Search results for: processing based on signal identification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32617

Search results for: processing based on signal identification

32257 Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP) for Recovering Signal

Authors: Israa Sh. Tawfic, Sema Koc Kayhan

Abstract:

Given a large sparse signal, great wishes are to reconstruct the signal precisely and accurately from lease number of measurements as possible as it could. Although this seems possible by theory, the difficulty is in built an algorithm to perform the accuracy and efficiency of reconstructing. This paper proposes a new proved method to reconstruct sparse signal depend on using new method called Least Support Matching Pursuit (LS-OMP) merge it with the theory of Partial Knowing Support (PSK) given new method called Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP). The new methods depend on the greedy algorithm to compute the support which depends on the number of iterations. So to make it faster, the PKLS-OMP adds the idea of partial knowing support of its algorithm. It shows the efficiency, simplicity, and accuracy to get back the original signal if the sampling matrix satisfies the Restricted Isometry Property (RIP). Simulation results also show that it outperforms many algorithms especially for compressible signals.

Keywords: compressed sensing, lest support orthogonal matching pursuit, partial knowing support, restricted isometry property, signal reconstruction

Procedia PDF Downloads 241
32256 Molecular Cloning and Identification of a Double WAP Domain–Containing Protein 3 Gene from Chinese Mitten Crab Eriocheir sinensis

Authors: Fengmei Li, Li Xu, Guoliang Xia

Abstract:

Whey acidic proteins (WAP) domain-containing proteins in crustacean are involved in innate immune response against microbial invasion. In the present study, a novel double WAP domain (DWD)-containing protein gene 3 was identified from Chinese mitten crab Eriocheir sinensis (designated EsDWD3) by expressed sequence tag (EST) analysis and PCR techniques. The full-length cDNA of EsDWD3 was of 1223 bp, consisting of a 5′-terminal untranslated region (UTR) of 74 bp, a 3′ UTR of 727 bp with a polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 423 bp. The ORF encoded a polypeptide of 140 amino acids with a signal peptide of 22 amino acids. The deduced protein sequence EsDWD3 showed 96.4 % amino acid similar to other reported EsDWD1 from E. sinensis, and phylogenetic tree analysis revealed that EsDWD3 had closer relationships with the reported two double WAP domain-containing proteins of E. sinensis species.

Keywords: Chinese mitten crab, Eriocheir sinensis, cloning, double WAP domain-containing protein

Procedia PDF Downloads 355
32255 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers

Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang

Abstract:

Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.

Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors

Procedia PDF Downloads 120
32254 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface

Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto

Abstract:

Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.

Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns

Procedia PDF Downloads 128
32253 Design of Fuzzy Logic Based Global Power System Stabilizer for Dynamic Stability Enhancement in Multi-Machine Power System

Authors: N. P. Patidar, J. Earnest, Laxmikant Nagar, Akshay Sharma

Abstract:

This paper describes the diligence of a new input signal based fuzzy power system stabilizer in multi-machine power system. Instead of conventional input pairs like speed deviation (∆ω) and derivative of speed deviation i.e. acceleration (∆ω ̇) or speed deviation and accelerating power deviation of each machine, in this paper, deviation of active power through the tie line colligating two areas is used as one of the inputs to the fuzzy logic controller in concurrence with the speed deviation. Fuzzy Logic has the features of simple concept, easy effectuation, and computationally efficient. The advantage of this input is that, the same signal can be fed to each of the fuzzy logic controller connected with each machine. The simulated system comprises of two fully symmetrical areas coupled together by two 230 kV lines. Each area is equipped with two superposable generators rated 20 kV/900MVA and area-1 is exporting 413 MW to area-2. The effectiveness of the proposed control scheme has been assessed by performing small signal stability assessment and transient stability assessment. The proposed control scheme has been compared with a conventional PSS. Digital simulation is used to demonstrate the performance of fuzzy logic controller.

Keywords: Power System Stabilizer (PSS), small signal stability, inter-area oscillation, fuzzy logic controller, membership function, rule base

Procedia PDF Downloads 531
32252 Particle Size Distribution Estimation of a Mixture of Regular and Irregular Sized Particles Using Acoustic Emissions

Authors: Ejay Nsugbe, Andrew Starr, Ian Jennions, Cristobal Ruiz-Carcel

Abstract:

This works investigates the possibility of using Acoustic Emissions (AE) to estimate the Particle Size Distribution (PSD) of a mixture of particles that comprise of particles of different densities and geometry. The experiments carried out involved the mixture of a set of glass and polyethylene particles that ranged from 150-212 microns and 150-250 microns respectively and an experimental rig that allowed the free fall of a continuous stream of particles on a target plate which the AE sensor was placed. By using a time domain based multiple threshold method, it was observed that the PSD of the particles in the mixture could be estimated.

Keywords: acoustic emissions, particle sizing, process monitoring, signal processing

Procedia PDF Downloads 352
32251 Rapid Parallel Algorithm for GPS Signal Acquisition

Authors: Fabricio Costa Silva, Samuel Xavier de Souza

Abstract:

A Global Positioning System (GPS) receiver is responsible to determine position, velocity and timing information by using satellite information. To get this information's are necessary to combine an incoming and a locally generated signal. The procedure called acquisition need to found two information, the frequency and phase of the incoming signal. This is very time consuming, so there are several techniques to reduces the computational complexity, but each of then put projects issues in conflict. I this papers we present a method that can reduce the computational complexity by reducing the search space and paralleling the search.

Keywords: GPS, acquisition, low complexity, parallelism

Procedia PDF Downloads 501
32250 An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System

Authors: Yu-ding Du, Qi-lian Bao, Nassim Bessaad, Lin Liu

Abstract:

The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably.

Keywords: multi-sensor data fusion, train positioning, GNSS, odometer, digital track map, map matching, BP neural network, adaptive weighted fusion, Kalman filter

Procedia PDF Downloads 252
32249 Comparison Analysis of Multi-Channel Echo Cancellation Using Adaptive Filters

Authors: Sahar Mobeen, Anam Rafique, Irum Baig

Abstract:

Acoustic echo cancellation in multichannel is a system identification application. In real time environment, signal changes very rapidly which required adaptive algorithms such as Least Mean Square (LMS), Leaky Least Mean Square (LLMS), Normalized Least Mean square (NLMS) and average (AFA) having high convergence rate and stable. LMS and NLMS are widely used adaptive algorithm due to less computational complexity and AFA used of its high convergence rate. This research is based on comparison of acoustic echo (generated in a room) cancellation thorough LMS, LLMS, NLMS, AFA and newly proposed average normalized leaky least mean square (ANLLMS) adaptive filters.

Keywords: LMS, LLMS, NLMS, AFA, ANLLMS

Procedia PDF Downloads 566
32248 Authentication Based on Hand Movement by Low Dimensional Space Representation

Authors: Reut Lanyado, David Mendlovic

Abstract:

Most biological methods for authentication require special equipment and, some of them are easy to fake. We proposed a method for authentication based on hand movement while typing a sentence with a regular camera. This technique uses the full video of the hand, which is harder to fake. In the first phase, we tracked the hand joints in each frame. Next, we represented a single frame for each individual using our Pose Agnostic Rotation and Movement (PARM) dimensional space. Then, we indicated a full video of hand movement in a fixed low dimensional space using this method: Fixed Dimension Video by Interpolation Statistics (FDVIS). Finally, we identified each individual in the FDVIS representation using unsupervised clustering and supervised methods. Accuracy exceeds 96% for 80 individuals by using supervised KNN.

Keywords: authentication, feature extraction, hand recognition, security, signal processing

Procedia PDF Downloads 127
32247 Path loss Signals Determination in a Selected Buildings in Kazaure

Authors: Musefiu Aderinola, F. A. Amuda

Abstract:

Outages of GSM signals may be experienced at some indoor locations even when there are strong outdoor receptions. This is often traced to the building penetration loss, which account for increased attenuation of received GSM signals level when a mobile signal device is moved indoor from outdoor. In this work, measurement of two existing GSM operators signal level were made outside and inside two selected buildings- mud and block which represent the prevalent building types in Kazaure, Jigawa State, Nigeria. A gionee P2 mobile phone with RF signal tracker software installed in it was used and the result shows that an average loss of 10.62dBm and 4.25dBm for mud and block buildings respectively.

Keywords: penetration loss, outdoor reception, Gionee P2, RF signal tracker, mud and block building

Procedia PDF Downloads 302
32246 Influence of Scalable Energy-Related Sensor Parameters on Acoustic Localization Accuracy in Wireless Sensor Swarms

Authors: Joyraj Chakraborty, Geoffrey Ottoy, Jean-Pierre Goemaere, Lieven De Strycker

Abstract:

Sensor swarms can be a cost-effectieve and more user-friendly alternative for location based service systems in different application like health-care. To increase the lifetime of such swarm networks, the energy consumption should be scaled to the required localization accuracy. In this paper we have investigated some parameter for energy model that couples localization accuracy to energy-related sensor parameters such as signal length,Bandwidth and sample frequency. The goal is to use the model for the localization of undetermined environmental sounds, by means of wireless acoustic sensors. we first give an overview of TDOA-based localization together with the primary sources of TDOA error (including reverberation effects, Noise). Then we show that in localization, the signal sample rate can be under the Nyquist frequency, provided that enough frequency components remain present in the undersampled signal. The resulting localization error is comparable with that of similar localization systems.

Keywords: sensor swarms, localization, wireless sensor swarms, scalable energy

Procedia PDF Downloads 422
32245 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark

Authors: B. Elshafei, X. Mao

Abstract:

The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.

Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation

Procedia PDF Downloads 136
32244 Legal Issues of Collecting and Processing Big Health Data in the Light of European Regulation 679/2016

Authors: Ioannis Iglezakis, Theodoros D. Trokanas, Panagiota Kiortsi

Abstract:

This paper aims to explore major legal issues arising from the collection and processing of Health Big Data in the light of the new European secondary legislation for the protection of personal data of natural persons, placing emphasis on the General Data Protection Regulation 679/2016. Whether Big Health Data can be characterised as ‘personal data’ or not is really the crux of the matter. The legal ambiguity is compounded by the fact that, even though the processing of Big Health Data is premised on the de-identification of the data subject, the possibility of a combination of Big Health Data with other data circulating freely on the web or from other data files cannot be excluded. Another key point is that the application of some provisions of GPDR to Big Health Data may both absolve the data controller of his legal obligations and deprive the data subject of his rights (e.g., the right to be informed), ultimately undermining the fundamental right to the protection of personal data of natural persons. Moreover, data subject’s rights (e.g., the right not to be subject to a decision based solely on automated processing) are heavily impacted by the use of AI, algorithms, and technologies that reclaim health data for further use, resulting in sometimes ambiguous results that have a substantial impact on individuals. On the other hand, as the COVID-19 pandemic has revealed, Big Data analytics can offer crucial sources of information. In this respect, this paper identifies and systematises the legal provisions concerned, offering interpretative solutions that tackle dangers concerning data subject’s rights while embracing the opportunities that Big Health Data has to offer. In addition, particular attention is attached to the scope of ‘consent’ as a legal basis in the collection and processing of Big Health Data, as the application of data analytics in Big Health Data signals the construction of new data and subject’s profiles. Finally, the paper addresses the knotty problem of role assignment (i.e., distinguishing between controller and processor/joint controllers and joint processors) in an era of extensive Big Health data sharing. The findings are the fruit of a current research project conducted by a three-member research team at the Faculty of Law of the Aristotle University of Thessaloniki and funded by the Greek Ministry of Education and Religious Affairs.

Keywords: big health data, data subject rights, GDPR, pandemic

Procedia PDF Downloads 129
32243 Improvement Image Summarization using Image Processing and Particle swarm optimization Algorithm

Authors: Hooman Torabifard

Abstract:

In the last few years, with the progress of technology and computers and artificial intelligence entry into all kinds of scientific and industrial fields, the lifestyles of human life have changed and in general, the way of humans live on earth has many changes and development. Until now, some of the changes has occurred in the context of digital images and image processing and still continues. However, besides all the benefits, there have been disadvantages. One of these disadvantages is the multiplicity of images with high volume and data; the focus of this paper is on improving and developing a method for summarizing and enhancing the productivity of these images. The general method used for this purpose in this paper consists of a set of methods based on data obtained from image processing and using the PSO (Particle swarm optimization) algorithm. In the remainder of this paper, the method used is elaborated in detail.

Keywords: image summarization, particle swarm optimization, image threshold, image processing

Procedia PDF Downloads 133
32242 Heart-Rate Resistance Electrocardiogram Identification Based on Slope-Oriented Neural Networks

Authors: Tsu-Wang Shen, Shan-Chun Chang, Chih-Hsien Wang, Te-Chao Fang

Abstract:

For electrocardiogram (ECG) biometrics system, it is a tedious process to pre-install user’s high-intensity heart rate (HR) templates in ECG biometric systems. Based on only resting enrollment templates, it is a challenge to identify human by using ECG with the high-intensity HR caused from exercises and stress. This research provides a heartbeat segment method with slope-oriented neural networks against the ECG morphology changes due to high intensity HRs. The method has overall system accuracy at 97.73% which includes six levels of HR intensities. A cumulative match characteristic curve is also used to compare with other traditional ECG biometric methods.

Keywords: high-intensity heart rate, heart rate resistant, ECG human identification, decision based artificial neural network

Procedia PDF Downloads 435
32241 Review of Ultrasound Image Processing Techniques for Speckle Noise Reduction

Authors: Kwazikwenkosi Sikhakhane, Suvendi Rimer, Mpho Gololo, Khmaies Oahada, Adnan Abu-Mahfouz

Abstract:

Medical ultrasound imaging is a crucial diagnostic technique due to its affordability and non-invasiveness compared to other imaging methods. However, the presence of speckle noise, which is a form of multiplicative noise, poses a significant obstacle to obtaining clear and accurate images in ultrasound imaging. Speckle noise reduces image quality by decreasing contrast, resolution, and signal-to-noise ratio (SNR). This makes it difficult for medical professionals to interpret ultrasound images accurately. To address this issue, various techniques have been developed to reduce speckle noise in ultrasound images, which improves image quality. This paper aims to review some of these techniques, highlighting the advantages and disadvantages of each algorithm and identifying the scenarios in which they work most effectively.

Keywords: image processing, noise, speckle, ultrasound

Procedia PDF Downloads 110
32240 Low Cost Surface Electromyographic Signal Amplifier Based on Arduino Microcontroller

Authors: Igor Luiz Bernardes de Moura, Luan Carlos de Sena Monteiro Ozelim, Fabiano Araujo Soares

Abstract:

The development of a low cost acquisition system of S-EMG signals which are reliable, comfortable for the user and with high mobility shows to be a relevant proposition in modern biomedical engineering scenario. In the study, the sampling capacity of the Arduino microcontroller Atmel Atmega328 with an A/D converter with 10-bit resolution and its reconstructing capability of a signal of surface electromyography are analyzed. An electronic circuit to capture the signal through two differential channels was designed, signals from Biceps Brachialis of a healthy man of 21 years was acquired to test the system prototype. ARV, MDF, MNF and RMS estimators were used to compare de acquired signals with physiological values. The Arduino was configured with a sampling frequency of 1.5 kHz for each channel, and the tests with the circuit designed offered a SNR of 20.57dB.

Keywords: electromyography, Arduino, low-cost, atmel atmega328 microcontroller

Procedia PDF Downloads 366
32239 THz Phase Extraction Algorithms for a THz Modulating Interferometric Doppler Radar

Authors: Shaolin Allen Liao, Hual-Te Chien

Abstract:

Various THz phase extraction algorithms have been developed for a novel THz Modulating Interferometric Doppler Radar (THz-MIDR) developed recently by the author. The THz-MIDR differs from the well-known FTIR technique in that it introduces a continuously modulating reference branch, compared to the time-consuming discrete FTIR stepping reference branch. Such change allows real-time tracking of a moving object and capturing of its Doppler signature. The working principle of the THz-MIDR is similar to the FTIR technique: the incoming THz emission from the scene is split by a beam splitter/combiner; one of the beams is continuously modulated by a vibrating mirror or phase modulator and the other split beam is reflected by a reflection mirror; finally both the modulated reference beam and reflected beam are combined by the same beam splitter/combiner and detected by a THz intensity detector (for example, a pyroelectric detector). In order to extract THz phase from the single intensity measurement signal, we have derived rigorous mathematical formulas for 3 Frequency Banded (FB) signals: 1) DC Low-Frequency Banded (LFB) signal; 2) Fundamental Frequency Banded (FFB) signal; and 3) Harmonic Frequency Banded (HFB) signal. The THz phase extraction algorithms are then developed based combinations of 2 or all of these 3 FB signals with efficient algorithms such as Levenberg-Marquardt nonlinear fitting algorithm. Numerical simulation has also been performed in Matlab with simulated THz-MIDR interferometric signal of various Signal to Noise Ratio (SNR) to verify the algorithms.

Keywords: algorithm, modulation, THz phase, THz interferometry doppler radar

Procedia PDF Downloads 345
32238 The Impact of the Cross Race Effect on Eyewitness Identification

Authors: Leah Wilck

Abstract:

Eyewitness identification is arguably one of the most utilized practices within our legal system; however, exoneration cases indicate that this practice may lead to accuracy and conviction errors. The purpose of this study was to examine the effects of the cross-race effect, the phenomena in which people are able to more easily and accurately identify faces from within their racial category, on the accuracy of eyewitness identification. Participants watched three separate videos of a perpetrator trying to steal a bicycle. In each video, the perpetrator was of a different race and gender. Participants watched a video where the perpetrator was a Black male, a White male, and a White female. Following the completion of watching each video, participants were asked to recall everything they could about the perpetrator they witnessed. The initial results of the study did not find the expected cross-race effect impacted the eyewitness identification accuracy. These surprising results are discussed in terms of cross-race bias and recognition theory as well as applied implications.

Keywords: cross race effect, eyewitness identification, own-race bias, racial profiling

Procedia PDF Downloads 164
32237 Identification and Control the Yaw Motion Dynamics of Open Frame Underwater Vehicle

Authors: Mirza Mohibulla Baig, Imil Hamda Imran, Tri Bagus Susilo, Sami El Ferik

Abstract:

The paper deals with system identification and control a nonlinear model of semi-autonomous underwater vehicle (UUV). The input-output data is first generated using the experimental values of the model parameters and then this data is used to compute the estimated parameter values. In this study, we use the semi-autonomous UUV LAURS model, which is developed by the Sensors and Actuators Laboratory in University of Sao Paolo. We applied three methods to identify the parameters: integral method, which is a classical least square method, recursive least square, and weighted recursive least square. In this paper, we also apply three different inputs (step input, sine wave input and random input) to each identification method. After the identification stage, we investigate the control performance of yaw motion of nonlinear semi-autonomous Unmanned Underwater Vehicle (UUV) using feedback linearization-based controller. In addition, we compare the performance of the control with an integral and a non-integral part along with state feedback. Finally, disturbance rejection and resilience of the controller is tested. The results demonstrate the ability of the system to recover from such fault.

Keywords: system identification, underwater vehicle, integral method, recursive least square, weighted recursive least square, feedback linearization, integral error

Procedia PDF Downloads 536
32236 Optical Heterodyning of Injection-Locked Laser Sources: A Novel Technique for Millimeter-Wave Signal Generation

Authors: Subal Kar, Madhuja Ghosh, Soumik Das, Antara Saha

Abstract:

A novel technique has been developed to generate ultra-stable millimeter-wave signal by optical heterodyning of the output from two slave laser (SL) sources injection-locked to the sidebands of a frequency modulated (FM) master laser (ML). Precise thermal tuning of the SL sources is required to lock the particular slave laser frequency to the desired FM sidebands of the ML. The output signals from the injection-locked SL when coherently heterodyned in a fast response photo detector like high electron mobility transistor (HEMT), extremely stable millimeter-wave signal having very narrow line width can be generated. The scheme may also be used to generate ultra-stable sub-millimeter-wave/terahertz signal.

Keywords: FM sideband injection locking, master-slave injection locking, millimetre-wave signal generation, optical heterodyning

Procedia PDF Downloads 391
32235 Application of Groundwater Level Data Mining in Aquifer Identification

Authors: Liang Cheng Chang, Wei Ju Huang, You Cheng Chen

Abstract:

Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures.

Keywords: aquifer identification, decision tree, groundwater, Fourier transform

Procedia PDF Downloads 157
32234 Theory and Practice of Wavelets in Signal Processing

Authors: Jalal Karam

Abstract:

The methods of Fourier, Laplace, and Wavelet Transforms provide transfer functions and relationships between the input and the output signals in linear time invariant systems. This paper shows the equivalence among these three methods and in each case presenting an application of the appropriate (Fourier, Laplace or Wavelet) to the convolution theorem. In addition, it is shown that the same holds for a direct integration method. The Biorthogonal wavelets Bior3.5 and Bior3.9 are examined and the zeros distribution of their polynomials associated filters are located. This paper also presents the significance of utilizing wavelets as effective tools in processing speech signals for common multimedia applications in general, and for recognition and compression in particular. Theoretically and practically, wavelets have proved to be effective and competitive. The practical use of the Continuous Wavelet Transform (CWT) in processing and analysis of speech is then presented along with explanations of how the human ear can be thought of as a natural wavelet transformer of speech. This generates a variety of approaches for applying the (CWT) to many paradigms analysing speech, sound and music. For perception, the flexibility of implementation of this transform allows the construction of numerous scales and we include two of them. Results for speech recognition and speech compression are then included.

Keywords: continuous wavelet transform, biorthogonal wavelets, speech perception, recognition and compression

Procedia PDF Downloads 416
32233 Aliasing Free and Additive Error in Spectra for Alpha Stable Signals

Authors: R. Sabre

Abstract:

This work focuses on the symmetric alpha stable process with continuous time frequently used in modeling the signal with indefinitely growing variance, often observed with an unknown additive error. The objective of this paper is to estimate this error from discrete observations of the signal. For that, we propose a method based on the smoothing of the observations via Jackson polynomial kernel and taking into account the width of the interval where the spectral density is non-zero. This technique allows avoiding the “Aliasing phenomenon” encountered when the estimation is made from the discrete observations of a process with continuous time. We have studied the convergence rate of the estimator and have shown that the convergence rate improves in the case where the spectral density is zero at the origin. Thus, we set up an estimator of the additive error that can be subtracted for approaching the original signal without error.

Keywords: spectral density, stable processes, aliasing, non parametric

Procedia PDF Downloads 130
32232 Application of Directed Acyclic Graphs for Threat Identification Based on Ontologies

Authors: Arun Prabhakar

Abstract:

Threat modeling is an important activity carried out in the initial stages of the development lifecycle that helps in building proactive security measures in the product. Though there are many techniques and tools available today, one of the common challenges with the traditional methods is the lack of a systematic approach in identifying security threats. The proposed solution describes an organized model by defining ontologies that help in building patterns to enumerate threats. The concepts of graph theory are applied to build the pattern for discovering threats for any given scenario. This graph-based solution also brings in other benefits, making it a customizable and scalable model.

Keywords: directed acyclic graph, ontology, patterns, threat identification, threat modeling

Procedia PDF Downloads 139
32231 Fault Prognostic and Prediction Based on the Importance Degree of Test Point

Authors: Junfeng Yan, Wenkui Hou

Abstract:

Prognostics and Health Management (PHM) is a technology to monitor the equipment status and predict impending faults. It is used to predict the potential fault and provide fault information and track trends of system degradation by capturing characteristics signals. So how to detect characteristics signals is very important. The select of test point plays a very important role in detecting characteristics signal. Traditionally, we use dependency model to select the test point containing the most detecting information. But, facing the large complicated system, the dependency model is not built so easily sometimes and the greater trouble is how to calculate the matrix. Rely on this premise, the paper provide a highly effective method to select test point without dependency model. Because signal flow model is a diagnosis model based on failure mode, which focuses on system’s failure mode and the dependency relationship between the test points and faults. In the signal flow model, a fault information can flow from the beginning to the end. According to the signal flow model, we can find out location and structure information of every test point and module. We break the signal flow model up into serial and parallel parts to obtain the final relationship function between the system’s testability or prediction metrics and test points. Further, through the partial derivatives operation, we can obtain every test point’s importance degree in determining the testability metrics, such as undetected rate, false alarm rate, untrusted rate. This contributes to installing the test point according to the real requirement and also provides a solid foundation for the Prognostics and Health Management. According to the real effect of the practical engineering application, the method is very efficient.

Keywords: false alarm rate, importance degree, signal flow model, undetected rate, untrusted rate

Procedia PDF Downloads 377
32230 Hand Gestures Based Emotion Identification Using Flex Sensors

Authors: S. Ali, R. Yunus, A. Arif, Y. Ayaz, M. Baber Sial, R. Asif, N. Naseer, M. Jawad Khan

Abstract:

In this study, we have proposed a gesture to emotion recognition method using flex sensors mounted on metacarpophalangeal joints. The flex sensors are fixed in a wearable glove. The data from the glove are sent to PC using Wi-Fi. Four gestures: finger pointing, thumbs up, fist open and fist close are performed by five subjects. Each gesture is categorized into sad, happy, and excited class based on the velocity and acceleration of the hand gesture. Seventeen inspectors observed the emotions and hand gestures of the five subjects. The emotional state based on the investigators assessment and acquired movement speed data is compared. Overall, we achieved 77% accurate results. Therefore, the proposed design can be used for emotional state detection applications.

Keywords: emotion identification, emotion models, gesture recognition, user perception

Procedia PDF Downloads 285
32229 Early Talent Identification and Its Impact on Children’s Growth and Development: An Examination of “The Social Learning Theory, by Albert Bandura"

Authors: Michael Subbey, Kwame Takyi Danquah

Abstract:

Finding a child's exceptional skills and abilities at a young age and nurturing them is a challenging process. The Social Learning Theory (SLT) of Albert Bandura is used to analyze the effects of early talent identification on children's growth and development. The study examines both the advantages and disadvantages of early talent identification and stresses the significance of a moral strategy that puts the welfare of the child first. The paper emphasizes the value of a balanced approach to early talent identification that takes into account individual differences, cultural considerations, and the child's social environment.

Keywords: early talent development, social learning theory, child development, child welfare

Procedia PDF Downloads 108
32228 An Optimal Matching Design Method of Space-Based Optical Payload for Typical Aerial Target Detection

Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu

Abstract:

In order to effectively detect aerial targets over long distances, an optimal matching design method of space-based optical payload is proposed. Firstly, main factors affecting optical detectability of small targets under complex environment are analyzed based on the full link of a detection system, including band center, band width and spatial resolution. Then a performance characterization model representing the relationship between image signal-to-noise ratio (SCR) and the above influencing factors is established to describe a detection system. Finally, an optimal matching design example is demonstrated for a typical aerial target by simulating and analyzing its SCR under different scene clutter coupling with multi-scale characteristics, and the optimized detection band and spatial resolution are presented. The method can provide theoretical basis and scientific guidance for space-based detection system design, payload specification demonstration and information processing algorithm optimization.

Keywords: space-based detection, aerial targets, optical system design, detectability characterization

Procedia PDF Downloads 168