Search results for: solar batteries
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1832

Search results for: solar batteries

1472 Estimation of Greenhouse Gas (GHG) Reductions from Solar Cell Technology Using Bottom-up Approach and Scenario Analysis in South Korea

Authors: Jaehyung Jung, Kiman Kim, Heesang Eum

Abstract:

Solar cell is one of the main technologies to reduce greenhouse gas (GHG). Thereby, accurate estimation of greenhouse gas reduction by solar cell technology is crucial to consider strategic applications of the solar cell. The bottom-up approach using operating data such as operation time and efficiency is one of the methodologies to improve the accuracy of the estimation. In this study, alternative GHG reductions from solar cell technology were estimated by a bottom-up approach to indirect emission source (scope 2) in Korea, 2015. In addition, the scenario-based analysis was conducted to assess the effect of technological change with respect to efficiency improvement and rate of operation. In order to estimate GHG reductions from solar cell activities in operating condition levels, methodologies were derived from 2006 IPCC guidelines for national greenhouse gas inventories and guidelines for local government greenhouse inventories published in Korea, 2016. Indirect emission factors for electricity were obtained from Korea Power Exchange (KPX) in 2011. As a result, the annual alternative GHG reductions were estimated as 21,504 tonCO2eq, and the annual average value was 1,536 tonCO2eq per each solar cell technology. Those results of estimation showed to be 91% levels versus design of capacity. Estimation of individual greenhouse gases (GHGs) showed that the largest gas was carbon dioxide (CO2), of which up to 99% of the total individual greenhouse gases. The annual average GHG reductions from solar cell per year and unit installed capacity (MW) were estimated as 556 tonCO2eq/yr•MW. Scenario analysis of efficiency improvement by 5%, 10%, 15% increased as much as approximately 30, 61, 91%, respectively, and rate of operation as 100% increased 4% of the annual GHG reductions.

Keywords: bottom-up approach, greenhouse gas (GHG), reduction, scenario, solar cell

Procedia PDF Downloads 220
1471 Models Comparison for Solar Radiation

Authors: Djelloul Benatiallah

Abstract:

Due to the current high consumption and recent industry growth, the depletion of fossil and natural energy supplies like oil, gas, and uranium is declining. Due to pollution and climate change, there needs to be a swift switch to renewable energy sources. Research on renewable energy is being done to meet energy needs. Solar energy is one of the renewable resources that can currently meet all of the world's energy needs. In most parts of the world, solar energy is a free and unlimited resource that can be used in a variety of ways, including photovoltaic systems for the generation of electricity and thermal systems for the generation of heatfor the residential sector's production of hot water. In this article, we'll conduct a comparison. The first step entails identifying the two empirical models that will enable us to estimate the daily irradiations on a horizontal plane. On the other hand, we compare it using the data obtained from measurements made at the Adrar site over the four distinct seasons. The model 2 provides a better estimate of the global solar components, with an absolute mean error of less than 7% and a correlation coefficient of more than 0.95, as well as a relative coefficient of the bias error that is less than 6% in absolute value and a relative RMSE that is less than 10%, according to a comparison of the results obtained by simulating the two models.

Keywords: solar radiation, renewable energy, fossil, photovoltaic systems

Procedia PDF Downloads 79
1470 Integration of Icf Walls as Diurnal Solar Thermal Storage with Microchannel Solar Assisted Heat Pump for Space Heating and Domestic Hot Water Production

Authors: Mohammad Emamjome Kashan, Alan S. Fung

Abstract:

In Canada, more than 32% of the total energy demand is related to the building sector. Therefore, there is a great opportunity for Greenhouse Gases (GHG) reduction by integrating solar collectors to provide building heating load and domestic hot water (DHW). Despite the cold winter weather, Canada has a good number of sunny and clear days that can be considered for diurnal solar thermal energy storage. Due to the energy mismatch between building heating load and solar irradiation availability, relatively big storage tanks are usually needed to store solar thermal energy during the daytime and then use it at night. On the other hand, water tanks occupy huge space, especially in big cities, space is relatively expensive. This project investigates the possibility of using a specific building construction material (ICF – Insulated Concrete Form) as diurnal solar thermal energy storage that is integrated with a heat pump and microchannel solar thermal collector (MCST). Not much literature has studied the application of building pre-existing walls as active solar thermal energy storage as a feasible and industrialized solution for the solar thermal mismatch. By using ICF walls that are integrated into the building envelope, instead of big storage tanks, excess solar energy can be stored in the concrete of the ICF wall that consists of EPS insulation layers on both sides to store the thermal energy. In this study, two solar-based systems are designed and simulated inTransient Systems Simulation Program(TRNSYS)to compare ICF wall thermal storage benefits over the system without ICF walls. In this study, the heating load and DHW of a Canadian single-family house located in London, Ontario, are provided by solar-based systems. The proposed system integrates the MCST collector, a water-to-water HP, a preheat tank, the main tank, fan coils (to deliver the building heating load), and ICF walls. During the day, excess solar energy is stored in the ICF walls (charging cycle). Thermal energy can be restored from the ICF walls when the preheat tank temperature drops below the ICF wall (discharging process) to increase the COP of the heat pump. The evaporator of the heat pump is taking is coupled with the preheat tank. The provided warm water by the heat pump is stored in the second tank. Fan coil units are in contact with the tank to provide a building heating load. DHW is also delivered is provided from the main tank. It is investigated that the system with ICF walls with an average solar fraction of 82%- 88% can cover the whole heating demand+DHW of nine months and has a 10-15% higher average solar fraction than the system without ICF walls. Sensitivity analysis for different parameters influencing the solar fraction is discussed in detail.

Keywords: net-zero building, renewable energy, solar thermal storage, microchannel solar thermal collector

Procedia PDF Downloads 121
1469 Discovery of Two-dimensional Hexagonal MBene HfBO

Authors: Nanxi Miao, Junjie Wang

Abstract:

The discovery of 2D materials with distinct compositions and properties has been a research aim since the report of graphene. One of the latest members of the 2D material family is MXene, which is produced from the topochemical deintercalation of the A layer from a laminate MAX phase. Recently, analogous 2D MBenes (transitional metal borides) have been predicted by theoretical calculations as excellent alternatives in applications such as metal-ion batteries, magnetic devices, and catalysts. However, the practical applications of two-dimensional (2D) transition-metal borides (MBenes) have been severely hindered by the lack of accessible MBenes because of the difficulties in the selective etching of traditional ternary MAB phases with orthorhombic symmetry (ort-MAB). Here, we discover a family of ternary hexagonal MAB (h-MAB) phases and 2D hexagonal MBenes (h-MBenes) by ab initio predictions and experiments. Calculations suggest that the ternary h-MAB phases are more suitable precursors for MBenes than the ort-MAB phases. Based on the prediction, we report the experimental synthesis of h-MBene HfBO by selective removal of in from h-MAB Hf2InB2. The synthesized 2D HfBO delivered a specific capacity of 420 mAh g-1 as an anode material in lithium-ion batteries, demonstrating the potential for energy-storage applications. The discovery of this h-MBene HfBO added a new member to the growing family of 2D materials and provided opportunities for a wide range of novel applications.

Keywords: 2D materials, DFT calculations, high-throughput screening, lithium-ion batteries

Procedia PDF Downloads 73
1468 Effects of Concentrator and Encapsulated Phase Change Material for Desalination: An Experimental Study

Authors: Arunkumar Thirugnanasambantham, Velraj Ramalingam

Abstract:

An experimental attempt has been made to study the effect of system integration by two different concentrator assisted desalting systems. The compound parabolic concentrator (CPC) and compound conical concentrator (CCC) are used in this research work. Two solar desalination systems, the single slope solar still (SSSS) and pyramid solar still (PSS), have been integrated with a CCC and compound parabolic concentrator-concentric circular tubular solar still (CPC-CCTSS). To study the effect of system integration, a thick cloth prevents the entry of sunlight into the solar still top. Additionally, the concentrator assisted desalting systems are equipped with phase change material (PCM) for enhancement. In CCC-SSSS, PCM has been filled inside copper balls and placed on the SSSS basin. The PCM is loaded in the specially designed circular trough of the tubular solar still. Here, the used concentrators and distillers are not the same. Two methodologies are followed here to produce the fresh water even while the distillers are blocked from the sunlight. They are (1) thermosyphon effect in CCC-SSSS and (2) waste heat recovery from CPC-CCTSS. The results showed that the productivity of CCC-SSSS, CCC-SSSS with PCM and CCC-SSSS (PCM) top cover shaded were found as 2680 ml / m² / day, 3240 ml / m² / day, and 1646 ml / m² / day. Similarly, the productivity of the CPC-CCTSS-PSS, CPC-CCTSS (PCM)-PSS and CPC-CCTSS (PCM)-PSS top cover shaded were found as 7160 ml / m² / day, 7346 ml / m² / day, and ml / m² / day. The productivity of the CCC-SSSS and CPC-CCTSS-PSS is examined, and conclusions are drawn such as the solar radiation blocked distillers productivity did not drop to zero.

Keywords: compound conical concentrator, compound parabolic concentrator, desalination, system integration

Procedia PDF Downloads 261
1467 Adsorption Cooling Using Hybrid Energy Resources

Authors: R. Benelmir, M. El Kadri, A. Donnot, D. Descieux

Abstract:

HVAC represents a significant part of energy needs in buildings. Integrating renewable energy in cooling processes contributes to reducing primary energy consumption. Sorption refrigeration allows cold production through the use of solar/biomass/geothermal energy or even valuation of waste heat. This work presents an analysis of an experimental bench incorporating an adsorption chiller driven by hybrid energy resources associating solar thermal collectors with a cogeneration gas engine and a geothermal heat pump.

Keywords: solar cooling, cogeneration, geothermal heat pump, hybrid energy resources

Procedia PDF Downloads 360
1466 Photocapacitor Integrating Solar Energy Conversion and Energy Storage

Authors: Jihuai Wu, Zeyu Song, Zhang Lan, Liuxue Sun

Abstract:

Solar energy is clean, open, and infinite, but solar radiation on the earth is fluctuating, intermittent, and unstable. So, the sustainable utilization of solar energy requires a combination of high-efficient energy conversion and low-loss energy storage technologies. Hence, a photo capacitor integrated with photo-electrical conversion and electric-chemical storage functions in single device is a cost-effective, volume-effective and functional-effective optimal choice. However, owing to the multiple components, multi-dimensional structure and multiple functions in one device, especially the mismatch of the functional modules, the overall conversion and storage efficiency of the photocapacitors is less than 13%, which seriously limits the development of the integrated system of solar conversion and energy storage. To this end, two typical photocapacitors were studied. A three-terminal photocapacitor was integrated by using perovskite solar cell as solar conversion module and symmetrical supercapacitor as energy storage module. A function portfolio management concept was proposed the relationship among various efficiencies during photovoltaic conversion and energy storage process were clarified. By harmonizing the energy matching between conversion and storage modules and seeking the maximum power points coincide and the maximum efficiency points synchronize, the overall efficiency of the photocapacitor surpassed 18 %, and Joule efficiency was closed to 90%. A voltage adjustable hybrid supercapacitor (VAHSC) was designed as energy storage module, and two Si wafers in series as solar conversion module, a three-terminal photocapacitor was fabricated. The VAHSC effectively harmonizes the energy harvest and storage modules, resulting in the current, voltage, power, and energy match between both modules. The optimal photocapacitor achieved an overall efficiency of 15.49% and Joule efficiency of 86.01%, along with excellent charge/discharge cycle stability. In addition, the Joule efficiency (ηJoule) was defined as the energy ratio of discharge/charge of the devices for the first time.

Keywords: joule efficiency, perovskite solar cell, photocapacitor, silicon solar cell, supercapacitor

Procedia PDF Downloads 86
1465 Sustainable Development of Adsorption Solar Cooling Machine

Authors: N. Allouache, W. Elgahri, A. Gahfif, M. Belmedani

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are a good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs, such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber, that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space, and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.

Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system

Procedia PDF Downloads 78
1464 Assessment of the Thermal Performance of a Solar Heating System on an Agricultural Greenhouse Microclimate

Authors: Nora Arbaoui, Rachid Tadili

Abstract:

The substantial increase of areas cultivated under glasshouses compels the use of other natural heating and cooling procedures to make a profit as well as avoid both exorbitant fuel consumption and CO₂ emissions. This experimental study is designed to examine the functioning of a solar heating system that will increase positive consequences in terms of both quantity and quality while successfully enhancing greenhouse microclimate during wintertime. Those configurations have been tested in a miniaturized greenhouse simply after having optimized the operating parameters. These were noteworthy results when compared to an unheated witness greenhouse.

Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying

Procedia PDF Downloads 25
1463 A Data Driven Approach for the Degradation of a Lithium-Ion Battery Based on Accelerated Life Test

Authors: Alyaa M. Younes, Nermine Harraz, Mohammad H. Elwany

Abstract:

Lithium ion batteries are currently used for many applications including satellites, electric vehicles and mobile electronics. Their ability to store relatively large amount of energy in a limited space make them most appropriate for critical applications. Evaluation of the life of these batteries and their reliability becomes crucial to the systems they support. Reliability of Li-Ion batteries has been mainly considered based on its lifetime. However, another important factor that can be considered critical in many applications such as in electric vehicles is the cycle duration. The present work presents the results of an experimental investigation on the degradation behavior of a Laptop Li-ion battery (type TKV2V) and the effect of applied load on the battery cycle time. The reliability was evaluated using an accelerated life test. Least squares linear regression with median rank estimation was used to estimate the Weibull distribution parameters needed for the reliability functions estimation. The probability density function, failure rate and reliability function under each of the applied loads were evaluated and compared. An inverse power model is introduced that can predict cycle time at any stress level given.

Keywords: accelerated life test, inverse power law, lithium-ion battery, reliability evaluation, Weibull distribution

Procedia PDF Downloads 168
1462 High Thrust Upper Stage Solar Hydrogen Rocket Design

Authors: Maged Assem Soliman Mossallam

Abstract:

The conversion of solar thruster model to an upper stage hydrogen rocket is considered. Solar thruster categorization limits its capabilities to low and moderate thrust system with high specific impulse. The current study proposes a different concept for such systems by increasing the thrust which enables using as an upper stage rocket and for future launching purposes. A computational model for the thruster is discussed for solar thruster subsystems. The first module depends on ray tracing technique to determine the intercepted solar power by the hydrogen combustion chamber. The cavity receiver is modeled using finite volume technique. The final module imports the heated hydrogen properties to the nozzle using quasi one dimensional simulation. The probability of shock waves formulation inside the nozzle is almost diminished as the outlet pressure in space environment tends to zero. The computational model relates the high thrust hydrogen rocket conversion to the design parameters and operating conditions of the thruster. Three different designs for solar thruster systems are discussed. The first design is a low thrust high specific impulse design that produces about 10 Newton of thrust .The second one output thrust is about 250 Newton and the third design produces about 1000 Newton.

Keywords: space propulsion, hydrogen rocket, thrust, specific impulse

Procedia PDF Downloads 166
1461 The Impact of a Sustainable Solar System on the Growth of Strawberry Plants in an Agricultural Greenhouse

Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui

Abstract:

This study examines the effects of a solar-based heating system, in a north-‎south oriented agricultural greenhouse on the development of strawberry ‎plants during winter. This system relies on the circulation of water as a heat ‎transfer fluid in a closed circuit installed on the greenhouse roof to store heat ‎during the day and release it inside at night. A comparative experimental ‎study was conducted in two greenhouses, one experimental with the solar ‎heating system and the other for control without any heating system. Both ‎greenhouses are located on the terrace of the Solar Energy and Environment ‎Laboratory of the Mohammed V University in Rabat, Morocco. The devel-‎oped heating system consists of a copper coil inserted in double glazing and ‎placed on the roof of the greenhouse, a water pump circulator, a battery, and ‎a photovoltaic solar panel to power the electrical components. This inexpen-‎sive and environmentally friendly system allows the greenhouse to be heated ‎during the winter and improves its microclimate system. This improvement ‎resulted in an increase in the air temperature inside the experimental green-‎house by 6 °C and 8 °C, and a reduction in its relative humidity by 23% and ‎‎35% compared to the control greenhouse and the ambient air, respectively, ‎throughout the winter. For the agronomic performance, it was observed that ‎the production was 17 days earlier than in the control greenhouse.‎

Keywords: sustainability, solar energy, thermal energy storage.‎, greenhouse heating

Procedia PDF Downloads 37
1460 Water Irrigation in the Chlef Region Using Photovoltaic Solar Energy

Authors: T. Tahri, H. Zahloul, K. E. Meddah, H. Lazergue

Abstract:

This paper presents a theoretical study that leads to the design of a photovoltaic pumping system to irrigate six hectares of oranges in the valley of Chlef using the software "PVSYST". It was shown that the site of Chlef presents a favorable climate to this type of energy with an irradiation of over 5 kWh/m2/day, and significant resources underground water. Another very important coincidence still promotes the use of this type of energy for pumping water in Chlef is that the demand for water, especially in agriculture, peaked in hot and dry where it is precisely when one has access to the maximum of solar energy.

Keywords: solar energy, irradiation, water pumping, design, Valley of Chlef

Procedia PDF Downloads 250
1459 Study of Some Factors Effecting on Productivity of Solar Distillers

Authors: Keshek M.H, Mohamed M.A, El-Shafey M.A

Abstract:

The aim of this research was increasing the productivity of solar distillation. In order to reach this aim, a solar distiller was created with three glass sides sloping 30o at the horizontal level, and the experiments were carried out on the solar distillation unit during the period from 24th August, 2016 till 24th May, 2017 at the Agricultural Engineering and Bio Systems Department, Faculty of Agriculture, Menoufia University. Three gap lengths were used between the water level and the inner glass cover, those were 3, 6, and 9 cm. As the result of change the gap length between the water level and the inner glass cover the total volume of basins were changed from 15.5, 13, and 11 L, respectively. The total basin volume was divided to three sections, to investigate the effect of water volume. The three water volumes were 100%, 75%, and 50%. Every section was supplied with one, two, or three heaters. The one heater power was 15 W. The results showed that, by increasing the distance between the basins edge and the inner edge of the glass cover, an increase occurs in the percentage of temperature difference with maximum value was 52% at distance 9 cm from each edge, an increase occurs in the productivity with maximum productivity was 3.3 L/m2 at distance 9 cm from each edge and an increase occurs in the efficiency with maximum efficiency was 70% at distance 9 cm from each edge.

Keywords: distillation, solar energy, still productivity, efficiency

Procedia PDF Downloads 102
1458 Facile Synthesis of Copper Based Nanowires Suitable for Lithium Ion Battery Application

Authors: Zeinab Sanaee, Hossein Jafaripour

Abstract:

Copper is an excellent conductive material that is widely used in the energy devices such as Lithium-ion batteries and supercapacitors as the current collector. On the other hand, copper oxide nanowires have been used in these applications as potential electrode material. In this paper, nanowires of Copper and Copper oxide have been synthesized through a simple and time and cost-effective approach. The thermally grown Copper oxide nanowires have been converted into Copper nanowires through annealing in the Hydrogen atmosphere in a DC-PECVD system. To have a proper Copper nanostructure formation, an Au nanolayer was coated on the surface of Copper oxide nanowires. The results show the successful achievement of Copper nanowires without deformation or cracking. These structures have a great potential for Lithium-ion batteries and supercapacitors.

Keywords: Copper, Copper oxide, nanowires, Hydrogen annealing, Lithium ion battery

Procedia PDF Downloads 87
1457 Experimental Study for the Development of a Wireless Communication System in a Solar Central Tower Facility

Authors: Victor H. Benitez, Ramon V. Armas-Flores, Jesus H. Pacheco-Ramirez

Abstract:

Systems transforming solar energy into electrical power have emerged as a viable source of clean, renewable energy. Solar power tower technology is a good example of this type of system, which consists of several mobile mirrors, called heliostats, which reflect the sun's radiation to the same point, located on top of a tower at the center of heliostat field, for collection or transformation into another type of energy. The so-called Hermosillo’s Solar Platform (Plataforma Solar de Hermosillo, PSH, in Spanish) is a facility constituted with several heliostats, its aim and scope is for research purposes. In this paper, the implementation of a wireless communication system based on intelligent nodes is proposed in order to allow the communication and control of the heliostats in PSH. Intelligent nodes transmit information from one point to another, and can perform other actions that allow them to adapt to the conditions and limitations of a field of heliostats, thus achieving effective communication system. After deployment of the nodes in the heliostats, tests were conducted to measure the effectiveness of the communication, and determine the feasibility of using the proposed technologies. The test results were always positive, exceeding expectations held for its operation in the field of heliostats. Therefore, it was possible to validate the efficiency of the wireless communication system to be implemented in PSH, allowing communication and control of the heliostats.

Keywords: heliostat, intelligent node, solar energy, wireless communication

Procedia PDF Downloads 408
1456 Further Development of Offshore Floating Solar and Its Design Requirements

Authors: Madjid Karimirad

Abstract:

Floating solar was not very well-known in the renewable energy field a decade ago; however, there has been tremendous growth internationally with a Compound Annual Growth Rate (CAGR) of nearly 30% in recent years. To reach the goal of global net-zero emission by 2050, all renewable energy sources including solar should be used. Considering that 40% of the world’s population lives within 100 kilometres of the coasts, floating solar in coastal waters is an obvious energy solution. However, this requires more robust floating solar solutions. This paper tries to enlighten the fundamental requirements in the design of floating solar for offshore installations from the hydrodynamic and offshore engineering points of view. In this regard, a closer look at dynamic characteristics, stochastic behaviour and nonlinear phenomena appearing in this kind of structure is a major focus of the current article. Floating solar structures are alternative and very attractive green energy installations with (a) Less strain on land usage for densely populated areas; (b) Natural cooling effect with efficiency gain; and (c) Increased irradiance from the reflectivity of water. Also, floating solar in conjunction with the hydroelectric plants can optimise energy efficiency and improve system reliability. The co-locating of floating solar units with other types such as offshore wind, wave energy, tidal turbines as well as aquaculture (fish farming) can result in better ocean space usage and increase the synergies. Floating solar technology has seen considerable developments in installed capacities in the past decade. Development of design standards and codes of practice for floating solar technologies deployed on both inland water-bodies and offshore is required to ensure robust and reliable systems that do not have detrimental impacts on the hosting water body. Floating solar will account for 17% of all PV energy produced worldwide by 2030. To enhance the development, further research in this area is needed. This paper aims to discuss the main critical design aspects in light of the load and load effects that the floating solar platforms are subjected to. The key considerations in hydrodynamics, aerodynamics and simultaneous effects from the wind and wave load actions will be discussed. The link of dynamic nonlinear loading, limit states and design space considering the environmental conditions is set to enable a better understanding of the design requirements of fast-evolving floating solar technology.

Keywords: floating solar, offshore renewable energy, wind and wave loading, design space

Procedia PDF Downloads 79
1455 Numerical Simulation of a Solar Photovoltaic Panel Cooled by a Forced Air System

Authors: Djamila Nebbali, Rezki Nebbali, Ahmed Ouibrahim

Abstract:

This study focuses on the cooling of a photovoltaic panel (PV). Indeed, the cooling improves the conversion capacity of this one and maintains, under extreme conditions of air temperature, the panel temperature at an appreciable level which avoids the altering. To do this, a fan provides forced circulation of air. Because the fan is supplied by the panel, it is necessary to determine the optimum operating point that unites efficiency of the PV with the consumption of the fan. For this matter, numerical simulations are performed at varying mass flow rates of air, under two extreme air temperatures (50°C, 25°C) and a fixed solar radiation (1000 W.m2) in a case of no wind.

Keywords: energy conversion, efficiency, balance energy, solar cell

Procedia PDF Downloads 416
1454 Fabrication of Graphene Oxide Based Planar Hetero-Junction Perovskite Solar Cells

Authors: Khursheed Ahmad, Shaikh M. Mobin

Abstract:

In this work, we have developed a highly stable planar heterojunction perovskite solar cells (PSCs) with a architecture (ITO/GO/PEDOT:PSS/MAPbI3/PCBM/Carbon tape). The PSCs was fabricated under air using GO/PEDOT:PSS as hole transport layer while the carbon tape used as a back contact to complete the device. The fabricated PSCs device exhibited good stability and performance in terms of power conversion efficiency of 5.2%. The PSCs devices were exposed to ambient condition for 4 days which shows excellent stability confirmed by XRD analysis. We believed that the stability of the planar heterojunction perovskite solar cell may be due the presence of GO which inhibits the direct contact between PEDOT:PSS and MAPbI3.

Keywords: graphene oxide, perovskite solar cells, hole transport layer, PEDOT:PSS

Procedia PDF Downloads 181
1453 Charge Carrier Mobility Dependent Open-Circuit Voltage in Organic and Hybrid Solar Cells

Authors: David Ompong, Jai Singh

Abstract:

A better understanding of the open-circuit voltage (Voc) related losses in organic solar cells (OSCs) is desirable in order to assess the photovoltaic performance of these devices. We have derived Voc as a function of charge carrier mobilities (μe and μh) for organic and hybrid solar cells by optimizing the drift-diffusion current density. The optimum Voc thus obtained depends on the energy difference between the highest occupied molecular orbital (HOMO) level and the quasi-Fermi level of holes of the donor material. We have found that the Voc depends on the ratio of the electron (μe) and hole (μh) mobilities and when μh > μe the Voc increases. The most important loss term in the Voc arises from the energetics of the donor and acceptor materials, which will be discussed in detail in this paper.

Keywords: charge carrier mobility, open-circuit voltage, organic solar cells, quasi-fermi levels

Procedia PDF Downloads 449
1452 Validation of Solar PV Inverter Harmonics Behaviour at Different Power Levels in a Test Network

Authors: Wilfred Fritz

Abstract:

Grid connected solar PV inverters need to be compliant to standard regulations regarding unwanted harmonic generation. This paper gives an introduction to harmonics, solar PV inverter voltage regulation and balancing through compensation and investigates the behaviour of harmonic generation at different power levels. Practical measurements of harmonics and power levels with a power quality data logger were made, on a test network at a university in Germany. The test setup and test results are discussed. The major finding was that between the morning and afternoon load peak windows when the PV inverters operate under low solar insolation and low power levels, more unwanted harmonics are generated. This has a huge impact on the power quality of the grid as well as capital and maintenance costs. The design of a single-tuned harmonic filter towards harmonic mitigation is presented.

Keywords: harmonics, power quality, pulse width modulation, total harmonic distortion

Procedia PDF Downloads 239
1451 Analysis of Electricity Demand at Household Level Using Leap Model in Balochistan, Pakistan

Authors: Sheikh Saeed Ahmad

Abstract:

Electricity is vital for any state’s development that needs policy for planning the power network extension. This study is about simulation modeling for electricity in Balochistan province. Baseline data of electricity consumption was used of year 2004 and projected with the help of LEAP model up to subsequent 30 years. Three scenarios were created to run software. One scenario was baseline and other two were alternative or green scenarios i.e. solar and wind energy scenarios. Present study revealed that Balochistan has much greater potential for solar and wind energy for electricity production. By adopting these alternative energy forms, Balochistan can save energy in future nearly 23 and 48% by incorporating solar and wind power respectively. Thus, the study suggests to government planners, an aspect of integrating renewable sources in power system for ensuring sustainable development and growth.

Keywords: demand and supply, LEAP, solar energy, wind energy, households

Procedia PDF Downloads 426
1450 Study on the Integration Schemes and Performance Comparisons of Different Integrated Solar Combined Cycle-Direct Steam Generation Systems

Authors: Liqiang Duan, Ma Jingkai, Lv Zhipeng, Haifan Cai

Abstract:

The integrated solar combined cycle (ISCC) system has a series of advantages such as increasing the system power generation, reducing the cost of solar power generation, less pollutant and CO2 emission. In this paper, the parabolic trough collectors with direct steam generation (DSG) technology are considered to replace the heat load of heating surfaces in heat regenerator steam generation (HRSG) of a conventional natural gas combined cycle (NGCC) system containing a PG9351FA gas turbine and a triple pressure HRSG with reheat. The detailed model of the NGCC system is built in ASPEN PLUS software and the parabolic trough collectors with DSG technology is modeled in EBSILON software. ISCC-DSG systems with the replacement of single, two, three and four heating surfaces are studied in this paper. Results show that: (1) the ISCC-DSG systems with the replacement heat load of HPB, HPB+LPE, HPE2+HPB+HPS, HPE1+HPE2+ HPB+HPS are the best integration schemes when single, two, three and four stages of heating surfaces are partly replaced by the parabolic trough solar energy collectors with DSG technology. (2) Both the changes of feed water flow and the heat load of the heating surfaces in ISCC-DSG systems with the replacement of multi-stage heating surfaces are smaller than those in ISCC-DSG systems with the replacement of single heating surface. (3) ISCC-DSG systems with the replacement of HPB+LPE heating surfaces can increase the solar power output significantly. (4) The ISCC-DSG systems with the replacement of HPB heating surfaces has the highest solar-thermal-to-electricity efficiency (47.45%) and the solar radiation energy-to-electricity efficiency (30.37%), as well as the highest exergy efficiency of solar field (33.61%).

Keywords: HRSG, integration scheme, parabolic trough collectors with DSG technology, solar power generation

Procedia PDF Downloads 253
1449 A Study on Cleaning Mirror Technology with Reduced Water Consumption in a Solar Thermal Power Plant

Authors: Bayarjargal Enkhtaivan, Gao Wei, Zhang Yanping, He Guo Qiang

Abstract:

In our study, traditional cleaning mirror technology with reduced consumption of water in solar thermal power plants is investigated. In developed countries, a significant increase of growth and innovation in solar thermal power sector is evident since over the last decade. These power plants required higher water consumption, however, there are some complications to construct and operate such power plants under severe drought-inflicted areas like deserts where high water-deficit can be seen but sufficient solar energy is available. Designing new experimental equipments is the most important advantage of this study. These equipments can estimate various types of measurements at the mean time. In this study, Glasses were placed for 10 and 20 days at certain positions to deposit dusts on glass surface by using a common method. Dust deposited on glass surface was washed by experimental equipment and measured dust deposition on each glass. After that, experimental results were analyzed and concluded.

Keywords: concentrated solar power (CSP) plant, high-pressure water, test equipment of clean mirror, cleaning technology of glass and mirror

Procedia PDF Downloads 173
1448 3D Structuring of Thin Film Solid State Batteries for High Power Demanding Applications

Authors: Alfonso Sepulveda, Brecht Put, Nouha Labyedh, Philippe M. Vereecken

Abstract:

High energy and power density are the main requirements of today’s high demanding applications in consumer electronics. Lithium ion batteries (LIB) have the highest energy density of all known systems and are thus the best choice for rechargeable micro-batteries. Liquid electrolyte LIBs present limitations in safety, size and design, thus thin film all-solid state batteries are predominantly considered to overcome these restrictions in small devices. Although planar all-solid state thin film LIBs are at present commercially available they have low capacity (<1mAh/cm2) which limits their application scenario. By using micro-or nanostructured surfaces (i.e. 3D batteries) and appropriate conformal coating technology (i.e. electrochemical deposition, ALD) the capacity can be increased while still keeping a high rate performance. The main challenges in the introduction of solid-state LIBs are low ionic conductance and limited cycle life time due to mechanical stress and shearing interfaces. Novel materials and innovative nanostructures have to be explored in order to overcome these limitations. Thin film 3D compatible materials need to provide with the necessary requirements for functional and viable thin-film stacks. Thin film electrodes offer shorter Li-diffusion paths and high gravimetric and volumetric energy densities which allow them to be used at ultra-fast charging rates while keeping their complete capacities. Thin film electrolytes with intrinsically high ion conductivity (~10-3 S.cm) do exist, but are not electrochemically stable. On the other hand, electronically insulating electrolytes with a large electrochemical window and good chemical stability are known, but typically have intrinsically low ionic conductivities (<10-6 S cm). In addition, there is the need for conformal deposition techniques which can offer pinhole-free coverage over large surface areas with large aspect ratio features for electrode, electrolyte and buffer layers. To tackle the scaling of electrodes and the conformal deposition requirements on future 3D batteries we study LiMn2O4 (LMO) and Li4Ti5O12 (LTO). These materials are among the most interesting electrode candidates for thin film batteries offering low cost, low toxicity, high voltage and high capacity. LMO and LTO are considered 3D compatible materials since they can be prepared through conformal deposition techniques. Here, we show the scaling effects on rate performance and cycle stability of thin film cathode layers of LMO created by RF-sputtering. Planar LMO thin films below 100 nm have been electrochemically characterized. The thinnest films show the highest volumetric capacity and the best cycling stability. The increased stability of the films below 50 nm allows cycling in both the 4 and 3V potential region, resulting in a high volumetric capacity of 1.2Ah/cm3. Also, the creation of LTO anode layers through a post-lithiation process of TiO2 is demonstrated here. Planar LTO thin films below 100 nm have been electrochemically characterized. A 70 nm film retains 85% of its original capacity after 100 (dis)charging cycles at 10C. These layers can be implemented into a high aspect ratio structures. IMEC develops high aspect Si pillars arrays which is the base for the advance of 3D thin film all-solid state batteries of future technologies.

Keywords: Li-ion rechargeable batteries, thin film, nanostructures, rate performance, 3D batteries, all-solid state

Procedia PDF Downloads 338
1447 A Three-Dimensional TLM Simulation Method for Thermal Effect in PV-Solar Cells

Authors: R. Hocine, A. Boudjemai, A. Amrani, K. Belkacemi

Abstract:

Temperature rising is a negative factor in almost all systems. It could cause by self heating or ambient temperature. In solar photovoltaic cells this temperature rising affects on the behavior of cells. The ability of a PV module to withstand the effects of periodic hot-spot heating that occurs when cells are operated under reverse biased conditions is closely related to the properties of the cell semi-conductor material. In addition, the thermal effect also influences the estimation of the maximum power point (MPP) and electrical parameters for the PV modules, such as maximum output power, maximum conversion efficiency, internal efficiency, reliability, and lifetime. The cells junction temperature is a critical parameter that significantly affects the electrical characteristics of PV modules. For practical applications of PV modules, it is very important to accurately estimate the junction temperature of PV modules and analyze the thermal characteristics of the PV modules. Once the temperature variation is taken into account, we can then acquire a more accurate MPP for the PV modules, and the maximum utilization efficiency of the PV modules can also be further achieved. In this paper, the three-Dimensional Transmission Line Matrix (3D-TLM) method was used to map the surface temperature distribution of solar cells while in the reverse bias mode. It was observed that some cells exhibited an inhomogeneity of the surface temperature resulting in localized heating (hot-spot). This hot-spot heating causes irreversible destruction of the solar cell structure. Hot spots can have a deleterious impact on the total solar modules if individual solar cells are heated. So, the results show clearly that the solar cells are capable of self-generating considerable amounts of heat that should be dissipated very quickly to increase PV module's lifetime.

Keywords: thermal effect, conduction, heat dissipation, thermal conductivity, solar cell, PV module, nodes, 3D-TLM

Procedia PDF Downloads 387
1446 Customized Cow’s Urine Battery Using MnO2 Depolarizer

Authors: Raj Kumar Rajak, Bharat Mishra

Abstract:

Bio-battery represents an entirely new long term, reasonable, reachable and ecofriendly approach to production of sustainable energy. Types of batteries have been developed using MnO2 in various ways. MnO2 is suitable with physical, chemical, electrochemical, and catalytic properties, serving as an effective cathodic depolarizer and may be considered as being the life blood of the battery systems. In the present experimental work, we have studied the effect of generation of power by bio-battery using different concentrations of MnO2. The tests show that it is possible to generate electricity using cow’s urine as an electrolyte. After ascertaining the optimum concentration of MnO2, various battery parameters and performance indicates that cow urine solely produces power of 695 mW, while a combination with MnO2 (40%) enhances power of bio-battery, i.e. 1377 mW. On adding more and more MnO2 to the electrolyte, the power suppressed because inflation of internal resistance. The analysis of the data produced from experiment shows that MnO2 is quite suitable to energize the bio-battery.

Keywords: bio-batteries, cow’s urine, manganese dioxide, non-conventional

Procedia PDF Downloads 261
1445 Validation and Projections for Solar Radiation up to 2100: HadGEM2-AO Global Circulation Model

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini

Abstract:

The objective of this work is to evaluate the results of solar radiation projections between 2006 and 2013 for the state of Rio Grande do Sul, Brazil. The projections are provided by the General Circulation Models (MCGs) belonging to the Coupled Model Intercomparison Phase 5 (CMIP5). In all, the results of the simulation of six models are evaluated, compared to monthly data, measured by a network of thirteen meteorological stations of the National Meteorological Institute (INMET). The performance of the models is evaluated by the Nash coefficient and the Bias. The results are presented in the form of tables, graphs and spatialization maps. The ACCESS1-0 RCP 4.5 model presented the best results for the solar radiation simulations, for the most optimistic scenario, in much of the state. The efficiency coefficients (CEF) were between 0.95 and 0.98. In the most pessimistic scenario, HADGen2-AO RCP 8.5 had the best accuracy among the analyzed models, presenting coefficients of efficiency between 0.94 and 0.98. From this validation, solar radiation projection maps were elaborated, indicating a seasonal increase of this climatic variable in some regions of the Brazilian territory, mainly in the spring.

Keywords: climate change, projections, solar radiation, validation

Procedia PDF Downloads 206
1444 Reactive Power Control Strategy for Z-Source Inverter Based Reconfigurable Photovoltaic Microgrid Architectures

Authors: Reshan Perera, Sarith Munasinghe, Himali Lakshika, Yasith Perera, Hasitha Walakadawattage, Udayanga Hemapala

Abstract:

This research presents a reconfigurable architecture for residential microgrid systems utilizing Z-Source Inverter (ZSI) to optimize solar photovoltaic (SPV) system utilization and enhance grid resilience. The proposed system addresses challenges associated with high solar power penetration through various modes, including current control, voltage-frequency control, and reactive power control. It ensures uninterrupted power supply during grid faults, providing flexibility and reliability for grid-connected SPV customers. Challenges and opportunities in reactive power control for microgrids are explored, with simulation results and case studies validating proposed strategies. From a control and power perspective, the ZSI-based inverter enhances safety, reduces failures, and improves power quality compared to traditional inverters. Operating seamlessly in grid-connected and islanded modes guarantees continuous power supply during grid disturbances. Moreover, the research addresses power quality issues in long distribution feeders during off-peak and night-peak hours or fault conditions. Using the Distributed Static Synchronous Compensator (DSTATCOM) for voltage stability, the control objective is nighttime voltage regulation at the Point of Common Coupling (PCC). In this mode, disconnection of PV panels, batteries, and the battery controller allows the ZSI to operate in voltage-regulating mode, with critical loads remaining connected. The study introduces a structured controller for Reactive Power Controlling mode, contributing to a comprehensive and adaptable solution for residential microgrid systems. Mathematical modeling and simulations confirm successful maximum power extraction, controlled voltage, and smooth voltage-frequency regulation.

Keywords: reconfigurable architecture, solar photovoltaic, microgrids, z-source inverter, STATCOM, power quality, battery storage system

Procedia PDF Downloads 8
1443 Hydrodynamic Analysis with Heat Transfer in Solid Gas Fluidized Bed Reactor for Solar Thermal Applications

Authors: Sam Rasoulzadeh, Atefeh Mousavi

Abstract:

Fluidized bed reactors are known as highly exothermic and endothermic according to uniformity in temperature as a safe and effective mean for catalytic reactors. In these reactors, a wide range of catalyst particles can be used and by using a continuous operation proceed to produce in succession. Providing optimal conditions for the operation of these types of reactors will prevent the exorbitant costs necessary to carry out laboratory work. In this regard, a hydrodynamic analysis was carried out with heat transfer in the solid-gas fluidized bed reactor for solar thermal applications. The results showed that in the fluid flow the input of the reactor has a lower temperature than the outlet, and when the fluid is passing from the reactor, the heat transfer happens between cylinder and solar panel and fluid. It increases the fluid temperature in the outlet pump and also the kinetic energy of the fluid has been raised in the outlet areas.

Keywords: heat transfer, solar reactor, fluidized bed reactor, CFD, computational fluid dynamics

Procedia PDF Downloads 180