly embedded in a time when digital technologies have become an integral part of our daily lives. This has led to generalized approaches to English Language Teaching (ELT) which has raised two-pronged concerns in linguistically diverse settings: a) the diverse linguistic background of the learner might interfere/ intervene with the learning process and b) the differential level of already acquired knowledge of target language might make the classroom practices too easy or too difficult for the target group of learners. ELT needs a more systematic and differential pedagogical approach for greater efficiency and accuracy. The present research analyses the need of identifying learner groups based on different levels of target language proficiency based on a longitudinal study done on 150 undergraduate students. The learners were divided into five groups based on their performance on a twenty point scale in Listening Speaking Reading and Writing (LSRW). The groups were then subjected to varying durations of technology aided language learning sessions and their performance was recorded again on the same scale. Identifying groups and introducing differential teaching and learning strategies led to better results compared to generalized teaching strategies. Language teaching includes different aspects: the organizational, the technological, the sociological, the psychological, the pedagogical and the linguistic. And a facilitator must account for all these aspects in a carefully devised differential approach meeting the challenge of learner diversity. Apart from the justification of the formation of differential groups the paper attempts to devise framework to account for all these aspects in order to make ELT in multilingual setting much more effective.Keywords: differential groups, English language teaching, language pedagogy, multilingualism, technology aided language learning
Procedia PDF Downloads 3913505 Integrated Geotechnical and Geophysical Investigation of a Proposed Construction Site at Mowe, Southwestern Nigeria
Authors: Kayode Festus Oyedele, Sunday Oladele, Adaora Chibundu Nduka
Abstract:
The subsurface of a proposed site for building development in Mowe, Nigeria, using Standard Penetration Test (SPT) and Cone Penetrometer Test (CPT) supplemented with Horizontal Electrical Profiling (HEP) was investigated with the aim of evaluating the suitability of the strata for foundation materials. Four SPT and CPT were implemented using 10 tonnes hammer. HEP utilizing Wenner array were performed with inter-electrode spacing of 10 – 60 m along four traverses coincident with each of the SPT and CPT. The HEP data were processed using DIPRO software and textural filtering of the resulting resistivity sections was implemented to enable delineation of hidden layers. Sandy lateritic clay, silty lateritic clay, clay, clayey sand and sand horizons were delineated. The SPT “N” value defined very soft to soft sandy lateritic (<4), stiff silty lateritic clay (7 – 12), very stiff silty clay (12 - 15), clayey sand (15- 20) and sand (27 – 37). Sandy lateritic clay (5-40 kg/cm2) and silty lateritic clay (25 - 65 kg/cm2) were defined from the CPT response. Sandy lateritic clay (220-750 Ωm), clay (< 50 Ωm) and sand (415-5359 Ωm) were delineated from the resistivity sections with two thin layers of silty lateritic clay and clayey sand defined in the texturally filtered resistivity sections. This study concluded that the presence of incompetent thick clayey materials (18 m) beneath the study area makes it unsuitable for shallow foundation. Deep foundation involving piling through the clayey layers to the competent sand at 20 m depth was recommended.Keywords: cone penetrometer, foundation, lithologic texture, resistivity section, standard penetration test
Procedia PDF Downloads 2653504 Analytical Approximations of the Differential Elastic Scattering Cross-Sections for Slow Electrons and Positrons Transport in Solids: A Comparative Study
Authors: A. Bentabet, A. Aydin, N. Fenineche
Abstract:
In this work, we try to determine the best analytical approximation of differential cross sections, used generally in Monte Carlo simulation, to study the electron/positron slowing down in solid targets in the energy range up to 10 keV. Actually, our comparative study was carried out on the angular distribution of the scattering angle, the elastic total and the first transport cross sections which are the essential quantities used generally in the electron/positron transport study by using both stochastic and deterministic methods. Indeed, the obtained results using the relativistic partial wave expansion method and the backscattering coefficient experimental data are used as criteria to evaluate the used model.Keywords: differential cross-section, backscattering coefficient, Rutherford cross-section, Vicanek and Urbassek theory
Procedia PDF Downloads 5633503 Minimum Ratio of Flexural Reinforcement for High Strength Concrete Beams
Authors: Azad A. Mohammed, Dunyazad K. Assi, Alan S. Abdulrahman
Abstract:
Current ACI 318 Code provides two limits for minimum steel ratio for concrete beams. When concrete compressive strength be larger than 31 MPa the limit of √(fc')/4fy usually governs. In this paper shortcomings related to using this limit was fairly discussed and showed that the limit is based on 90% safety factor and was derived based on modulus of rupture equation suitable for concretes of compressive strength lower than 31 MPa. Accordingly, the limit is nor suitable and critical for concretes of higher compressive strength. An alternative equation was proposed for minimum steel ratio of rectangular beams and was found that the proposed limit is accurate for beams of wide range of concrete compressive strength. Shortcomings of the current ACI 318 Code equation and accuracy of the proposed equation were supported by test data obtained from testing six reinforced concrete beams.Keywords: concrete beam, compressive strength, minimum steel ratio, modulus of rupture
Procedia PDF Downloads 5513502 Numerical Computation of Generalized Rosenau Regularized Long-Wave Equation via B-Spline Over Butcher’s Fifth Order Runge-Kutta Approach
Authors: Guesh Simretab Gebremedhin, Saumya Rajan Jena
Abstract:
In this work, a septic B-spline scheme has been used to simplify the process of solving an approximate solution of the generalized Rosenau-regularized long-wave equation (GR-RLWE) with initial boundary conditions. The resulting system of first-order ODEs has dealt with Butcher’s fifth order Runge-Kutta (BFRK) approach without using finite difference techniques for discretizing the time-dependent variables at each time level. Here, no transformation or any kind of linearization technique is employed to tackle the nonlinearity of the equation. Two test problems have been selected for numerical justifications and comparisons with other researchers on the basis of efficiency, accuracy, and results of the two invariants Mᵢ (mass) and Eᵢ (energy) of some motion that has been used to test the conservative properties of the proposed scheme.Keywords: septic B-spline scheme, Butcher's fifth order Runge-Kutta approach, error norms, generalized Rosenau-RLW equation
Procedia PDF Downloads 653501 Multiple-Lump-Type Solutions of the 2D Toda Equation
Authors: Jian-Ping Yu, Wen-Xiu Ma, Yong-Li Sun, Chaudry Masood Khalique
Abstract:
In this paper, a 2d Toda equation is studied, which is a classical integrable system and plays a vital role in mathematics, physics and other areas. New lump-type solution is constructed by using the Hirota bilinear method. One interesting feature of this research is that this lump-type solutions possesses two types of multiple-lump-type waves, which are one- and two-lump-type waves. Moreover, the corresponding 3d plots, density plots and contour plots are given to show the dynamical features of the obtained multiple-lump-type solutions.Keywords: 2d Toda equation, Hirota bilinear method, Lump-type solution, multiple-lump-type solution
Procedia PDF Downloads 222