Search results for: manufacturing wastes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2468

Search results for: manufacturing wastes

2108 Multi-Agent System Based Solution for Operating Agile and Customizable Micro Manufacturing Systems

Authors: Dylan Santos De Pinho, Arnaud Gay De Combes, Matthieu Steuhlet, Claude Jeannerat, Nabil Ouerhani

Abstract:

The Industry 4.0 initiative has been launched to address huge challenges related to ever-smaller batch sizes. The end-user need for highly customized products requires highly adaptive production systems in order to keep the same efficiency of shop floors. Most of the classical Software solutions that operate the manufacturing processes in a shop floor are based on rigid Manufacturing Execution Systems (MES), which are not capable to adapt the production order on the fly depending on changing demands and or conditions. In this paper, we present a highly modular and flexible solution to orchestrate a set of production systems composed of a micro-milling machine-tool, a polishing station, a cleaning station, a part inspection station, and a rough material store. The different stations are installed according to a novel matrix configuration of a 3x3 vertical shelf. The different cells of the shelf are connected through horizontal and vertical rails on which a set of shuttles circulate to transport the machined parts from a station to another. Our software solution for orchestrating the tasks of each station is based on a Multi-Agent System. Each station and each shuttle is operated by an autonomous agent. All agents communicate with a central agent that holds all the information about the manufacturing order. The core innovation of this paper lies in the path planning of the different shuttles with two major objectives: 1) reduce the waiting time of stations and thus reduce the cycle time of the entire part, and 2) reduce the disturbances like vibration generated by the shuttles, which highly impacts the manufacturing process and thus the quality of the final part. Simulation results show that the cycle time of the parts is reduced by up to 50% compared with MES operated linear production lines while the disturbance is systematically avoided for the critical stations like the milling machine-tool.

Keywords: multi-agent systems, micro-manufacturing, flexible manufacturing, transfer systems

Procedia PDF Downloads 114
2107 Need for Standardization of Manual Inspection in Small and Medium-Scale Manufacturing Industries

Authors: Adithya Nadig

Abstract:

In the field of production, characterization of surface roughness plays a vital role in assessing the quality of a manufactured product. The defined parameters for this assessment, each, have their own drawbacks in describing a profile surface. From the purview of small-scale and medium-scale industries, an increase in time spent for manual inspection of a product for various parameters adds to the cost of the product. In order to reduce this, a uniform and established standard is necessary for quantifying a profile of a manufactured product. The inspection procedure in the small and medium-scale manufacturing units at Jigani Industrial area, Bangalore, was observed. The parameters currently in use in those industries are described in the paper and a change in the inspection method is proposed.

Keywords: efficiency of quality assessment, manual areal profiling technique, manufacturing in small and medium-scale industries product-oriented inspection, standardization of manual inspection, surface roughness characterization

Procedia PDF Downloads 544
2106 Mechanical Properties and Thermal Comfort of 3D Printed Hand Orthosis for Neurorehabilitation

Authors: Paulo H. R. G. Reis, Joana P. Maia, Davi Neiva Alves, Mariana R. C. Aquino, Igor B. Guimaraes, Anderson Horta, Thiago Santiago, Mariana Volpini

Abstract:

Additive manufacturing is a manufacturing technique used in many fields as a tool for the production of complex parts accurately. This technique has a wide possibility of applications in bioengineering, mainly in the manufacture of orthopedic devices, thanks to the versatility of shapes and surface details. The present article aims to evaluate the mechanical viability of a wrist-hand orthosis made using additive manufacturing techniques with Nylon 12 polyamide and compare this device with the wrist-hand orthosis manufactured by the traditional process with thermoplastic Ezeform. The methodology used is based on the application of computational simulations of voltage and temperature, from finite element analysis, in order to evaluate the properties of displacement, mechanical stresses and thermal comfort in the two devices. The execution of this work was carried out through a case study with a 29-year-old male patient. The modeling software involved was Meshmixer from US manufacturer Autodesk and Fusion 360 from the same manufacturer. The results demonstrated that the orthosis developed by 3D printing, from Nylon 12, presents better thermal comfort and response to the mechanical stresses exerted on the orthosis.

Keywords: additive manufacturing, finite elements, hand orthosis, thermal comfort, neurorehabilitation

Procedia PDF Downloads 168
2105 Applications for Additive Manufacturing Technology for Reducing the Weight of Body Parts of Gas Turbine Engines

Authors: Liubov Magerramova, Mikhail Petrov, Vladimir Isakov, Liana Shcherbinina, Suren Gukasyan, Daniil Povalyukhin, Olga Klimova-Korsmik, Darya Volosevich

Abstract:

Aircraft engines are developing along the path of increasing resource, strength, reliability, and safety. The building of gas turbine engine body parts is a complex design and technological task. Particularly complex in the design and manufacturing are the casings of the input stages of helicopter gearboxes and central drives of aircraft engines. Traditional technologies, such as precision casting or isothermal forging, are characterized by significant limitations in parts production. For parts like housing, additive technologies guarantee spatial freedom and limitless or flexible design. This article presents the results of computational and experimental studies. These investigations justify the applicability of additive technologies (AT) to reduce the weight of aircraft housing gearbox parts by up to 32%. This is possible due to geometrical optimization compared to the classical, less flexible manufacturing methods and as-casted aircraft parts with over-insured values of safety factors. Using an example of the body of the input stage of an aircraft gearbox, visualization of the layer-by-layer manufacturing of a part based on thermal deformation was demonstrated.

Keywords: additive technologies, gas turbine engines, topological optimization, synthesis process

Procedia PDF Downloads 88
2104 Biogas Production from Pistachio (Pistacia vera L.) Processing Waste

Authors: İ. Çelik, Goksel Demirer

Abstract:

Turkey is the third largest producer of pistachio (Pistacia vera L.) after Iran and United States. Harvested pistachio nuts are covered with organic hull which is removed by de-hulling process. Most of the pistachio by-products which are produced during de-hulling process are considered as agricultural waste and often mixed with soil, to a lesser extent are used as feedstuff by local livestock farmers and a small portion is used as herbal medicine. Due to its high organic and phenolic content as well as high solids concentration, pistachio processing wastes create significant waste management problems unless they are properly managed. However, there is not a well-established waste management method compensating the waste generated during the processing of pistachios. This study investigated the anaerobic treatability and biogas generation potential of pistachio hull waste. The effect of pre-treatment on biogas generation potential was investigated. For this purpose, Biochemical Methane Potential (BMP) Assays were conducted for two Chemical Oxygen Demand (COD) concentrations of 22 and 33 g tCOD l-1 at the absence and presence of chemical and thermal pre-treatment methods. The results revealed anaerobic digestion of the pistachio de-hulling wastes and subsequent biogas production as a renewable energy source are possible. The observed percent COD removal and methane yield values of the pre-treated pistachio de-hulling waste samples were significantly higher than the raw pistachio de-hulling waste. The highest methane yield was observed as 213.4 ml CH4/g COD.

Keywords: pistachio de-hulling waste, biogas, renewable energy, pre-treatment

Procedia PDF Downloads 192
2103 An Overview of Electronic Waste as Aggregate in Concrete

Authors: S. R. Shamili, C. Natarajan, J. Karthikeyan

Abstract:

Rapid growth of world population and widespread urbanization has remarkably increased the development of the construction industry which caused a huge demand for sand and gravels. Environmental problems occur when the rate of extraction of sand, gravels, and other materials exceeds the rate of generation of natural resources; therefore, an alternative source is essential to replace the materials used in concrete. Now-a-days, electronic products have become an integral part of daily life which provides more comfort, security, and ease of exchange of information. These electronic waste (E-Waste) materials have serious human health concerns and require extreme care in its disposal to avoid any adverse impacts. Disposal or dumping of these E-Wastes also causes major issues because it is highly complex to handle and often contains highly toxic chemicals such as lead, cadmium, mercury, beryllium, brominates flame retardants (BFRs), polyvinyl chloride (PVC), and phosphorus compounds. Hence, E-Waste can be incorporated in concrete to make a sustainable environment. This paper deals with the composition, preparation, properties, classification of E-Waste. All these processes avoid dumping to landfills whilst conserving natural aggregate resources, and providing a better environmental option. This paper also provides a detailed literature review on the behaviour of concrete with incorporation of E-Wastes. Many research shows the strong possibility of using E-Waste as a substitute of aggregates eventually it reduces the use of natural aggregates in concrete.

Keywords: dumping, electronic waste, landfill, toxic chemicals

Procedia PDF Downloads 154
2102 Modeling and Analysis of Laser Sintering Process Scanning Time for Optimal Planning and Control

Authors: Agarana Michael C., Akinlabi Esther T., Pule Kholopane

Abstract:

In order to sustain the advantages of an advanced manufacturing technique, such as laser sintering, minimization of total processing cost of the parts being produced is very important. An efficient time management would usually very important in optimal cost attainment which would ultimately result in an efficient advanced manufacturing process planning and control. During Laser Scanning Process Scanning (SLS) procedures it is possible to adjust various manufacturing parameters which are used to influence the improvement of various mechanical and other properties of the products. In this study, Modelling and mathematical analysis, including sensitivity analysis, of the laser sintering process time were carried out. The results of the analyses were represented with graphs, from where conclusions were drawn. It was specifically observed that achievement of optimal total scanning time is key for economic efficiency which is required for sustainability of the process.

Keywords: modeling and analysis, optimal planning and control, laser sintering process, scanning time

Procedia PDF Downloads 79
2101 Lead Removal by Using the Synthesized Zeolites from Sugarcane Bagasse Ash

Authors: Sirirat Jangkorn, Pornsawai Praipipat

Abstract:

Sugarcane bagasse ash of sugar factories is solid wastes that the richest source of silica. The alkali fusion method, quartz particles in material can be dissolved and they can be used as the silicon source for synthesizing silica-based materials such as zeolites. Zeolites have many advantages such as catalyst to improve the chemical reactions and they can also remove heavy metals in the water including lead. Therefore, this study attempts to synthesize zeolites from the sugarcane bagasse ash, investigate their structure characterizations and chemical components to confirm the happening of zeolites, and examine their lead removal efficiency through the batch test studies. In this study, the sugarcane bagasse ash was chosen as the silicon source to synthesize zeolites, X-ray diffraction (XRD) and X-ray fluorescence spectrometry (XRF) were used to verify the zeolite pattern structures and element compositions, respectively. The batch test studies in dose (0.05, 0.1, 0.15 g.), contact time (1, 2, 3), and pH (3, 5, 7) were used to investigate the lead removal efficiency by the synthesized zeolite. XRD analysis result showed the crystalline phase of zeolite pattern, and XRF result showed the main element compositions of the synthesized zeolite that were SiO₂ (50%) and Al₂O₃ (30%). The batch test results showed the best optimum conditions of the synthesized zeolite for lead removal were 0.1 g, 2 hrs., and 5 of dose, contact time, and pH, respectively. As a result, this study can conclude that the zeolites can synthesize from the sugarcane bagasse ash and they can remove lead in the water.

Keywords: sugarcane bagasse ash, solid wastes, zeolite, lead

Procedia PDF Downloads 123
2100 The Effect of Corporate Social Responsibility on Human Resource Performance in the Selected Medium-Size Manufacturing Organisation in South Africa

Authors: Itumeleng Judith Maome, Robert Walter Dumisani Zondo

Abstract:

The concept of Corporate Social Responsibility (CSR) has gained popularity as a management philosophy in companies. They integrate social and environmental concerns into their operations and interactions with stakeholders. While CSR has mostly been associated with large organisations, it contributes to societal goals by engaging in activities or supporting volunteering or ethically oriented practices. However, small and medium enterprises (SMEs) have been recognised for their contributions to the social and economic development of any country. Consequently, this study examines the effect of CSR practices on human resource performance in the selected manufacturing SME in South Africa. This study was quantitative in design and examined the production and related experiences of the manufacturing SME organisation that had adopted a CSR strategy for human resource improvement. The study was achieved by collecting pre- and post-quarterly data, overtime, for employee turnover and labour absenteeism for analysis using the regression model. The results indicate that both employee turnover and labour absenteeism have no relationship with human resource performance post-CSR implementation. However, CSR has a relationship with human resource performance. Any increase in CSR activities results in an increase in human resource performance.

Keywords: corporate social responsibility, employee turnover, human resource, labour absenteeism, manufacturing SME

Procedia PDF Downloads 53
2099 Industrial Waste to Energy Technology: Engineering Biowaste as High Potential Anode Electrode for Application in Lithium-Ion Batteries

Authors: Pejman Salimi, Sebastiano Tieuli, Somayeh Taghavi, Michela Signoretto, Remo Proietti Zaccaria

Abstract:

Increasing the growth of industrial waste due to the large quantities of production leads to numerous environmental and economic challenges, such as climate change, soil and water contamination, human disease, etc. Energy recovery of waste can be applied to produce heat or electricity. This strategy allows for the reduction of energy produced using coal or other fuels and directly reduces greenhouse gas emissions. Among different factories, leather manufacturing plays a very important role in the whole world from the socio-economic point of view. The leather industry plays a very important role in our society from a socio-economic point of view. Even though the leather industry uses a by-product from the meat industry as raw material, it is considered as an activity demanding integrated prevention and control of pollution. Along the entire process from raw skins/hides to finished leather, a huge amount of solid and water waste is generated. Solid wastes include fleshings, raw trimmings, shavings, buffing dust, etc. One of the most abundant solid wastes generated throughout leather tanning is shaving waste. Leather shaving is a mechanical process that aims at reducing the tanned skin to a specific thickness before tanning and finishing. This product consists mainly of collagen and tanning agent. At present, most of the world's leather processing is chrome-tanned based. Consequently, large amounts of chromium-containing shaving wastes need to be treated. The major concern about the management of this kind of solid waste is ascribed to chrome content, which makes the conventional disposal methods, such as landfilling and incineration, not practicable. Therefore, many efforts have been developed in recent decades to promote eco-friendly/alternative leather production and more effective waste management. Herein, shaving waste resulting from metal-free tanning technology is proposed as low-cost precursors for the preparation of carbon material as anodes for lithium-ion batteries (LIBs). In line with the philosophy of a reduced environmental impact, for preparing fully sustainable and environmentally friendly LIBs anodes, deionized water and carboxymethyl cellulose (CMC) have been used as alternatives to toxic/teratogen N-methyl-2- pyrrolidone (NMP) and to biologically hazardous Polyvinylidene fluoride (PVdF), respectively. Furthermore, going towards the reduced cost, we employed water solvent and fluoride-free bio-derived CMC binder (as an alternative to NMP and PVdF, respectively) together with LiFePO₄ (LFP) when a full cell was considered. These actions make closer to the 2030 goal of having green LIBs at 100 $ kW h⁻¹. Besides, the preparation of the water-based electrodes does not need a controlled environment and due to the higher vapour pressure of water in comparison with NMP, the water-based electrode drying is much faster. This aspect determines an important consequence, namely a reduced energy consumption for the electrode preparation. The electrode derived from leather waste demonstrated a discharge capacity of 735 mAh g⁻¹ after 1000 charge and discharge cycles at 0.5 A g⁻¹. This promising performance is ascribed to the synergistic effect of defects, interlayer spacing, heteroatoms-doped (N, O, and S), high specific surface area, and hierarchical micro/mesopore structure of the biochar. Interestingly, these features of activated biochars derived from the leather industry open the way for possible applications in other EESDs as well.

Keywords: biowaste, lithium-ion batteries, physical activation, waste management, leather industry

Procedia PDF Downloads 151
2098 Microstructural and Mechanical Property Investigation on SS316L-Cu Graded Deposition Prepared using Wire Arc Additive Manufacturing

Authors: Bunty Tomar, Shiva S.

Abstract:

Fabrication of steel and copper-based functionally graded material (FGM) through cold metal transfer-based wire arc additive manufacturing is a novel exploration. Components combining Cu and steel show significant usage in many industrial applications as they combine high corrosion resistance, ductility, thermal conductivity, and wear resistance to excellent mechanical properties. Joining steel and copper is challenging due to the mismatch in their thermo-mechanical properties. In this experiment, a functionally graded material (FGM) structure of pure copper (Cu) and 316L stainless steel (SS) was successfully developed using cold metal transfer-based wire arc additive manufacturing (CMT-WAAM). The interface of the fabricated samples was characterized under optical microscopy, field emission scanning electron microscopy, and X-ray diffraction techniques. Detailed EBSD and TEM analysis was performed to analyze the grain orientation, strain distribution, grain boundary misorientations, and formation of metastable and intermetallic phases. Mechanical characteristics of deposits was also analyzed using tensile and wear testing. This works paves the way to use CMT-WAAM to fabricate steel/copper FGMs.

Keywords: wire arc additive manufacturing (waam), cold metal transfer (cmt), metals and alloys, mechanical properties, characterization

Procedia PDF Downloads 58
2097 The Competitive Power of Supply Chain Quality Management in Manufacturing Companies in Cameroon

Authors: Nicodemus Tiendem, Arrey Mbayong Napoleon

Abstract:

The heightening of competition and the quest for market share has left business persons and research communities re-examining and reinventing their competitive practices. A case in point is Porter’s generic strategy which has received a lot of criticism lately regarding its inability to maintain a company’s competitive power. This is because it focuses more on the organisation and ignores her external partners, who have a strong bearing on the company’s performance. This paper, therefore, sought to examine Porter’s generic strategies alongside supply chain quality management practices in terms of their effectiveness in building the competitive power of manufacturing companies in Cameroon. This was done with the use of primary data captured from a survey study across the supply chains of 20 manufacturing companies in Cameroon using a five-point Likert scale questionnaire. For each company, four 1st tier suppliers and four 1st tier distributors were carefully chosen to participate in the study alongside the companies themselves. In each case, attention was directed to persons involved in the supply chains of the companies. This gave a total of 180 entities comprising the supply chains of the 20 manufacturing companies involved in the study, making a total of 900 participants. The data was analysed using three multiple regression models to assess the effect of Porter’s generic strategy and supply chain quality management on the marketing performance of the companies. The findings proved that in such a competitive atmosphere, supply chain quality management is a better tool for marketing performance over Porter’s generic strategies and hence building the competitive power of the companies at all levels of the study. Although the study made use of convenience sampling, where sample selectivity biases the results, the findings aligned with many other recent developments in line with building the competitive power of manufacturing companies and thereby made the findings suitable for generalisation.

Keywords: supply chain quality management, Porter’s generic strategies, competitive power, marketing performance, manufacturing companies, Cameroon

Procedia PDF Downloads 72
2096 Adsorption and Transformation of Lead in Coimbatore Urban Soils

Authors: K. Sivasubramanin, S. Mahimairaja, S. Pavithrapriya

Abstract:

Heavy metal pollution originating from industrial wastes is becoming a serious problem in many urban environments. These heavy metals, if not properly managed, could enter into the food chain and cause a serious health hazards in animals and humans. Industrial wastes, sewage sludge, and automobile emissions also contribute to heavy metal like Pb pollution in the urban environment. However, information is scarce on the heavy metal pollution in Coimbatore urban environment. Therefore, the current study was carried out to examine the extent of lead pollution in Coimbatore urban environment the maximum Pb concentration in Coimbatore urban environment was found in ukkadam, whose concentration in soils 352 mg kg-1. In many places, the Pb concentration was found exceeded the permissible limit of 100 mg kg-1. In laboratory, closed incubation experiment showed that the concentration of different species of Pb viz., water soluble Pb(H2O-Pb), exchangeable Pb(KNO3-Pb), organic-Pb(NaOH-Pb), and organic plus metal (Fe & Al) oxides bound-Pb(Na2 EDTA-Pb) was found significantly increased during the 15 days incubation, mainly due to biotransformation processes. Both the moisture content of soil and ambient temperature exerted a profound influence on the transformation of Pb. The results of a batch experiment has shown that the sorption data was adequately described by the Freundlich equation as indicated by the high correlation coefficients (R2= 0.64) than the Langmuir equation (R2 = 0.33). A maximum of 86 mg of Pb was found adsorbed per kilogram of soil. Consistently, a soil column experiment result had shown that only a small amount of Pb( < 1.0 µg g-1 soil) alone was found leached from the soil. This might be due to greater potential of the soil towards Pb adsorption.

Keywords: lead pollution, adsorption, transformation, heavy metal pollution

Procedia PDF Downloads 309
2095 Surface Integrity Improvement for Selective Laser Melting (SLM) Additive Manufacturing of C300 Parts Using Ball Burnishing

Authors: Adrian Travieso Disotuar, J. Antonio Travieso Rodriguez, Ramon Jerez Mesa, Montserrat Vilaseca

Abstract:

The effect of the non-vibration-assisted and vibration-assisted ball burnishing on both the surface and mechanical properties of C300 obtained by Selective Laser Melting additive manufacturing technology is studied in this paper. Different vibration amplitudes preloads, and burnishing strategies were tested. A topographical analysis was performed to determine the surface roughness of the different conditions. Besides, micro tensile tests were carried out in situ on Scanning Electron Microscopy to elucidate the post-treatment effects on damaging mechanisms. Experiments show that vibration-assisted ball burnishing significantly enhances mechanical properties compared to the non-vibration-assisted method. Moreover, it was found that the surface roughness was significantly improved with respect to the reference surface.

Keywords: additive manufacturing, ball burnishing, mechanical properties, metals, surface roughness

Procedia PDF Downloads 53
2094 Production of Metal Powder Using Twin Arc Spraying Process for Additive Manufacturing

Authors: D. Chen, H. Daoud, C. Kreiner, U. Glatzel

Abstract:

Additive Manufacturing (AM) provides promising opportunities to optimize and to produce tooling by integrating near-contour tempering channels for more efficient cooling. To enhance the properties of the produced tooling using additive manufacturing, prototypes should be produced in short periods. Thereby, this requires a small amount of tailored powders, which either has a high production cost or is commercially unavailable. Hence, in this study, an arc spray atomization approach to produce a tailored metal powder at a lower cost and even in small quantities, in comparison to the conventional powder production methods, was proposed. This approach involves converting commercially available metal wire into powder by modifying the wire arc spraying process. The influences of spray medium and gas pressure on the powder properties were investigated. As a result, particles with smooth surface and lower porosity were obtained, when nonoxidizing gases are used for thermal spraying. The particle size decreased with increasing of the gas pressure, and the particles sizes are in the range from 10 to 70 µm, which is desirable for selective laser melting (SLM). A comparison of microstructure and mechanical behavior of SLM generated parts using arc sprayed powders (alloy: X5CrNiCuNb 16-4) and commercial powder (alloy: X5CrNiCuNb 16-4) was also conducted.

Keywords: additive manufacturing, arc spraying, powder production, selective laser melting

Procedia PDF Downloads 115
2093 Vermicomposting Amended With Microorganisms and Biochar: Phytopathogen Resistant Seedbeds for Vegetables and Heavy Metal Polluted Waste Treatment

Authors: Fuad Ameen, Ali A. Al-Homaidan

Abstract:

Biochar can be used in numerous biotechnological applications due to its properties to adsorb beneficial nutrients and harmful pollutants. Objectives: We aimed to treat heavy metal polluted organic wastes using vermicomposting process and produce a fertilizer that can be used in agriculture. We improved the process by adding biochar as well as microbial inoculum and biomass into household waste or sewage sludge before vermicomposting. The earthworm Eisenia fetida used in vermicomposting was included to accumulate heavy metals, biochar to adsorb heavy metals, and the microalga Navicula sp. or the mangrove fungus Acrophialophora sp. to promote plant growth in the final product used as a seedbed for Solanaceae vegetables. We carried out vermicomposting treatments to see the effect of different amendments. Final compost quality was analyzed for maturity. The earthworms were studied for their vitality, heavy metal accumulation, and metallothionein protein content to verify their role in the process. The compost was used as a seedbed for vegetables that were inoculated with a phytopathogen Pythium sp. known to cause root rot and destroy seeds. Compost as seedbed promoted plant growth and reduced disease symptoms in leaves. In the treatment where E. fetida, 6% biochar, and Navicula sp. had been added, 90% of the seeds germinated, while less than 20% germinated in the control treatment. The experimental plants had acquired resistance against Pythium sp. The metagenomic profile of microbial communities will be reported.

Keywords: organic wastes, vermicomposting process, biochar, mangrove fungus

Procedia PDF Downloads 62
2092 Developing a Framework for Assessing and Fostering the Sustainability of Manufacturing Companies

Authors: Ilaria Barletta, Mahesh Mani, Björn Johansson

Abstract:

The concept of sustainability encompasses economic, environmental, social and institutional considerations. Sustainable manufacturing (SM) is, therefore, a multi-faceted concept. It broadly implies the development and implementation of technologies, projects and initiatives that are concerned with the life cycle of products and services, and are able to bring positive impacts to the environment, company stakeholders and profitability. Because of this, achieving SM-related goals requires a holistic, life-cycle-thinking approach from manufacturing companies. Further, such an approach must rely on a logic of continuous improvement and ease of implementation in order to be effective. Currently, there exists in the academic literature no comprehensively structured frameworks that support manufacturing companies in the identification of the issues and the capabilities that can either hinder or foster sustainability. This scarcity of support extends to difficulties in obtaining quantifiable measurements in order to objectively evaluate solutions and programs and identify improvement areas within SM for standards conformance. To bridge this gap, this paper proposes the concept of a framework for assessing and continuously improving the sustainability of manufacturing companies. The framework addresses strategies and projects for SM and operates in three sequential phases: analysis of the issues, design of solutions and continuous improvement. A set of interviews, observations and questionnaires are the research methods to be used for the implementation of the framework. Different decision-support methods - either already-existing or novel ones - can be 'plugged into' each of the phases. These methods can assess anything from business capabilities to process maturity. In particular, the authors are working on the development of a sustainable manufacturing maturity model (SMMM) as decision support within the phase of 'continuous improvement'. The SMMM, inspired by previous maturity models, is made up of four maturity levels stemming from 'non-existing' to 'thriving'. Aggregate findings from the use of the framework should ultimately reveal to managers and CEOs the roadmap for achieving SM goals and identify the maturity of their companies’ processes and capabilities. Two cases from two manufacturing companies in Australia are currently being employed to develop and test the framework. The use of this framework will bring two main benefits: enable visual, intuitive internal sustainability benchmarking and raise awareness of improvement areas that lead companies towards an increasingly developed SM.

Keywords: life cycle management, continuous improvement, maturity model, sustainable manufacturing

Procedia PDF Downloads 237
2091 International Trade, Manufacturing and Employment: The First Two Decades of South African Democracy

Authors: Phillip F. Blaauw, Anna M. Pretorius

Abstract:

South Africa re-entered the international economy in the early 1990s, after Apartheid, at a time when globalisation was gathering momentum. Globalisation led to a more open economy, increased export volumes and a changed export mix. Manufacturing goods gained ground relative to mining products. After 21 years of democracy, South African researchers and policymakers need to evaluate the impact of international trade on the level of employment and compensation of employees in the South African manufacturing industry. This is important given the consistent and high levels of unemployment in South Africa. This paper has this evaluation as its aim. Two complimenting approaches are utilised. The 27 sub divisions of the South African manufacturing industry are classified according to capital/labour ratios. Possible trends in employment levels and employee compensation for these categories are then identified when comparing levels in 1995 to those in 2014. The supplementing empirical approach is cross-sectional and panel data regressions for the same period. The aim of the regression analysis is to explain the observed changes in employment and employee compensation levels between 1995 and 2014. The first part of the empirical approach revealed that over the 20-year period the intermediate capital intensive, labour intensive an ultra-labour intensive manufacturing industries all showed massive declines in overall employment. Only three of the 19 industries for these classifications showed marginal overall employment gains. The only meaningful gains were recorded in three of the eight capital intensive manufacturing industries. The overall performance of the South African manufacturing industry is therefore dismal at best. This scenario plays itself out for the skilled section of the intermediate capital intensive, labour intensive an ultra-labour intensive manufacturing industries as well. 18 out of the 19 industries displayed declines even for the skilled section of the labour force. The formal regression analysis supplements the above results. Real production growth is a statistically significant (95 per cent confidence level) explanatory variable of the overall employment level for the period under consideration, albeit with a small positive coefficient. The variables with the most significant negative relationship with changes in overall employment were the dummy variables for intermediate capital intensive and labour intensive manufacturing goods. Disaggregating overall changes in employment further in terms of skill levels revealed that skilled employment in particular responded negatively to increases in the ratio between imported and local inputs for manufacturing. The dummy variable for the labour intensive sectors remained negative and statistically significant, indicating that the labour intensive sectors of South African manufacturing remain vulnerable to the loss of employment opportunities. Whereas the first period (1995 to 2001) after the opening of the South African economy brought positive changes for skilled employment, continued increases in imported inputs displaced some of the skilled labour as well, putting further pressure on the South African economy with already high and persistent unemployment levels. Given the negative for the world commodity cycle and a stagnant local manufacturing sector, the challenge for policymakers is getting even more pronounced after South Africa’s political coming of age.

Keywords: capital/labour ratios, employment, employee compensation, manufacturing

Procedia PDF Downloads 194
2090 Elaboration of Ceramic Metal Accident Tolerant Fuels by Additive Manufacturing

Authors: O. Fiquet, P. Lemarignier

Abstract:

Additive manufacturing may find numerous applications in the nuclear industry, for the same reason as for other industries, to enlarge design possibilities and performances and develop fabrication methods as a flexible route for future innovation. Additive Manufacturing applications in the design of structural metallic components for reactors are already developed at a high Technology Readiness Level (TRL). In the case of a Pressured Water Reactor using uranium oxide fuel pellets, which are ceramics, the transposition of already optimized Additive Manufacturing (AM) processes to UO₂ remains a challenge, and the progress remains slow because, to our best knowledge, only a few laboratories have the capability of developing processes applicable to UO₂. After the Fukushima accident, numerous research fields emerged with the study of ATF (Accident tolerant Fuel) fuel concepts, which aimed to improve fuel behaviour. One item concerns the increase of the pellet thermal performance by, for example, the addition of high thermal conductivity material into fissile UO₂. This additive phase may be metallic, and the end product will constitute a CERMET composite. Innovative designs of an internal metallic framework are proposed based on predictive calculations. However, because the well-known reference pellet manufacturing methods impose many limitations, manufacturing such a composite remains an arduous task. Therefore, the AM process appears as a means of broadening the design possibilities of CERMET manufacturing. If the external form remains a standard cylindrical fuel pellet, the internal metallic design remains to be optimized based on process capabilities. This project also considers the limitation to a maximum of 10% volume of metal, which is a constraint neutron physics considerations impose. The AM technique chosen for this development is robocasting because of its simplicity and low-cost equipment. It remains, however, a challenge to adapt a ceramic 3D printing process for the fabrication of UO₂ fuel. The investigation starts with surrogate material, and the optimization of slurry feedstock is based on alumina. The paper will present the first printing of Al2O3-Mo CERMET and the expected transition from ceramic-based alumina to UO₂ CERMET.

Keywords: nuclear, fuel, CERMET, robocasting

Procedia PDF Downloads 41
2089 Industrial Revolution: Army Production

Authors: M. Şimşek

Abstract:

Additive manufacturing (AM) or generally known as three dimensional (3D) printing provides great opportunities for both civilian and military applications by which 3D has become the biggest nominee of breakthrough of 21th century. When properly used, it has a wide spectrum of applications that make production easier and more profitable. Considering the advantages of AM, every firm has an intention of catching up with this new trend. As well as reducing costs and thus increasing benefits, 3D printing provides opportunities for national armies by reducing maintenance and repair time and increasing operational readiness.

Keywords: additive manufacturing, operational cost, operational readiness, supply chain, three dimensional printing

Procedia PDF Downloads 379
2088 Consequential Effects of Coal Utilization on Urban Water Supply Sources – a Study of Ajali River in Enugu State Nigeria

Authors: Enebe Christian Chukwudi

Abstract:

Water bodies around the world notably underground water, ground water, rivers, streams, and seas, face degradation of their water quality as a result of activities associated with coal utilization including coal mining, coal processing, coal burning, waste storage and thermal pollution from coal plants which tend to contaminate these water bodies. This contamination results from heavy metals, presence of sulphate and iron, dissolved solids, mercury and other toxins contained in coal ash, sludge, and coal waste. These wastes sometimes find their way to sources of urban water supply and contaminate them. A major problem encountered in the supply of potable water to Enugu municipality is the contamination of Ajali River, the source of water supply to Enugu municipal by coal waste. Hydro geochemical analysis of Ajali water samples indicate high sulphate and iron content, high total dissolved solids(TDS), low pH (acidity values) and significant hardness in addition to presence of heavy metals, mercury, and other toxins. This is indicative of the following remedial measures: I. Proper disposal of mine wastes at designated disposal sites that are suitably prepared. II. Proper water treatment and III. Reduction of coal related contaminants taking advantage of clean coal technology.

Keywords: effects, coal, utilization, water quality, sources, waste, contamination, treatment

Procedia PDF Downloads 401
2087 Environmental and Health Risks Associated with Dental Waste Management: A Review

Authors: Y. Y. Babanyara, B. A. Gana, T. Garba, M. A. Batari

Abstract:

Proper management of dental waste is a crucial issue for maintaining human health and the environment. The waste generated in the dental clinics has the potential for spreading infections and causing diseases, so improper disposal of these dental wastes can cause harm to the dentist, the people in immediate vicinity of the dentist, waste handlers, general public and the environment through production of toxins or as by-products of the destruction process. Staff that provide dental healthcare ought to be aware of the proper handling and the system of management of dental waste used by different dental hospitals. The method of investigation adopted in the paper involved a desk study in which documents and records relating to dental waste handling were studied to obtain background information on existing dental waste management in Nigeria other countries of the world are also mentioned as examples. Additionally, information on generation, handling, segregation, risk associated during handling and treatment of dental medical waste were sought in order to determine the best method for safe disposal. This article provides dentists with the information they need to properly dispose of mercury and amalgam waste, and provides suggestions for managing the other wastes that result from the day-to-day activities of a dental office such as: used X-ray fixers and developers; cleaners for X-ray developer systems; lead foils, shields and aprons; chemiclave/chemical sterilant solutions; disinfectants, cleaners, and other chemicals; and, general office waste. Additionally, this study may be beneficial for authorities and researchers of developing countries to work towards improving their present dental waste management system.

Keywords: clinic, dental, disposal, environment, waste management

Procedia PDF Downloads 296
2086 Effect of Acid-Basic Treatments of Lingocellulosic Material Forest Wastes Wild Carob on Ethyl Violet Dye Adsorption

Authors: Abdallah Bouguettoucha, Derradji Chebli, Tariq Yahyaoui, Hichem Attout

Abstract:

The effect of acid -basic treatment of lingocellulosic material (forest wastes wild carob) on Ethyl violet adsorption was investigated. It was found that surface chemistry plays an important role in Ethyl violet (EV) adsorption. HCl treatment produces more active acidic surface groups such as carboxylic and lactone, resulting in an increase in the adsorption of EV dye. The adsorption efficiency was higher for treated of lingocellulosic material with HCl than for treated with KOH. Maximum biosorption capacity was 170 and 130 mg/g, for treated of lingocellulosic material with HCl than for treated with KOH at pH 6 respectively. It was also found that the time to reach equilibrium takes less than 25 min for both treated materials. The adsorption of basic dye (i.e., ethyl violet or basic violet 4) was carried out by varying some process parameters, such as initial concentration, pH and temperature. The adsorption process can be well described by means of a pseudo-second-order reaction model showing that boundary layer resistance was not the rate-limiting step, as confirmed by intraparticle diffusion since the linear plot of Qt versus t^0.5 did not pass through the origin. In addition, experimental data were accurately expressed by the Sips equation if compared with the Langmuir and Freundlich isotherms. The values of ΔG° and ΔH° confirmed that the adsorption of EV on acid-basic treated forest wast wild carob was spontaneous and endothermic in nature. The positive values of ΔS° suggested an irregular increase of the randomness at the treated lingocellulosic material -solution interface during the adsorption process.

Keywords: adsorption, isotherm models, thermodynamic parameters, wild carob

Procedia PDF Downloads 254
2085 Energy Intensity: A Case of Indian Manufacturing Industries

Authors: Archana Soni, Arvind Mittal, Manmohan Kapshe

Abstract:

Energy has been recognized as one of the key inputs for the economic growth and social development of a country. High economic growth naturally means a high level of energy consumption. However, in the present energy scenario where there is a wide gap between the energy generation and energy consumption, it is extremely difficult to match the demand with the supply. India being one of the largest and rapidly growing developing countries, there is an impending energy crisis which requires immediate measures to be adopted. In this situation, the concept of Energy Intensity comes under special focus to ensure energy security in an environmentally sustainable way. Energy Intensity is defined as the energy consumed per unit output in the context of industrial energy practices. It is a key determinant of the projections of future energy demands which assists in policy making. Energy Intensity is inversely related to energy efficiency; lesser the energy required to produce a unit of output or service, the greater is the energy efficiency. Energy Intensity of Indian manufacturing industries is among the highest in the world and stands for enormous energy consumption. Hence, reducing the Energy Intensity of Indian manufacturing industries is one of the best strategies to achieve a low level of energy consumption and conserve energy. This study attempts to analyse the factors which influence the Energy Intensity of Indian manufacturing firms and how they can be used to reduce the Energy Intensity. The paper considers six of the largest energy consuming manufacturing industries in India viz. Aluminium, Cement, Iron & Steel Industries, Textile Industries, Fertilizer and Paper industries and conducts a detailed Energy Intensity analysis using the data from PROWESS database of the Centre for Monitoring Indian Economy (CMIE). A total of twelve independent explanatory variables based on various factors such as raw material, labour, machinery, repair and maintenance, production technology, outsourcing, research and development, number of employees, wages paid, profit margin and capital invested have been taken into consideration for the analysis.

Keywords: energy intensity, explanatory variables, manufacturing industries, PROWESS database

Procedia PDF Downloads 313
2084 Product Life Cycle Assessment of Generatively Designed Furniture for Interiors Using Robot Based Additive Manufacturing

Authors: Andrew Fox, Qingping Yang, Yuanhong Zhao, Tao Zhang

Abstract:

Furniture is a very significant subdivision of architecture and its inherent interior design activities. The furniture industry has developed from an artisan-driven craft industry, whose forerunners saw themselves manifested in their crafts and treasured a sense of pride in the creativity of their designs, these days largely reduced to an anonymous collective mass-produced output. Although a very conservative industry, there is great potential for the implementation of collaborative digital technologies allowing a reconfigured artisan experience to be reawakened in a new and exciting form. The furniture manufacturing industry, in general, has been slow to adopt new methodologies for a design using artificial and rule-based generative design. This tardiness has meant the loss of potential to enhance its capabilities in producing sustainable, flexible, and mass customizable ‘right first-time’ designs. This paper aims to demonstrate the concept methodology for the creation of alternative and inspiring aesthetic structures for robot-based additive manufacturing (RBAM). These technologies can enable the economic creation of previously unachievable structures, which traditionally would not have been commercially economic to manufacture. The integration of these technologies with the computing power of generative design provides the tools for practitioners to create concepts which are well beyond the insight of even the most accomplished traditional design teams. This paper aims to address the problem by introducing generative design methodologies employing the Autodesk Fusion 360 platform. Examination of the alternative methods for its use has the potential to significantly reduce the estimated 80% contribution to environmental impact at the initial design phase. Though predominantly a design methodology, generative design combined with RBAM has the potential to leverage many lean manufacturing and quality assurance benefits, enhancing the efficiency and agility of modern furniture manufacturing. Through a case study examination of a furniture artifact, the results will be compared to a traditionally designed and manufactured product employing the Ecochain Mobius product life cycle analysis (LCA) platform. This will highlight the benefits of both generative design and robot-based additive manufacturing from an environmental impact and manufacturing efficiency standpoint. These step changes in design methodology and environmental assessment have the potential to revolutionise the design to manufacturing workflow, giving momentum to the concept of conceiving a pre-industrial model of manufacturing, with the global demand for a circular economy and bespoke sustainable design at its heart.

Keywords: robot, manufacturing, generative design, sustainability, circular econonmy, product life cycle assessment, furniture

Procedia PDF Downloads 120
2083 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence

Authors: C. J. Rossouw, T. I. van Niekerk

Abstract:

The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.

Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring

Procedia PDF Downloads 69
2082 Development of Competitive Advantage for the Apparel Manufacturing Industry of South Africa

Authors: Sipho Mbatha, Anne Mastament-Mason

Abstract:

The Multi-Fibre Arrangement (MFA) which regulated all trade in the Apparel Manufacturing Industries (AMI) for four decades was dissolved in 2005. Since 2005, the Apparel Manufacturing Industry of South Africa (AMISA) has been battling to adjust to an environment of liberalised trade, mainly due to strategic, infrastructural and skills factors. In developing competitive advantage strategy for the AMISA, the study aimed to do the following (1) to apply Porter’s diamond model’s determinant “Factor Condition” as framework to develop competitive advantage strategies. (2) Examine the effectiveness of government policy Industrial Policy Action Plan (IPAP 2007) in supporting AMISA. (3) Examine chance events that could be used as bases for competitive advantage strategies for the AMISA. This study found that the lack of advanced skills and poor infrastructure are affecting the competitive advantage of AMISA. The then Clothing, Textiles, Leather and Footwear Sector Education and Training Authority (CTLF-SETA) has also fallen short of addressing the skills gap within the apparel manufacturing industries. The only time that AMISA have shown signs of competitive advantage was when they made use of government grants and incentives available to only compliant AMISA. The findings have shown that the apparel retail groups have shown support for the AMISA by shouldering raw material costs, making it easier to manufacture the required apparel at acceptable lead times. AMISA can compete in low end apparel, provided quick response is intensified, the development of local textiles and raw materials is expedited.

Keywords: compliance rule, apparel manufacturing idustry, factor conditions, advance skills, industrial policy action plan of South Africa

Procedia PDF Downloads 577
2081 Investment Adjustments to Exchange Rate Fluctuations Evidence from Manufacturing Firms in Tunisia

Authors: Mourad Zmami Oussema BenSalha

Abstract:

The current research aims to assess empirically the reaction of private investment to exchange rate fluctuations in Tunisia using a sample of 548 firms operating in manufacturing industries between 1997 and 2002. The micro-econometric model we estimate is based on an accelerator-profit specification investment model increased by two variables that measure the variation and the volatility of exchange rates. Estimates using the system the GMM method reveal that the effects of the exchange rate depreciation on investment are negative since it increases the cost of imported capital goods. Turning to the exchange rate volatility, as measured by the GARCH (1,1) model, our findings assign a significant role to the exchange rate uncertainty in explaining the sluggishness of private investment in Tunisia in the full sample of firms. Other estimation attempts based on various sub samples indicate that the elasticities of investment relative to the exchange rate volatility depend upon many firms’ specific characteristics such as the size and the ownership structure.

Keywords: investment, exchange rate volatility, manufacturing firms, system GMM, Tunisia

Procedia PDF Downloads 387
2080 Supercritical Water Gasification of Organic Wastes for Hydrogen Production and Waste Valorization

Authors: Laura Alvarez-Alonso, Francisco Garcia-Carro, Jorge Loredo

Abstract:

Population growth and industrial development imply an increase in the energy demands and the problems caused by emissions of greenhouse effect gases, which has inspired the search for clean sources of energy. Hydrogen (H₂) is expected to play a key role in the world’s energy future by replacing fossil fuels. The properties of H₂ make it a green fuel that does not generate pollutants and supplies sufficient energy for power generation, transportation, and other applications. Supercritical Water Gasification (SCWG) represents an attractive alternative for the recovery of energy from wastes. SCWG allows conversion of a wide range of raw materials into a fuel gas with a high content of hydrogen and light hydrocarbons through their treatment at conditions higher than those that define the critical point of water (temperature of 374°C and pressure of 221 bar). Methane used as a transport fuel is another important gasification product. The number of different uses of gas and energy forms that can be produced depending on the kind of material gasified and type of technology used to process it, shows the flexibility of SCWG. This feature allows it to be integrated with several industrial processes, as well as power generation systems or waste-to-energy production systems. The final aim of this work is to study which conditions and equipment are the most efficient and advantageous to explore the possibilities to obtain streams rich in H₂ from oily wastes, which represent a major problem both for the environment and human health throughout the world. In this paper, the relative complexity of technology needed for feasible gasification process cycles is discussed with particular reference to the different feedstocks that can be used as raw material, different reactors, and energy recovery systems. For this purpose, a review of the current status of SCWG technologies has been carried out, by means of different classifications based on key features as the feed treated or the type of reactor and other apparatus. This analysis allows to improve the technology efficiency through the study of model calculations and its comparison with experimental data, the establishment of kinetics for chemical reactions, the analysis of how the main reaction parameters affect the yield and composition of products, or the determination of the most common problems and risks that can occur. The results of this work show that SCWG is a promising method for the production of both hydrogen and methane. The most significant choices of design are the reactor type and process cycle, which can be conveniently adopted according to waste characteristics. Regarding the future of the technology, the design of SCWG plants is still to be optimized to include energy recovery systems in order to reduce costs of equipment and operation derived from the high temperature and pressure conditions that are necessary to convert water to the SC state, as well as to find solutions to remove corrosion and clogging of components of the reactor.

Keywords: hydrogen production, organic wastes, supercritical water gasification, system integration, waste-to-energy

Procedia PDF Downloads 130
2079 Intelligent Algorithm-Based Tool-Path Planning and Optimization for Additive Manufacturing

Authors: Efrain Rodriguez, Sergio Pertuz, Cristhian Riano

Abstract:

Tool-path generation is an essential step in the FFF (Fused Filament Fabrication)-based Additive Manufacturing (AM) process planning. In the manufacture of a mechanical part by using additive processes, high resource consumption and prolonged production times are inherent drawbacks of these processes mainly due to non-optimized tool-path generation. In this work, we propose a heuristic-search intelligent algorithm-based approach for optimized tool-path generation for FFF-based AM. The main benefit of this approach is a significant reduction of travels without material deposition when the AM machine performs moves without any extrusion. The optimization method used reduces the number of travels without extrusion in comparison with commercial software as Slic3r or Cura Engine, which means a reduction of production time.

Keywords: additive manufacturing, tool-path optimization, fused filament fabrication, process planning

Procedia PDF Downloads 423