Search results for: socioeconomic features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4421

Search results for: socioeconomic features

4061 Indicators to Assess the Quality of Health Services

Authors: Muyatdinova Aigul, Aitkaliyeva Madina

Abstract:

The article deals with the evaluation of the quality of medical services on the basis of quality indicators. For this purpose allocated initially the features of the medical services market. The Features of the market directly affect on the evaluation process that takes a multi-level and multi-stakeholder nature. Unlike ordinary goods market assessment of medical services does not only market. Such an assessment is complemented by continuous internal and external evaluation, including experts and accrediting bodies. In the article highlighted the composition of indicators for a comprehensive evaluation

Keywords: health care market, quality of health services, indicators of care quality

Procedia PDF Downloads 437
4060 Analysis of the Role of Population Ageing on Crosstown Roads' Traffic Accidents Using Latent Class Clustering

Authors: N. Casado-Sanz, B. Guirao

Abstract:

The population aged 65 and over is projected to double in the coming decades. Due to this increase, driver population is expected to grow and in the near future, all countries will be faced with population aging of varying intensity and in unique time frames. This is the greatest challenge facing industrialized nations and due to this fact, the study of the relationships of dependency between population aging and road safety is becoming increasingly relevant. Although the deterioration of driving skills in the elderly has been analyzed in depth, to our knowledge few research studies have focused on the road infrastructure and the mobility of this particular group of users. In Spain, crosstown roads have one of the highest fatality rates. These rural routes have a higher percentage of elderly people who are more dependent on driving due to the absence or limitations of urban public transportation. Analysing road safety in these routes is very complex because of the variety of the features, the dispersion of the data and the complete lack of related literature. The objective of this paper is to identify key factors that cause traffic accidents. The individuals under study were the accidents with killed or seriously injured in Spanish crosstown roads during the period 2006-2015. Latent cluster analysis was applied as a preliminary tool for segmentation of accidents, considering population aging as the main input among other socioeconomic indicators. Subsequently, a linear regression analysis was carried out to estimate the degree of dependence between the accident rate and the variables that define each group. The results show that segmenting the data is very interesting and provides further information. Additionally, the results revealed the clear influence of the aging variable in the clusters obtained. Other variables related to infrastructure and mobility levels, such as the crosstown roads layout and the traffic intensity aimed to be one of the key factors in the causality of road accidents.

Keywords: cluster analysis, population ageing, rural roads, road safety

Procedia PDF Downloads 113
4059 HTML5 Online Learning Application with Offline Web, Location Based, Animated Web, Multithread, and Real-Time Features

Authors: Sheetal R. Jadhwani, Daisy Sang, Chang-Shyh Peng

Abstract:

Web applications are an integral part of modem life. They are mostly based upon the HyperText Markup Language (HTML). While HTML meets the basic needs, there are some shortcomings. For example, applications can cease to work once user goes offline, real-time updates may be lagging, and user interface can freeze on computationally intensive tasks. The latest language specification HTML5 attempts to rectify the situation with new tools and protocols. This paper studies the new Web Storage, Geolocation, Web Worker, Canvas, and Web Socket APIs, and presents applications to test their features and efficiencies.

Keywords: HTML5, web worker, canvas, web socket

Procedia PDF Downloads 301
4058 Multi-Granularity Feature Extraction and Optimization for Pathological Speech Intelligibility Evaluation

Authors: Chunying Fang, Haifeng Li, Lin Ma, Mancai Zhang

Abstract:

Speech intelligibility assessment is an important measure to evaluate the functional outcomes of surgical and non-surgical treatment, speech therapy and rehabilitation. The assessment of pathological speech plays an important role in assisting the experts. Pathological speech usually is non-stationary and mutational, in this paper, we describe a multi-granularity combined feature schemes, and which is optimized by hierarchical visual method. First of all, the difference granularity level pathological features are extracted which are BAFS (Basic acoustics feature set), local spectral characteristics MSCC (Mel s-transform cepstrum coefficients) and nonlinear dynamic characteristics based on chaotic analysis. Latterly, radar chart and F-score are proposed to optimize the features by the hierarchical visual fusion. The feature set could be optimized from 526 to 96-dimensions.The experimental results denote that new features by support vector machine (SVM) has the best performance, with a recognition rate of 84.4% on NKI-CCRT corpus. The proposed method is thus approved to be effective and reliable for pathological speech intelligibility evaluation.

Keywords: pathological speech, multi-granularity feature, MSCC (Mel s-transform cepstrum coefficients), F-score, radar chart

Procedia PDF Downloads 283
4057 Programming with Grammars

Authors: Peter M. Maurer Maurer

Abstract:

DGL is a context free grammar-based tool for generating random data. Many types of simulator input data require some computation to be placed in the proper format. For example, it might be necessary to generate ordered triples in which the third element is the sum of the first two elements, or it might be necessary to generate random numbers in some sorted order. Although DGL is universal in computational power, generating these types of data is extremely difficult. To overcome this problem, we have enhanced DGL to include features that permit direct computation within the structure of a context free grammar. The features have been implemented as special types of productions, preserving the context free flavor of DGL specifications.

Keywords: DGL, Enhanced Context Free Grammars, Programming Constructs, Random Data Generation

Procedia PDF Downloads 149
4056 Geomorphology of Karst Features of Shiraz City and Arjan Plain and Development Limitations

Authors: Meysam Jamali, Ebrahim Moghimi, Zean Alabden Jafarpour

Abstract:

Karst term is the determiner of a variety of areas or landforms and unique perspectives that have been formed in result of the ingredients dissolution of rocks constituter by natural waters. Shiraz area with an area of 5322km2 is located in the simple folded belt in the southern part of Zagros Mountain of Fars, and is surrounded with Limestone Mountains (Asmari formation). Shiraz area is located in Calcareous areas. The Infrastructure of this city is lime and absorbing wells that the city has, can influence on the Limestone dissolution and those accelerate its rate and increases the cavitation below the surface. Dasht-e Arjan is a graben, which has been created as the result of activity of two normal faults in its east and west sides. It is a complete sample of Karst plains (Polje) which has been created with the help of tectonic forces (fault) and dissolution process of water in Asmari limestone formation. It is located 60km. off south west of Shiraz (on Kazeroon-Shiraz road). In 1971, UNESCO has recognized this plain as a reserve of biosphere. It is considered as one of the world’s most beautiful geological phenomena, so that most of the world’s geologists are interested in visiting this place. The purpose of this paper is to identify and introduce landscapes of Karst features shiraz city and Dasht-e Arjan including Karst dissolution features (Lapiez, Karst springs, dolines, caves, underground caves, ponors, and Karst valleys), anticlines and synclines, and Arjan Lake, which are studied in this paper.

Keywords: Dasht-eArjan, fault, Karst features, polje, Shiraz city, Zagros

Procedia PDF Downloads 421
4055 Digital Forgery Detection by Signal Noise Inconsistency

Authors: Bo Liu, Chi-Man Pun

Abstract:

A novel technique for digital forgery detection by signal noise inconsistency is proposed in this paper. The forged area spliced from the other picture contains some features which may be inconsistent with the rest part of the image. Noise pattern and the level is a possible factor to reveal such inconsistency. To detect such noise discrepancies, the test picture is initially segmented into small pieces. The noise pattern and level of each segment are then estimated by using various filters. The noise features constructed in this step are utilized in energy-based graph cut to expose forged area in the final step. Experimental results show that our method provides a good illustration of regions with noise inconsistency in various scenarios.

Keywords: forgery detection, splicing forgery, noise estimation, noise

Procedia PDF Downloads 462
4054 Pineapple Patriarch: Local Agency in Sustainability Initiatives despite Community Reliance on Pineapple Monoculture

Authors: Afshan Golriz

Abstract:

This paper addresses the nuances in the relationship between the rural community of Volcan, Costa Rica, and the presence of multinational pineapple giant Pineapple Development Corporation (PINDECO). The paper analyzes the continuous negotiation between the need for environmental protection in the face of pineapple monoculture and the socioeconomic dependencies of the community on the company. Drawing on eight years of ethnographic work in Volcan de Buenos Aires and relying on intergenerational interviews that document oral histories, this article provides a socio-historical account of the economic and environmental impact of the presence of PINDECO in the southern zone of the country. The paper draws on interviews and in-depth participant observation, conducted by the author in intermittent periods over eight years. The research sheds light on the tensions between the village and PINDECO, as simultaneous acceptance of and opposition to the company persist by different stakeholders in the region. In doing so, this paper examines the strikingly powerful affinity toward the company and the community's regard for PINDECO as the town patriarch despite social and environmental injustices. In demonstrating these tensions, the author problematizes the practice of conducting foreign environmental research in developing countries, and more importantly, proposing changes to environmental conservation and socioeconomic structures without understanding community reliance on the presence of corporations such as PINDECO and the threats that changes to existing structures could pose to community members' livelihoods. In complicating these common western academic practices, the author takes an anti-colonial approach to environmental research, refusing the assumption that the affinity toward the company by the community of Volcan is rooted in ignorance, lack of education, or lack of interest in environmental conservation. The author instead highlights local knowledge and agency, demonstrating the many ways in which the community itself is producing knowledge and taking action. Through this paper, common assumptions regarding the agency of such communities are contested, and the grassroots environmental initiatives of Volcan, Costa Rica are brought to life.

Keywords: environmental conservation, grassroots movements, local knowledge, agricultural multinational

Procedia PDF Downloads 136
4053 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network

Authors: Yuntao Liu, Lei Wang, Haoran Xia

Abstract:

Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.

Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability

Procedia PDF Downloads 71
4052 A Feature Clustering-Based Sequential Selection Approach for Color Texture Classification

Authors: Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Rachid Oulad Haj Thami, Sana El Fkihi

Abstract:

Color and texture are highly discriminant visual cues that provide an essential information in many types of images. Color texture representation and classification is therefore one of the most challenging problems in computer vision and image processing applications. Color textures can be represented in different color spaces by using multiple image descriptors which generate a high dimensional set of texture features. In order to reduce the dimensionality of the feature set, feature selection techniques can be used. The goal of feature selection is to find a relevant subset from an original feature space that can improve the accuracy and efficiency of a classification algorithm. Traditionally, feature selection is focused on removing irrelevant features, neglecting the possible redundancy between relevant ones. This is why some feature selection approaches prefer to use feature clustering analysis to aid and guide the search. These techniques can be divided into two categories. i) Feature clustering-based ranking algorithm uses feature clustering as an analysis that comes before feature ranking. Indeed, after dividing the feature set into groups, these approaches perform a feature ranking in order to select the most discriminant feature of each group. ii) Feature clustering-based subset search algorithms can use feature clustering following one of three strategies; as an initial step that comes before the search, binded and combined with the search or as the search alternative and replacement. In this paper, we propose a new feature clustering-based sequential selection approach for the purpose of color texture representation and classification. Our approach is a three step algorithm. First, irrelevant features are removed from the feature set thanks to a class-correlation measure. Then, introducing a new automatic feature clustering algorithm, the feature set is divided into several feature clusters. Finally, a sequential search algorithm, based on a filter model and a separability measure, builds a relevant and non redundant feature subset: at each step, a feature is selected and features of the same cluster are removed and thus not considered thereafter. This allows to significantly speed up the selection process since large number of redundant features are eliminated at each step. The proposed algorithm uses the clustering algorithm binded and combined with the search. Experiments using a combination of two well known texture descriptors, namely Haralick features extracted from Reduced Size Chromatic Co-occurence Matrices (RSCCMs) and features extracted from Local Binary patterns (LBP) image histograms, on five color texture data sets, Outex, NewBarktex, Parquet, Stex and USPtex demonstrate the efficiency of our method compared to seven of the state of the art methods in terms of accuracy and computation time.

Keywords: feature selection, color texture classification, feature clustering, color LBP, chromatic cooccurrence matrix

Procedia PDF Downloads 138
4051 Anthropomorphic Brand Mascot Serve as the Vehicle: To Quickly Remind Customers Who You Are and What You Stand for in Indian Cultural Context

Authors: Preeti Yadav, Dandeswar Bisoyi, Debkumar Chakrabati

Abstract:

For many years organization have been exercising a creative technique of applying brand mascots, which results in making a visual ‘ambassador’ of a brand. The goal of mascot’s is just not confined to strengthening the brand identity, improving customer perception, but also acting as a vehicle of anthropomorphic translation towards the consumer. Such that it helps in embracing the power of recognition and processing the experiences happening in our daily lives. The study examines the relationship between the specific mascot features and brand attitude. It eliminates that mascot trust is an important mediator of the mascot features on brand attitude. Anthropomorphic characters turn out to be the key players despite the application of brand mascots in today’s marketing.

Keywords: advertising, mascot, branding, recall

Procedia PDF Downloads 336
4050 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction

Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh

Abstract:

Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.

Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction

Procedia PDF Downloads 173
4049 Sensitivity to Misusing Verb Inflections in Both Finite and Non-Finite Clauses in Native and Non-Native Russian: A Self-Paced Reading Investigation

Authors: Yang Cao

Abstract:

Analyzing the oral production of Chinese-speaking learners of English as a second language (L2), we can find a large variety of verb inflections – Why does it seem so hard for them to use consistent correct past morphologies in obligatory past contexts? Failed Functional Features Hypothesis (FFFH) attributes the rather non-target-like performance to the absence of [±past] feature in their L1 Chinese, arguing that for post puberty learners, new features in L2 are no more accessible. By contrast, Missing Surface Inflection Hypothesis (MSIH) tends to believe that all features are actually acquirable for late L2 learners, while due to the mapping difficulties from features to forms, it is hard for them to realize the consistent past morphologies on the surface. However, most of the studies are limited to the verb morphologies in finite clauses and few studies have ever attempted to figure out these learners’ performance in non-finite clauses. Additionally, it has been discussed that Chinese learners may be able to tell the finite/infinite distinction (i.e. the [±finite] feature might be selected in Chinese, even though the existence of [±past] is denied). Therefore, adopting a self-paced reading task (SPR), the current study aims to analyze the processing patterns of Chinese-speaking learners of L2 Russian, in order to find out if they are sensitive to misuse of tense morphologies in both finite and non-finite clauses and whether they are sensitive to the finite/infinite distinction presented in Russian. The study targets L2 Russian due to its systematic morphologies in both present and past tenses. A native Russian group, as well as a group of English-speaking learners of Russian, whose L1 has definitely selected both [±finite] and [±past] features, will also be involved. By comparing and contrasting performance of the three language groups, the study is going to further examine and discuss the two theories, FFFH and MSIH. Preliminary hypotheses are: a) Russian native speakers are expected to spend longer time reading the verb forms which violate the grammar; b) it is expected that Chinese participants are, at least, sensitive to the misuse of inflected verbs in non-finite clauses, although no sensitivity to the misuse of infinitives in finite clauses might be found. Therefore, an interaction of finite and grammaticality is expected to be found, which indicate that these learners are able to tell the finite/infinite distinction; and c) having selected [±finite] and [±past], English-speaking learners of Russian are expected to behave target-likely, supporting L1 transfer.

Keywords: features, finite clauses, morphosyntax, non-finite clauses, past morphologies, present morphologies, Second Language Acquisition, self-paced reading task, verb inflections

Procedia PDF Downloads 110
4048 Design for Metal Additive Manufacturing: An Investigation of Key Design Application on Electron Beam Melting

Authors: Wadea Ameen, Abdulrahman Al-Ahmari, Osama Abdulhameed

Abstract:

Electron beam melting (EBM) is one of the modern additive manufacturing (AM) technologies. In EBM, the electron beam melts metal powder into a fully solid part layer by layer. Since EBM is a new technology, most designers are unaware of the capabilities and the limitations of EBM technology. Also, many engineers are facing many challenges to utilize the technology because of a lack of design rules for the technology. The aim of this study is to identify the capabilities and the limitations of EBM technology in fabrication of small features and overhang structures and develop a design rules that need to be considered by designers and engineers. In order to achieve this objective, a series of experiments are conducted. Several features having varying sizes were designed, fabricated, and evaluated to determine their manufacturability limits. In general, the results showed the capabilities and limitations of the EBM technology in fabrication of the small size features and the overhang structures. In the end, the results of these investigation experiments are used to develop design rules. Also, the results showed the importance of developing design rules for AM technologies in increasing the utilization of these technologies.

Keywords: additive manufacturing, design for additive manufacturing, electron beam melting, self-supporting overhang

Procedia PDF Downloads 149
4047 A Methodology for Developing New Technology Ideas to Avoid Patent Infringement: F-Term Based Patent Analysis

Authors: Kisik Song, Sungjoo Lee

Abstract:

With the growing importance of intangible assets recently, the impact of patent infringement on the business of a company has become more evident. Accordingly, it is essential for firms to estimate the risk of patent infringement risk before developing a technology and create new technology ideas to avoid the risk. Recognizing the needs, several attempts have been made to help develop new technology opportunities and most of them have focused on identifying emerging vacant technologies from patent analysis. In these studies, the IPC (International Patent Classification) system or keywords from text-mining application to patent documents was generally used to define vacant technologies. Unlike those studies, this study adopted F-term, which classifies patent documents according to the technical features of the inventions described in them. Since the technical features are analyzed by various perspectives by F-term, F-term provides more detailed information about technologies compared to IPC while more systematic information compared to keywords. Therefore, if well utilized, it can be a useful guideline to create a new technology idea. Recognizing the potential of F-term, this paper aims to suggest a novel approach to developing new technology ideas to avoid patent infringement based on F-term. For this purpose, we firstly collected data about F-term and then applied text-mining to the descriptions about classification criteria and attributes. From the text-mining results, we could identify other technologies with similar technical features of the existing one, the patented technology. Finally, we compare the technologies and extract the technical features that are commonly used in other technologies but have not been used in the existing one. These features are presented in terms of “purpose”, “function”, “structure”, “material”, “method”, “processing and operation procedure” and “control means” and so are useful for creating new technology ideas that help avoid infringing patent rights of other companies. Theoretically, this is one of the earliest attempts to adopt F-term to patent analysis; the proposed methodology can show how to best take advantage of F-term with the wealth of technical information. In practice, the proposed methodology can be valuable in the ideation process for successful product and service innovation without infringing the patents of other companies.

Keywords: patent infringement, new technology ideas, patent analysis, F-term

Procedia PDF Downloads 270
4046 Production Cement Mortar and Concrete by Using Nano Clay

Authors: Mohammad Ashraf, Kawther Mohamed

Abstract:

This research tackles a new kind of additions (Nano Clay) and its effect on the features of concrete and both fresh and hardened cement mortar, as well as setting an optimal percentage of adding it to achieve the desired results and obtain on a strong concrete and mortar can be used for skyscrapers. The cementations additions are mineral materials in the form of a fine powder, added to concrete or cement mortar as partly cement substitutes, which means to be added instead of an equivalent amount of cement in order to improve and enhance some features of concrete or both the newly made and hardened cementations materials.

Keywords: nano clay in structure engineering, nanotechnology in construction industry, advanced additions in concrete, special concrete for skyscrapers

Procedia PDF Downloads 334
4045 Triangular Geometric Feature for Offline Signature Verification

Authors: Zuraidasahana Zulkarnain, Mohd Shafry Mohd Rahim, Nor Anita Fairos Ismail, Mohd Azhar M. Arsad

Abstract:

Handwritten signature is accepted widely as a biometric characteristic for personal authentication. The use of appropriate features plays an important role in determining accuracy of signature verification; therefore, this paper presents a feature based on the geometrical concept. To achieve the aim, triangle attributes are exploited to design a new feature since the triangle possesses orientation, angle and transformation that would improve accuracy. The proposed feature uses triangulation geometric set comprising of sides, angles and perimeter of a triangle which is derived from the center of gravity of a signature image. For classification purpose, Euclidean classifier along with Voting-based classifier is used to verify the tendency of forgery signature. This classification process is experimented using triangular geometric feature and selected global features. Based on an experiment that was validated using Grupo de Senales 960 (GPDS-960) signature database, the proposed triangular geometric feature achieves a lower Average Error Rates (AER) value with a percentage of 34% as compared to 43% of the selected global feature. As a conclusion, the proposed triangular geometric feature proves to be a more reliable feature for accurate signature verification.

Keywords: biometrics, euclidean classifier, features extraction, offline signature verification, voting-based classifier

Procedia PDF Downloads 379
4044 Biimodal Biometrics System Using Fusion of Iris and Fingerprint

Authors: Attallah Bilal, Hendel Fatiha

Abstract:

This paper proposes the bimodal biometrics system for identity verification iris and fingerprint, at matching score level architecture using weighted sum of score technique. The features are extracted from the pre processed images of iris and fingerprint. These features of a query image are compared with those of a database image to obtain matching scores. The individual scores generated after matching are passed to the fusion module. This module consists of three major steps i.e., normalization, generation of similarity score and fusion of weighted scores. The final score is then used to declare the person as genuine or an impostor. The system is tested on CASIA database and gives an overall accuracy of 91.04% with FAR of 2.58% and FRR of 8.34%.

Keywords: iris, fingerprint, sum rule, fusion

Procedia PDF Downloads 370
4043 Electroencephalogram Based Approach for Mental Stress Detection during Gameplay with Level Prediction

Authors: Priyadarsini Samal, Rajesh Singla

Abstract:

Many mobile games come with the benefits of entertainment by introducing stress to the human brain. In recognizing this mental stress, the brain-computer interface (BCI) plays an important role. It has various neuroimaging approaches which help in analyzing the brain signals. Electroencephalogram (EEG) is the most commonly used method among them as it is non-invasive, portable, and economical. Here, this paper investigates the pattern in brain signals when introduced with mental stress. Two healthy volunteers played a game whose aim was to search hidden words from the grid, and the levels were chosen randomly. The EEG signals during gameplay were recorded to investigate the impacts of stress with the changing levels from easy to medium to hard. A total of 16 features of EEG were analyzed for this experiment which includes power band features with relative powers, event-related desynchronization, along statistical features. Support vector machine was used as the classifier, which resulted in an accuracy of 93.9% for three-level stress analysis; for two levels, the accuracy of 92% and 98% are achieved. In addition to that, another game that was similar in nature was played by the volunteers. A suitable regression model was designed for prediction where the feature sets of the first and second game were used for testing and training purposes, respectively, and an accuracy of 73% was found.

Keywords: brain computer interface, electroencephalogram, regression model, stress, word search

Procedia PDF Downloads 188
4042 A Drawing Software for Designers: AutoCAD

Authors: Mayar Almasri, Rosa Helmi, Rayana Enany

Abstract:

This report describes the features of AutoCAD software released by Adobe. It explains how the program makes it easier for engineers and designers and reduces their time and effort spent using AutoCAD. Moreover, it highlights how AutoCAD works, how some of the commands used in it, such as Shortcut, make it easy to use, and features that make it accurate in measurements. The results of the report show that most users of this program are designers and engineers, but few people know about it and find it easy to use. They prefer to use it because it is easy to use, and the shortcut commands shorten a lot of time for them. The feature got a high rate and some suggestions for improving AutoCAD in Aperture, but it was a small percentage, and the highest percentage was that they didn't need to improve the program, and it was good.

Keywords: artificial intelligence, design, planning, commands, autodesk, dimensions

Procedia PDF Downloads 132
4041 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification

Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh

Abstract:

Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.

Keywords: cancer classification, feature selection, deep learning, genetic algorithm

Procedia PDF Downloads 112
4040 The Effects of Subjective and Objective Indicators of Inequality on Life Satisfaction in a Comparative Perspective Using a Multi-Level Analysis

Authors: Atefeh Bagherianziarat, Dana Hamplova

Abstract:

The inverse social gradient in life satisfaction (LS) is a well-established research finding. To estimate the influence of inequality on LS, most of the studies have explored the effect of the objective aspects of inequality or individuals’ socioeconomic status (SES). However, relatively fewer studies have confirmed recently the significant effect of the subjective aspect of inequality or subjective socioeconomic status (SSS) on life satisfaction over and above SES. In other words, it is confirmed by some studies that individuals’ perception of their unequal status in society or SSS can moderate the impact of their absolute unequal status on their life satisfaction. Nevertheless, this newly confirmed moderating link has not been affirmed to work likewise in societies with different levels of social inequality and also for people who believe in the value of equality, at different levels. In this study, we compared the moderative influence of subjective inequality on the link between objective inequality and life satisfaction. In particular, we focus on differences across welfare state regimes based on Esping-Andersen's theory. Also, we explored the moderative role of believing in the value of equality on the link between objective and subjective inequality on LS in the given societies. Since our studied variables were measured at both individual and country levels, we applied a multilevel analysis to the European Social Survey data (round 9). The results showed that people in deferent regimes reported statistically meaningful different levels of life satisfaction that is explained to different extends by their household income and their perception of their income inequality. The findings of the study supported the previous findings of the moderator influence of perceived inequality on the link between objective inequality and LS. However, this link is different in various welfare state regimes. The results of the multilevel modeling showed that country-level subjective equality is a positive predictor for individuals’ life satisfaction, while the GINI coefficient that was considered as the indicator of absolute inequality has a smaller effect on life satisfaction. Also, country-level subjective equality moderates the confirmed link between individuals’ income and their life satisfaction. It can be concluded that both individual and country-level subjective inequality slightly moderate the effect of individuals’ income on their life satisfaction.

Keywords: individual values, life satisfaction, multilevel analysis, objective inequality, subjective inequality, welfare regimes status

Procedia PDF Downloads 101
4039 Closest Possible Neighbor of a Different Class: Explaining a Model Using a Neighbor Migrating Generator

Authors: Hassan Eshkiki, Benjamin Mora

Abstract:

The Neighbor Migrating Generator is a simple and efficient approach to finding the closest potential neighbor(s) with a different label for a given instance and so without the need to calibrate any kernel settings at all. This allows determining and explaining the most important features that will influence an AI model. It can be used to either migrate a specific sample to the class decision boundary of the original model within a close neighborhood of that sample or identify global features that can help localising neighbor classes. The proposed technique works by minimizing a loss function that is divided into two components which are independently weighted according to three parameters α, β, and ω, α being self-adjusting. Results show that this approach is superior to past techniques when detecting the smallest changes in the feature space and may also point out issues in models like over-fitting.

Keywords: explainable AI, EX AI, feature importance, counterfactual explanations

Procedia PDF Downloads 195
4038 Implementation of a Low-Cost Driver Drowsiness Evaluation System Using a Thermal Camera

Authors: Isa Moazen, Ali Nahvi

Abstract:

Driver drowsiness is a major cause of vehicle accidents, and facial images are highly valuable to detect drowsiness. In this paper, we perform our research via a thermal camera to record drivers' facial images on a driving simulator. A robust real-time algorithm extracts the features using horizontal and vertical integration projection, contours, contour orientations, and cropping tools. The features are included four target areas on the cheeks and forehead. Qt compiler and OpenCV are used with two cameras with different resolutions. A high-resolution thermal camera is used for fifteen subjects, and a low-resolution one is used for a person. The results are investigated by four temperature plots and evaluated by observer rating of drowsiness.

Keywords: advanced driver assistance systems, thermal imaging, driver drowsiness detection, feature extraction

Procedia PDF Downloads 138
4037 Mauriac Syndrome: A Rare Complicacation With an Easy Solution

Authors: Pablo Cid Galache, Laura Zamorano Bonilla

Abstract:

Mauriac syndrome (MS) is a rare complication of type 1 diabetes mellitus (DM1). It is rela-ted to low insulin concentrations. Therefore is a complication mainly found in developing countries. The main clinical features are hepatomegaly, edema, growth and puberty delay, and the presence of elevated transaminases and serum lipids. The MS incidence is de-creasing due to the new types of insulin and intensive glycemic control. Therefore is a rare diagnosis in Europe nowadays, being described mainly in developing countries or with so-cioeconomic limitations to guarantee an adequate management of diabetes. Edema secondary to fluid retention is a rare complication of insulin treatment, especially in young patients. Its severity is variable and is mainly related to the start of a proper treatment and the improvement in glycemic control after diagnosis or after periods of poor metabolic control. Edema resolves spontaneously without requiring treatment in most cases. The Pediatric Endocrinology Unit of Hospital Motril could diagnose a 14-year-old girl who presented very poor metabolic control during the last 3 years as a consequence of the socioeconomic conditions of the country of origin during the last years. Presents up to 4 admissions for ketoacidosis during the last 12 months. After the family moved to Spain our patient began to be followed up in our Hospital. Initially presented glycated hemoglobin figures of 11%. One week after the start of treatment, the patient was admitted in the emergency room due to the appearance of generalized edema and pain in the limbs. The main laboratory abnormalities include: blood glucose 225mg/dl; HbA1C 10.8% triglycerides 543 mg/dl, total cholesterol 339 mg/dl (LDL 225) GOT 124 U/l, GPT 89U/l. Abdominal ultrasound shows mild hepatomegaly and no signs of ascites were shown. The patient presented a progressive improvement with resolution of the edema and analitical abnormalities during the next two weeks. During admission, the family received diabetes education, achieving adequate glycemic control at discharge. Nowadays the patient has a good glycemic control having glycated hemoglobin levels around 7%.

Keywords: Mauriac, diabetes, complication, developing countries

Procedia PDF Downloads 55
4036 Environmental Performance of Olive Oil Production in Greece

Authors: P. Tsarouhas, Ch. Achillas, D. Aidonis, D. Folinas, V. Maslis, N. Moussiopoulos

Abstract:

Agricultural production is a sector with high socioeconomic significance and key implications on employment and nutritional security. However, the impacts of agrifood production and consumption patterns on the environment are considerable, mainly due to the demand of large inputs of resources. This paper presents a case study of olive oil production in Greece, an important agri-product especially for countries in the Mediterranean basin. Life Cycle Analysis has been used to quantify the environmental performance of olive oil production. All key parameters that are associated with the life cycle of olive oil production are studied and environmental “hotspots” are diagnosed.

Keywords: LCA, olive oil production, environmental impact, case study, Greece

Procedia PDF Downloads 434
4035 Using Mining Methods of WEKA to Predict Quran Verb Tense and Aspect in Translations from Arabic to English: Experimental Results and Analysis

Authors: Jawharah Alasmari

Abstract:

In verb inflection, tense marks past/present/future action, and aspect marks progressive/continues perfect/completed actions. This usage and meaning of tense and aspect differ in Arabic and English. In this research, we applied data mining methods to test the predictive function of candidate features by using our dataset of Arabic verbs in-context, and their 7 translations. Weka machine learning classifiers is used in this experiment in order to examine the key features that can be used to provide guidance to enable a translator’s appropriate English translation of the Arabic verb tense and aspect.

Keywords: Arabic verb, English translations, mining methods, Weka software

Procedia PDF Downloads 272
4034 Characterization of 3D-MRP for Analyzing of Brain Balancing Index (BBI) Pattern

Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan

Abstract:

This paper discusses on power spectral density (PSD) characteristics which are extracted from three-dimensional (3D) electroencephalogram (EEG) models. The EEG signal recording was conducted on 150 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, the values of maximum PSD were extracted as features from the model. These features are analysed using mean relative power (MRP) and different mean relative power (DMRP) technique to observe the pattern among different brain balancing indexes. The results showed that by implementing these techniques, the pattern of brain balancing indexes can be clearly observed. Some patterns are indicates between index 1 to index 5 for left frontal (LF) and right frontal (RF).

Keywords: power spectral density, 3D EEG model, brain balancing, mean relative power, different mean relative power

Procedia PDF Downloads 477
4033 The Forensic Handwriting Analysis of a Painter’s Signature: Claude Monet’s Case

Authors: Olivia Rybak-Karkosz

Abstract:

This paper's purpose was to present a case study on a questioned Claude Monet's signature forensic handwriting analysis. It is an example taken from the author’s experience as a court handwriting expert. A comparative study was conducted to determine whether the signature resembles similarities (and if so, to what measure) with the features representing the writing patterns and their natural variability typical for Claude Monet. It was conducted to check whether all writing features are within the writer's normal range of variation. The paper emphasizes the difficulties and challenges encountered by the forensic handwriting expert while analysing the questioned signature.

Keywords: artist’s signatures, authenticity of an artwork, forensic handwriting analysis, graphic-comparative method

Procedia PDF Downloads 116
4032 Medical Image Classification Using Legendre Multifractal Spectrum Features

Authors: R. Korchiyne, A. Sbihi, S. M. Farssi, R. Touahni, M. Tahiri Alaoui

Abstract:

Trabecular bone structure is important texture in the study of osteoporosis. Legendre multifractal spectrum can reflect the complex and self-similarity characteristic of structures. The main objective of this paper is to develop a new technique of medical image classification based on Legendre multifractal spectrum. Novel features have been developed from basic geometrical properties of this spectrum in a supervised image classification. The proposed method has been successfully used to classify medical images of bone trabeculations, and could be a useful supplement to the clinical observations for osteoporosis diagnosis. A comparative study with existing data reveals that the results of this approach are concordant.

Keywords: multifractal analysis, medical image, osteoporosis, fractal dimension, Legendre spectrum, supervised classification

Procedia PDF Downloads 515