Search results for: heuristic optimisation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 435

Search results for: heuristic optimisation

75 Modelling Social Influence and Cultural Variation in Global Low-Carbon Vehicle Transitions

Authors: Hazel Pettifor, Charlie Wilson, David Mccollum, Oreane Edelenbosch

Abstract:

Vehicle purchase is a technology adoption decision that will strongly influence future energy and emission outcomes. Global integrated assessment models (IAMs) provide valuable insights into the medium and long terms effects of socio-economic development, technological change and climate policy. In this paper we present a unique and transparent approach for improving the behavioural representation of these models by incorporating social influence effects to more accurately represent consumer choice. This work draws together strong conceptual thinking and robust empirical evidence to introduce heterogeneous and interconnected consumers who vary in their aversion to new technologies. Focussing on vehicle choice, we conduct novel empirical research to parameterise consumer risk aversion and how this is shaped by social and cultural influences. We find robust evidence for social influence effects, and variation between countries as a function of cultural differences. We then formulate an approach to modelling social influence which is implementable in both simulation and optimisation-type models. We use two global integrated assessment models (IMAGE and MESSAGE) to analyse four scenarios that introduce social influence and cultural differences between regions. These scenarios allow us to explore the interactions between consumer preferences and social influence. We find that incorporating social influence effects into global models accelerates the early deployment of electric vehicles and stimulates more widespread deployment across adopter groups. Incorporating cultural variation leads to significant differences in deployment between culturally divergent regions such as the USA and China. Our analysis significantly extends the ability of global integrated assessment models to provide policy-relevant analysis grounded in real-world processes.

Keywords: behavioural realism, electric vehicles, social influence, vehicle choice

Procedia PDF Downloads 187
74 Scheduling Jobs with Stochastic Processing Times or Due Dates on a Server to Minimize the Number of Tardy Jobs

Authors: H. M. Soroush

Abstract:

The problem of scheduling products and services for on-time deliveries is of paramount importance in today’s competitive environments. It arises in many manufacturing and service organizations where it is desirable to complete jobs (products or services) with different weights (penalties) on or before their due dates. In such environments, schedules should frequently decide whether to schedule a job based on its processing time, due-date, and the penalty for tardy delivery to improve the system performance. For example, it is common to measure the weighted number of late jobs or the percentage of on-time shipments to evaluate the performance of a semiconductor production facility or an automobile assembly line. In this paper, we address the problem of scheduling a set of jobs on a server where processing times or due-dates of jobs are random variables and fixed weights (penalties) are imposed on the jobs’ late deliveries. The goal is to find the schedule that minimizes the expected weighted number of tardy jobs. The problem is NP-hard to solve; however, we explore three scenarios of the problem wherein: (i) both processing times and due-dates are stochastic; (ii) processing times are stochastic and due-dates are deterministic; and (iii) processing times are deterministic and due-dates are stochastic. We prove that special cases of these scenarios are solvable optimally in polynomial time, and introduce efficient heuristic methods for the general cases. Our computational results show that the heuristics perform well in yielding either optimal or near optimal sequences. The results also demonstrate that the stochasticity of processing times or due-dates can affect scheduling decisions. Moreover, the proposed problem is general in the sense that its special cases reduce to some new and some classical stochastic single machine models.

Keywords: number of late jobs, scheduling, single server, stochastic

Procedia PDF Downloads 497
73 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application

Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko

Abstract:

Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.

Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health

Procedia PDF Downloads 242
72 Search for APN Permutations in Rings ℤ_2×ℤ_2^k

Authors: Daniel Panario, Daniel Santana de Freitas, Brett Stevens

Abstract:

Almost Perfect Nonlinear (APN) permutations with optimal resistance against differential cryptanalysis can be found in several domains. The permutation used in the standard for symmetric cryptography (the AES), for example, is based on a special kind of inversion in GF(28). Although very close to APN (2-uniform), this permutation still contains one number 4 in its differential spectrum, which means that, rigorously, it must be classified as 4-uniform. This fact motivates the search for fully APN permutations in other domains of definition. The extremely high complexity associated to this kind of problem precludes an exhaustive search for an APN permutation with 256 elements to be performed without the support of a suitable mathematical structure. On the other hand, in principle, there is nothing to indicate which mathematically structured domains can effectively help the search, and it is necessary to test several domains. In this work, the search for APN permutations in rings ℤ2×ℤ2k is investigated. After a full, exhaustive search with k=2 and k=3, all possible APN permutations in those rings were recorded, together with their differential profiles. Some very promising heuristics in these cases were collected so that, when used as a basis to prune backtracking for the same search in ℤ2×ℤ8 (search space with size 16! ≅244), just a few tenths of a second were enough to produce an APN permutation in a single CPU. Those heuristics were empirically extrapolated so that they could be applied to a backtracking search for APNs over ℤ2×ℤ16 (search space with size 32! ≅2117). The best permutations found in this search were further refined through Simulated Annealing, with a definition of neighbors suitable to this domain. The best result produced with this scheme was a 3-uniform permutation over ℤ2×ℤ16 with only 24 values equal to 3 in the differential spectrum (all the other 968 values were less than or equal 2, as it should be the case for an APN permutation). Although far from being fully APN, this result is technically better than a 4-uniform permutation and demanded only a few seconds in a single CPU. This is a strong indication that the use of mathematically structured domains, like the rings described in this work, together with heuristics based on smaller cases, can lead to dramatic cuts in the computational resources involved in the complexity of the search for APN permutations in extremely large domains.

Keywords: APN permutations, heuristic searches, symmetric cryptography, S-box design

Procedia PDF Downloads 159
71 ACO-TS: an ACO-based Algorithm for Optimizing Cloud Task Scheduling

Authors: Fahad Y. Al-dawish

Abstract:

The current trend by a large number of organizations and individuals to use cloud computing. Many consider it a significant shift in the field of computing. Cloud computing are distributed and parallel systems consisting of a collection of interconnected physical and virtual machines. With increasing request and profit of cloud computing infrastructure, diverse computing processes can be executed on cloud environment. Many organizations and individuals around the world depend on the cloud computing environments infrastructure to carry their applications, platform, and infrastructure. One of the major and essential issues in this environment related to allocating incoming tasks to suitable virtual machine (cloud task scheduling). Cloud task scheduling is classified as optimization problem, and there are several meta-heuristic algorithms have been anticipated to solve and optimize this problem. Good task scheduler should execute its scheduling technique on altering environment and the types of incoming task set. In this research project a cloud task scheduling methodology based on ant colony optimization ACO algorithm, we call it ACO-TS Ant Colony Optimization for Task Scheduling has been proposed and compared with different scheduling algorithms (Random, First Come First Serve FCFS, and Fastest Processor to the Largest Task First FPLTF). Ant Colony Optimization (ACO) is random optimization search method that will be used for assigning incoming tasks to available virtual machines VMs. The main role of proposed algorithm is to minimizing the makespan of certain tasks set and maximizing resource utilization by balance the load among virtual machines. The proposed scheduling algorithm was evaluated by using Cloudsim toolkit framework. Finally after analyzing and evaluating the performance of experimental results we find that the proposed algorithm ACO-TS perform better than Random, FCFS, and FPLTF algorithms in each of the makespaan and resource utilization.

Keywords: cloud Task scheduling, ant colony optimization (ACO), cloudsim, cloud computing

Procedia PDF Downloads 421
70 The Influence of Group Heuristics on Corporate Social Responsibility Messages Designed to Reduce Illegal Consumption

Authors: Kate Whitman, Zahra Murad, Joe Cox

Abstract:

Corporate social responsibility projects are suggested to motivate consumers to reciprocate good corporate deeds with their custom. When the projects benefit the ingroup vs the outgroup, such as locals rather than foreigners, the effect on reciprocity is suggested to be more powerful. This may be explained by group heuristics, a theory which indicates that favours to the ingroup (but not outgroup) are expected to be reciprocated, resulting in ingroup favouritism. The heuristic is theorised to explain prosocial behaviours towards the ingroup. The aim of this study is to test whether group heuristics similarly explain a reduction in antisocial behaviours towards the ingroup, measured by illegal consumption which harms a group that consumers identify with. In order to test corporate social responsibility messages, a population of interested consumers is required, so sport fans are recruited. A pre-registered experiment (N = 600) tests the influence of a focused “team” benefiting message vs a broader “sport” benefiting message on change in illegal intentions. The influence of group (team) identity and trait reciprocity on message efficacy are tested as measures of group heuristics. Results suggest that the “team” treatment significantly reduces illegal consumption intentions. The “sport” treatment interacted with the team identification measure, increasing illegal consumption intentions for low team identification individuals. The results suggest that corporate social responsibility may be effective in reducing illegal consumption, if the messages are delivered directly from brands to consumers with brand identification. Messages delivered on the behalf of an industry may have an undesirable effect.

Keywords: live sports, piracy, counterfeiting, corporate social responsibility, group heuristics, ingroup bias, team identification

Procedia PDF Downloads 84
69 Design Optimisation of a Novel Cross Vane Expander-Compressor Unit for Refrigeration System

Authors: Y. D. Lim, K. S. Yap, K. T. Ooi

Abstract:

In recent years, environmental issue has been a hot topic in the world, especially the global warming effect caused by conventional non-environmentally friendly refrigerants has increased. Several studies of a more energy-efficient and environmentally friendly refrigeration system have been conducted in order to tackle the issue. In search of a better refrigeration system, CO2 refrigeration system has been proposed as a better option. However, the high throttling loss involved during the expansion process of the refrigeration cycle leads to a relatively low efficiency and thus the system is impractical. In order to improve the efficiency of the refrigeration system, it is suggested by replacing the conventional expansion valve in the refrigeration system with an expander. Based on this issue, a new type of expander-compressor combined unit, named Cross Vane Expander-Compressor (CVEC) was introduced to replace the compressor and the expansion valve of a conventional refrigeration system. A mathematical model was developed to calculate the performance of CVEC, and it was found that the machine is capable of saving the energy consumption of a refrigeration system by as much as 18%. Apart from energy saving, CVEC is also geometrically simpler and more compact. To further improve its efficiency, optimization study of the device is carried out. In this report, several design parameters of CVEC were chosen to be the variables of optimization study. This optimization study was done in a simulation program by using complex optimization method, which is a direct search, multi-variables and constrained optimization method. It was found that the main design parameters, which was shaft radius was reduced around 8% while the inner cylinder radius was remained unchanged at its lower limit after optimization. Furthermore, the port sizes were increased to their upper limit after optimization. The changes of these design parameters have resulted in reduction of around 12% in the total frictional loss and reduction of 4% in power consumption. Eventually, the optimization study has resulted in an improvement in the mechanical efficiency CVEC by 4% and improvement in COP by 6%.

Keywords: complex optimization method, COP, cross vane expander-compressor, CVEC, design optimization, direct search, energy saving, improvement, mechanical efficiency, multi variables

Procedia PDF Downloads 373
68 Smart Automated Furrow Irrigation: A Preliminary Evaluation

Authors: Jasim Uddin, Rod Smith, Malcolm Gillies

Abstract:

Surface irrigation is the most popular irrigation method all over the world. However, two issues: low efficiency and huge labour involvement concern irrigators due to scarcity in recent years. To address these issues, a smart automated furrow is conceptualised that can be operated using digital devices like smartphone, iPad or computer and a preliminary evaluation was conducted in this study. The smart automated system is the integration of commercially available software and hardware. It includes real-time surface irrigation optimisation software (SISCO) and Rubicon Water’s surface irrigation automation hardware and software. The automated system consists of automatic water delivery system with 300 mm flexible pipes attached to both sides of a remotely controlled valve to operate the irrigation. A water level sensor to obtain the real-time inflow rate from the measured head in the channel, advance sensors to measure the advance time to particular points of an irrigated field, a solar-powered telemetry system including a base station to communicate all the field sensors with the main server. On the basis of field data, the software (SISCO) is optimised the ongoing irrigation and determine the optimum cut-off for particular irrigation and send this information to the control valve to stop the irrigation in a particular (cut-off) time. The preliminary evaluation shows that the automated surface irrigation worked reasonably well without manual intervention. The evaluation of farmers managed irrigation events show the potentials to save a significant amount of water and labour. A substantial amount of economic and social benefits are expected in rural industries by adopting this system. The future outcome of this work would be a fully tested commercial adaptive real-time furrow irrigation system able to compete with the pressurised alternative of centre pivot or lateral move machines on capital cost, water and labour savings but without the massive energy costs.

Keywords: furrow irrigation, smart automation, infiltration, SISCO, real-time irrigation, adoptive control

Procedia PDF Downloads 451
67 Optimising Post-Process Heat Treatments of Selective Laser Melting-Produced Ti-6Al-4V Parts to Achieve Superior Mechanical Properties

Authors: Gerrit Ter Haar, Thorsten Becker, Deborah Blaine

Abstract:

The Additive Manufacturing (AM) process of Selective Laser Melting (SLM) has seen an exponential growth in sales and development in the past fifteen years. Whereas the capability of SLM was initially limited to rapid prototyping, progress in research and development (R&D) has allowed SLM to be capable of fully functional parts. This technology is still at a primitive stage and technical knowledge of the vast number of variables influencing final part quality is limited. Ongoing research and development of the sensitive printing process and post processes is of utmost importance in order to qualify SLM parts to meet international standards. Quality concerns in Ti-6Al-4V manufactured through SLM has been identified, which include: high residual stresses, part porosity, low ductility and anisotropic mechanical properties. Whereas significant quality improvements have been made through optimising printing parameters, research indicates as-produced part ductility to be a major limiting factor when compared to its wrought counterpart. This study aims at achieving an in-depth understanding of the underlining links between SLM produced Ti-6Al-4V microstructure and its mechanical properties. Knowledge of microstructural transformation kinetics of Ti-6Al-4V allows for the optimisation of post-process heat treatments thereby achieving the required process route to manufacture high quality SLM produced Ti-6Al-4V parts. Experimental methods used to evaluate the kinematics of microstructural transformation of SLM Ti-6Al-4V are: optical microscopy and electron backscatter diffraction. Results show that a low-temperature heat treatment is capable of transforming the as-produced, martensitic microstructure into a duel-phase microstructure exhibiting both a high strength and improved ductility. Furthermore, isotropy of mechanical properties can be achieved through certain annealing routes. Mechanical properties identical to that of wrought Ti-6Al-4V can, therefore, be achieved through an optimised process route.

Keywords: EBSD analysis, heat treatments, microstructural characterisation, selective laser melting, tensile behaviour, Ti-6Al-4V

Procedia PDF Downloads 421
66 Microalgae for Plant Biostimulants on Whey and Dairy Wastewaters

Authors: Sergejs Kolesovs, Pavels Semjonovs

Abstract:

Whey and dairy wastewaters if disposed in the environment without proper treatment, cause serious environmental risks contributing to overall and particular environmental pollution and climate change. Biological treatment of wastewater is considered to be most eco-friendly approach, as compared to the chemical treatment methods. Research shows, that dairy wastewater can potentially be remediated by use of microalgae thussignificantly reducing the content of carbohydrates, P, N, K and other pollutants. Moreover, it has been shown, that use of dairy wastewaters results in higher microalgae biomass production. In recent decades microalgal biomass has entailed a big interest for its potential applications in pharmaceuticals, biomedicine, health supplementation, cosmetics, animal feed, plant protection, bioremediation and biofuels. It was shown, that lipids productivity on whey and dairy wastewater is higher as compared with standard cultivation media and occurred without the necessity of inducing specific stress conditions such as N starvation. Moreover, microalgae biomass production as usually associated with high production costs may benefit from perspective of both reasons – enhanced microalgae biomass or target substances productivity on cheap growth substrate and effective management of whey and dairy wastewaters, which issignificant for decrease of total production costs in both processes. Obviously, it became especially important when large volume and low cost industrial microalgal biomass production is anticipated for further use in agriculture of crops as plant growth stimulants, biopesticides soil fertilisers or remediating solutions. Environmental load of dairy wastewaters can be significantly decreased when microalgae are grown in coculture with other microorganisms. This enhances the utilisation of lactose, which is main C source in whey and dairy wastewaters when it is not metabolised easily by most microalgal species chosen. Our study showsthat certain microalgae strains can be used in treatment of residual sugars containing industrial wastewaters and decrease of their concentration thus approving that further extensive research on dairy wastewaters pre-treatment optionsfor effective cultivation of microalgae, carbon uptake and metabolism, strain selection and choice of coculture candidates is needed for further optimisation of the process.

Keywords: microalgae, whey, dairy wastewaters, sustainability, plant biostimulants

Procedia PDF Downloads 93
65 Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm

Authors: Annalakshmi G., Sakthivel Murugan S.

Abstract:

This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods.

Keywords: feature extraction, local directional pattern, ELM classifier, GWO optimization

Procedia PDF Downloads 163
64 Optimization of Waste Plastic to Fuel Oil Plants' Deployment Using Mixed Integer Programming

Authors: David Muyise

Abstract:

Mixed Integer Programming (MIP) is an approach that involves the optimization of a range of decision variables in order to minimize or maximize a particular objective function. The main objective of this study was to apply the MIP approach to optimize the deployment of waste plastic to fuel oil processing plants in Uganda. The processing plants are meant to reduce plastic pollution by pyrolyzing the waste plastic into a cleaner fuel that can be used to power diesel/paraffin engines, so as (1) to reduce the negative environmental impacts associated with plastic pollution and also (2) to curb down the energy gap by utilizing the fuel oil. A programming model was established and tested in two case study applications that are, small-scale applications in rural towns and large-scale deployment across major cities in the country. In order to design the supply chain, optimal decisions on the types of waste plastic to be processed, size, location and number of plants, and downstream fuel applications were concurrently made based on the payback period, investor requirements for capital cost and production cost of fuel and electricity. The model comprises qualitative data gathered from waste plastic pickers at landfills and potential investors, and quantitative data obtained from primary research. It was found out from the study that a distributed system is suitable for small rural towns, whereas a decentralized system is only suitable for big cities. Small towns of Kalagi, Mukono, Ishaka, and Jinja were found to be the ideal locations for the deployment of distributed processing systems, whereas Kampala, Mbarara, and Gulu cities were found to be the ideal locations initially utilize the decentralized pyrolysis technology system. We conclude that the model findings will be most important to investors, engineers, plant developers, and municipalities interested in waste plastic to fuel processing in Uganda and elsewhere in developing economy.

Keywords: mixed integer programming, fuel oil plants, optimisation of waste plastics, plastic pollution, pyrolyzing

Procedia PDF Downloads 129
63 Application of a Synthetic DNA Reference Material for Optimisation of DNA Extraction and Purification for Molecular Identification of Medicinal Plants

Authors: Mina Kalantarzadeh, Claire Lockie-Williams, Caroline Howard

Abstract:

DNA barcoding is increasingly used for identification of medicinal plants worldwide. In the last decade, a large number of DNA barcodes have been generated, and their application in species identification explored. The success of DNA barcoding process relies on the accuracy of the results from polymerase chain reaction (PCR) amplification step which could be negatively affected due to a presence of inhibitors or degraded DNA in herbal samples. An established DNA reference material can be used to support molecular characterisation protocols and prove system suitability, for fast and accurate identification of plant species. The present study describes the use of a novel reference material, the trnH-psbA British Pharmacopoeia Nucleic Acid Reference Material (trnH-psbA BPNARM), which was produced to aid in the identification of Ocimum tenuiflorum L., a widely used herb. During DNA barcoding of O. tenuiflorum, PCR amplifications of isolated DNA produced inconsistent results, suggesting an issue with either the method or DNA quality of the tested samples. The trnH-psbA BPNARM was produced and tested to check for the issues caused during PCR amplification. It was added to the plant material as control DNA before extraction and was co-extracted and amplified by PCR. PCR analyses revealed that the amplification was not as successful as expected which suggested that the amplification is affected by presence of inhibitors co-extracted from plant materials. Various potential issues were assessed during DNA extraction and optimisations were made accordingly. A DNA barcoding protocol for O. tenuiflorum was published in the British Pharmacopoeia 2016, which included the reference sequence. The trnH-psbA BPNARM accelerated degradation test which investigates the stability of the reference material over time demonstrated that it has been stable when stored at 56 °C for a year. Using this protocol and trnH-psbA reference material provides a fast and accurate method for identification of O. tenuiflorum. The optimisations of the DNA extraction using the trnH-psbA BPNARM provided a signposting method which can assist in overcoming common problems encountered when using molecular methods with medicinal plants.

Keywords: degradation, DNA extraction, nucleic acid reference material, trnH-psbA

Procedia PDF Downloads 199
62 Evaluating the Performance of Passive Direct Methanol Fuel Cell under Varying Operating and Structural Conditions

Authors: Rahul Saraswat

Abstract:

More recently, a focus is given on replacing machined stainless steel metal flow-fields with inexpensive wiremesh current collectors. The flow-fields are based on simple woven wiremesh screens of various stainless steels, which are sandwiched between a thin metal plate of the same material to create a bipolar plate/flow-field configuration for use in a stack. Major advantages of using stainless steel wire screens include the elimination of expensive raw materials as well as machining and/or other special fabrication costs. Objective of the project is to improve the performance of the passive direct methanol fuel cell without increasing the cost of the cell and to make it as compact and light as possible. From the literature survey, it was found that very little is done in this direction & the following methodology was used. 1.) The passive DMFC cell can be made more compact, lighter and less costly by changing the material used in its construction. 2.) Controlling the fuel diffusion rate through the cell improves the performance of the cell. A passive liquid feed direct methanol fuel cell ( DMFC ) was fabricated using given MEA( Membrane Electrode Assembly ) and tested for different current collector structure. Mesh current collectors of different mesh densities, along with different support structures, were used, and the performance was found to be better. Methanol concentration was also varied. Optimisation of mesh size, support structure and fuel concentration was achieved. Cost analysis was also performed hereby. From the performance analysis study of DMFC, we can conclude with the following points : Area specific resistance (ASR) of wiremesh current collectors is lower than ASR of stainless steel current collectors. Also, the power produced by wiremesh current collectors is always more than that produced by stainless steel current collectors. Low or moderate methanol concentrations should be used for better and stable DMFC performance. Wiremesh is a good substitute of stainless steel for current collector plates of passive DMFC because of lower cost( by about 27 %), flexibility and light in weight characteristics of wiremesh.

Keywords: direct methanol fuel cell, membrane electrode assembly, mesh, mesh size, methanol concentration and support structure

Procedia PDF Downloads 68
61 A Furniture Industry Concept for a Sustainable Generative Design Platform Employing Robot Based Additive Manufacturing

Authors: Andrew Fox, Tao Zhang, Yuanhong Zhao, Qingping Yang

Abstract:

The furniture manufacturing industry has been slow in general to adopt the latest manufacturing technologies, historically relying heavily upon specialised conventional machinery. This approach not only requires high levels of specialist process knowledge, training, and capital investment but also suffers from significant subtractive manufacturing waste and high logistics costs due to the requirement for centralised manufacturing, with high levels of furniture product not re-cycled or re-used. This paper aims to address the problems by introducing suitable digital manufacturing technologies to create step changes in furniture manufacturing design, as the traditional design practices have been reported as building in 80% of environmental impact. In this paper, a 3D printing robot for furniture manufacturing is reported. The 3D printing robot mainly comprises a KUKA industrial robot, an Arduino microprocessor, and a self-assembled screw fed extruder. Compared to traditional 3D printer, the 3D printing robot has larger motion range and can be easily upgraded to enlarge the maximum size of the printed object. Generative design is also investigated in this paper, aiming to establish a combined design methodology that allows assessment of goals, constraints, materials, and manufacturing processes simultaneously. ‘Matrixing’ for part amalgamation and product performance optimisation is enabled. The generative design goals of integrated waste reduction increased manufacturing efficiency, optimised product performance, and reduced environmental impact institute a truly lean and innovative future design methodology. In addition, there is massive future potential to leverage Single Minute Exchange of Die (SMED) theory through generative design post-processing of geometry for robot manufacture, resulting in ‘mass customised’ furniture with virtually no setup requirements. These generatively designed products can be manufactured using the robot based additive manufacturing. Essentially, the 3D printing robot is already functional; some initial goals have been achieved and are also presented in this paper.

Keywords: additive manufacturing, generative design, robot, sustainability

Procedia PDF Downloads 131
60 A Multimodal Measurement Approach Using Narratives and Eye Tracking to Investigate Visual Behaviour in Perceiving Naturalistic and Urban Environments

Authors: Khizar Z. Choudhrya, Richard Coles, Salman Qureshi, Robert Ashford, Salim Khan, Rabia R. Mir

Abstract:

Abstract: The majority of existing landscape research has been derived by conducting heuristic evaluations, without having empirical insight of real participant visual response. In this research, a modern multimodal measurement approach (using narratives and eye tracking) was applied to investigate visual behaviour in perceiving naturalistic and urban environments. This research is unique in exploring gaze behaviour on environmental images possessing different levels of saliency. Eye behaviour is predominantly attracted by salient locations. The concept of methodology of this research on naturalistic and urban environments is drawn from the approaches in market research. Borrowing methodologies from market research that examine visual responses and qualities provided a critical and hitherto unexplored approach. This research has been conducted by using mixed methodological quantitative and qualitative approaches. On the whole, the results of this research corroborated existing landscape research findings, but they also identified potential refinements. The research contributes both methodologically and empirically to human-environment interaction (HEI). This study focused on initial impressions of environmental images with the help of eye tracking. Taking under consideration the importance of the image, this study explored the factors that influence initial fixations in relation to expectations and preferences. In terms of key findings of this research it is noticed that each participant has his own unique navigation style while surfing through different elements of landscape images. This individual navigation style is given the name of ‘visual signature’. This study adds the necessary clarity that would complete the picture and bring an insight for future landscape researchers.

Keywords: human-environment interaction (HEI), multimodal measurement, narratives, eye tracking

Procedia PDF Downloads 339
59 Assessment and Optimisation of Building Services Electrical Loads for Off-Grid or Hybrid Operation

Authors: Desmond Young

Abstract:

In building services electrical design, a key element of any project will be assessing the electrical load requirements. This needs to be done early in the design process to allow the selection of infrastructure that would be required to meet the electrical needs of the type of building. The type of building will define the type of assessment made, and the values applied in defining the maximum demand for the building, and ultimately the size of supply or infrastructure required, and the application that needs to be made to the distribution network operator, or alternatively to an independent network operator. The fact that this assessment needs to be undertaken early in the design process provides limits on the type of assessment that can be used, as different methods require different types of information, and sometimes this information is not available until the latter stages of a project. A common method applied in the earlier design stages of a project, typically during stages 1,2 & 3, is the use of benchmarks. It is a possibility that some of the benchmarks applied are excessive in relation to the current loads that exist in a modern installation. This lack of accuracy is based on information which does not correspond to the actual equipment loads that are used. This includes lighting and small power loads, where the use of more efficient equipment and lighting has reduced the maximum demand required. The electrical load can be used as part of the process to assess the heat generated from the equipment, with the heat gains from other sources, this feeds into the sizing of the infrastructure required to cool the building. Any overestimation of the loads would contribute to the increase in the design load for the heating and ventilation systems. Finally, with the new policies driving the industry to decarbonise buildings, a prime example being the recently introduced London Plan, loads are potentially going to increase. In addition, with the advent of the pandemic and changes to working practices, and the adoption of electric heating and vehicles, a better understanding of the loads that should be applied will aid in ensuring that infrastructure is not oversized, as a cost to the client, or undersized to the detriment of the building. In addition, more accurate benchmarks and methods will allow assessments to be made for the incorporation of energy storage and renewable technologies as these technologies become more common in buildings new or refurbished.

Keywords: energy, ADMD, electrical load assessment, energy benchmarks

Procedia PDF Downloads 112
58 A Segmentation Method for Grayscale Images Based on the Firefly Algorithm and the Gaussian Mixture Model

Authors: Donatella Giuliani

Abstract:

In this research, we propose an unsupervised grayscale image segmentation method based on a combination of the Firefly Algorithm and the Gaussian Mixture Model. Firstly, the Firefly Algorithm has been applied in a histogram-based research of cluster means. The Firefly Algorithm is a stochastic global optimization technique, centered on the flashing characteristics of fireflies. In this context it has been performed to determine the number of clusters and the related cluster means in a histogram-based segmentation approach. Successively these means are used in the initialization step for the parameter estimation of a Gaussian Mixture Model. The parametric probability density function of a Gaussian Mixture Model is represented as a weighted sum of Gaussian component densities, whose parameters are evaluated applying the iterative Expectation-Maximization technique. The coefficients of the linear super-position of Gaussians can be thought as prior probabilities of each component. Applying the Bayes rule, the posterior probabilities of the grayscale intensities have been evaluated, therefore their maxima are used to assign each pixel to the clusters, according to their gray-level values. The proposed approach appears fairly solid and reliable when applied even to complex grayscale images. The validation has been performed by using different standard measures, more precisely: the Root Mean Square Error (RMSE), the Structural Content (SC), the Normalized Correlation Coefficient (NK) and the Davies-Bouldin (DB) index. The achieved results have strongly confirmed the robustness of this gray scale segmentation method based on a metaheuristic algorithm. Another noteworthy advantage of this methodology is due to the use of maxima of responsibilities for the pixel assignment that implies a consistent reduction of the computational costs.

Keywords: clustering images, firefly algorithm, Gaussian mixture model, meta heuristic algorithm, image segmentation

Procedia PDF Downloads 217
57 Performance of Non-Deterministic Structural Optimization Algorithms Applied to a Steel Truss Structure

Authors: Ersilio Tushaj

Abstract:

The efficient solution that satisfies the optimal condition is an important issue in the structural engineering design problem. The new codes of structural design consist in design methodology that looks after the exploitation of the total resources of the construction material. In recent years some non-deterministic or meta-heuristic structural optimization algorithms have been developed widely in the research community. These methods search the optimum condition starting from the simulation of a natural phenomenon, such as survival of the fittest, the immune system, swarm intelligence or the cooling process of molten metal through annealing. Among these techniques the most known are: the genetic algorithms, simulated annealing, evolution strategies, particle swarm optimization, tabu search, ant colony optimization, harmony search and big bang crunch optimization. In this study, five of these algorithms are applied for the optimum weight design of a steel truss structure with variable geometry but fixed topology. The design process selects optimum distances and size sections from a set of commercial steel profiles. In the formulation of the design problem are considered deflection limitations, buckling and allowable stress constraints. The approach is repeated starting from different initial populations. The design problem topology is taken from an existing steel structure. The optimization process helps the engineer to achieve good final solutions, avoiding the repetitive evaluation of alternative designs in a time consuming process. The algorithms used for the application, the results of the optimal solutions, the number of iterations and the minimal weight designs, will be reported in the paper. Based on these results, it would be estimated, the amount of the steel that could be saved by applying structural analysis combined with non-deterministic optimization methods.

Keywords: structural optimization, non-deterministic methods, truss structures, steel truss

Procedia PDF Downloads 230
56 Exploring Polypnenolics Content and Antioxidant Activity of R. damascena Dry Extract by Spectroscopic and Chromatographic Techniques

Authors: Daniela Nedeltcheva-Antonova, Kamelia Getchovska, Vera Deneva, Stanislav Bozhanov, Liudmil Antonov

Abstract:

Rosa damascena Mill. (Damask rose) is one of the most important plants belonging to the Rosaceae family, with a long historical use in traditional medicine and as a valuable oil-bearing plant. Many pharmacological effects have been reported from this plant, including anti-inflammatory, hypnotic, analgesic, anticonvulsant, anti-depressant, antianxiety, antitussive, antidiabetic, relaxant effects on tracheal chains, laxative, prokinetic and hepatoprotective activities. Pharmacological studies have shown that the various health effects of R. damascena flowers can mainly be attributed to its large amount of polyphenolic components. Phenolics possess a wide range of pharmacological activities, such as antioxidants, free-radical scavengers, anticancer, anti-inflammatory, antimutagenic, and antidepressant, with flavonoids being the most numerous group of natural polyphenolic compounds. According to the technological process in the production of rose concrete (solvent extraction with non-polar solvents of fresh rose flowers), it can be assumed that the resulting plant residue would be as rich of polyphenolics, as the plant itself, and could be used for the development of novel products with promising health-promoting effect. Therefore, an optimisation of the extraction procedure of the by-product from the rose concrete production was carried out. An assay of the extracts in respect of their total polyphenols and total flavonoids content was performed. HPLC analysis of quercetin and kaempferol, the two main flavonoids found in R. damascena, was also carried out. The preliminary results have shown that the flavonoid content in the rose extracts is comparable to that of the green tea or Gingko biloba, and they could be used for the development of various products (food supplements, natural cosmetics and phyto-pharmaceutical formulation, etc.). The fact that they are derived from the by-product of industrial plant processing could add the marketing value of the final products in addition to the well-known reputation of the products obtained from Bulgarian roses (R. damascena Mill.).

Keywords: gas chromatography-mass-spectromrtry, dry extract, flavonoids, Rosa damascena Mill

Procedia PDF Downloads 152
55 Optimisation of Stored Alcoholic Beverage Joufinai with Reverse Phase HPLC Method and Its Antioxidant Activities: North- East India

Authors: Dibakar Chandra Deka, Anamika Kalita Deka

Abstract:

Fermented alcoholic beverage production has its own stand among the tribal communities of North-East India. This biological oxidation method is followed by Ahom, Dimasa, Nishi, Miri, Bodo, Rabha tribes of this region. Bodo tribes among them not only prepare fermented alcoholic beverage but also store it for various time periods like 3 months, 6 months, 9 months, 12 months and 15 months etc. They prepare alcoholic beverage Jou (rice beer) following the fermentation of Oryza sativa with traditional yeast culture Amao. Saccharomyces cerevisiae is the main domain strain present in Amao. Dongphangrakep (Scoparia dulcis), Mwkhna (Clerodendrum viscosum), Thalir (Musa balbisina) and Khantal Bilai (Ananas cosmos) are the main plants used for Amao preparation. The stored Jou is known as Joufinai. They store the fermented mixture (rice and Amao) in anaerobic conditions for the preparation of Joufinai. We observed a successive increase in alcohol content from 3 months of storage period with 11.79 ± 0.010 (%, v/v) to 15.48 ± 0.070 (%, v/v) at 15 months of storage by a simple, reproducible and solution based colorimetric method. A positive linear correlation was also observed between pH and ethanol content with storage having correlation coefficient 0.981. Here, we optimised the detection of change in constituents of Joufinai during storage using reverse phase HPLC method. We found acetone, ethanol, acetic acid, glycerol as main constituents present in Joufinai. A very good correlation was observed from 3 months to 15 months of storage periods with its constituents. Increase in glycerol content was also detected with storage periods and hence Joufinai can be use as a precursor of above stated compounds. We also observed antioxidant activities increase from 0.056 ±2.80 mg/mL for 3 months old to 0.078± 5.33 mg/mL (in ascorbic acid equivalents) for 15 month old beverage by DPPH radical scavenging method. Therefore, we aimed for scientific validation of storage procedure used by Bodos in Joufinai production and to convert the Bodos’ traditional alcoholic beverage to a commercial commodity through our study.

Keywords: Amao, correlation, beverage, joufinai

Procedia PDF Downloads 321
54 Evaluating the Performance of Passive Direct Methanol Fuel Cell under Varying Operating and Structural Conditions

Authors: Rahul Saraswat

Abstract:

More recently, a focus has been given to replacing machined stainless steel metal flow fields with inexpensive wire mesh current collectors. The flow fields are based on simple woven wire mesh screens of various stainless steels, which are sandwiched between a thin metal plate of the same material to create a bipolar plate/flow field configuration for use in a stack. Major advantages of using stainless steel wire screens include the elimination of expensive raw materials as well as machining and/or other special fabrication costs. The objective of the project is to improve the performance of the passive direct methanol fuel cell without increasing the cost of the cell and to make it as compact and light as possible. From the literature survey, it was found that very little is done in this direction, and the following methodology was used. 1. The passive direct methanol fuel cell (DMFC) can be made more compact, lighter, and less costly by changing the material used in its construction. 2. Controlling the fuel diffusion rate through the cell improves the performance of the cell. A passive liquid feed direct methanol fuel cell (DMFC) was fabricated using a given MEA (Membrane Electrode Assembly) and tested for different current collector structures. Mesh current collectors of different mesh densities along with different support structures, were used, and the performance was found to be better. Methanol concentration was also varied. Optimisation of mesh size, support structure, and fuel concentration was achieved. Cost analysis was also performed hereby. From the performance analysis study of DMFC, we can conclude with the following points: Area specific resistance (ASR) of wire mesh current collectors is lower than the ASR of stainless steel current collectors. Also, the power produced by wire mesh current collectors is always more than that produced by stainless steel current collectors. 1. Low or moderate methanol concentrations should be used for better and stable DMFC performance. 2. Wiremesh is a good substitute for stainless steel for current collector plates of passive DMFC because of its lower cost (by about 27 %), flexibility, and light in weight characteristics of wire mesh.

Keywords: direct methanol fuel cell, membrane electrode assembly, mesh, mesh size, methanol concentration, support structure

Procedia PDF Downloads 80
53 Lipid from Activated Sludge as a Feedstock for the Production of Biodiesel

Authors: Ifeanyichukwu Edeh, Tim Overton, Steve Bowra

Abstract:

There is increasing interest in utilising low grade or waste biomass for the production of renewable bioenergy vectors i.e. waste to energy. In this study we have chosen to assess, activated sludge, which is a microbial biomass generated during the second stage of waste water treatment as a source of lipid for biodiesel production. To date a significant proportion of biodiesel is produced from used cooking oil and animal fats. It was reasoned that if activated sludge proved a viable feedstock it has the potential to support increase biodiesel production capacity. Activated sludge was obtained at different times of the year and from two different sewage treatment works in the UK. The biomass within the activated sludge slurry was recovered by filtration and the total weight of material calculated by combining the dry weight of the total suspended solid (TSS) and the total dissolved solid (TDS) fractions. Total lipids were extracted from the TSS and TDS using solvent extraction (Folch methods). The classes of lipids within the total lipid extract were characterised using high performance thin layer chromatography (HPTLC) by referencing known standards. The fatty acid profile and content of the lipid extract were determined using acid mediated-methanolysis to obtain fatty acid methyl esters (FAMEs) which were analysed by gas chromatography and HPTLC. The results showed that there were differences in the total biomass content in the activated sludge collected from different sewage works. Lipid yields from TSS obtained from both sewage treatment works differed according to the time of year (between 3.0 and 7.4 wt. %). The lipid yield varied slightly within the same source of biomass but more widely between the two sewage treatment works. The neutral lipid classes identified were acylglycerols, free fatty acids, sterols and wax esters while the phospholipid class included phosphatidylcholine, lysophosphatidycholine, phosphatidylethanolamine and phosphatidylinositol. The fatty acid profile revealed the presence of palmitic acid, palmitoleic acid, linoleic acid, oleic acid and stearic acid and that unsaturated fatty acids were the most abundant. Following optimisation, the FAME yield was greater than 10 wt. % which was required to have an economic advantage in biodiesel production.

Keywords: activated sludge, biodiesel, lipid, methanolysis

Procedia PDF Downloads 472
52 Selection of Optimal Reduced Feature Sets of Brain Signal Analysis Using Heuristically Optimized Deep Autoencoder

Authors: Souvik Phadikar, Nidul Sinha, Rajdeep Ghosh

Abstract:

In brainwaves research using electroencephalogram (EEG) signals, finding the most relevant and effective feature set for identification of activities in the human brain is a big challenge till today because of the random nature of the signals. The feature extraction method is a key issue to solve this problem. Finding those features that prove to give distinctive pictures for different activities and similar for the same activities is very difficult, especially for the number of activities. The performance of a classifier accuracy depends on this quality of feature set. Further, more number of features result in high computational complexity and less number of features compromise with the lower performance. In this paper, a novel idea of the selection of optimal feature set using a heuristically optimized deep autoencoder is presented. Using various feature extraction methods, a vast number of features are extracted from the EEG signals and fed to the autoencoder deep neural network. The autoencoder encodes the input features into a small set of codes. To avoid the gradient vanish problem and normalization of the dataset, a meta-heuristic search algorithm is used to minimize the mean square error (MSE) between encoder input and decoder output. To reduce the feature set into a smaller one, 4 hidden layers are considered in the autoencoder network; hence it is called Heuristically Optimized Deep Autoencoder (HO-DAE). In this method, no features are rejected; all the features are combined into the response of responses of the hidden layer. The results reveal that higher accuracy can be achieved using optimal reduced features. The proposed HO-DAE is also compared with the regular autoencoder to test the performance of both. The performance of the proposed method is validated and compared with the other two methods recently reported in the literature, which reveals that the proposed method is far better than the other two methods in terms of classification accuracy.

Keywords: autoencoder, brainwave signal analysis, electroencephalogram, feature extraction, feature selection, optimization

Procedia PDF Downloads 114
51 The Emancipatory Methodological Approach to the Organizational Problems Management

Authors: Slavica P. Petrovic

Abstract:

One of the key dimensions of management problems in organizations refers to the relations between stakeholders. The management problems that are characterized by conflict and coercion, in which participants do not agree on the ends and means, in which different groups, i.e., individuals, strive to – using the power they have – impose on others their favoured strategy and decisions represent the relevant research subject. Creatively managing the coercive problems in organizations, in which the sources of power can be identified, implies the emancipatory paradigm and the use of corresponding systems methodology. The main research aim is to critically reassess the theoretical foundations and methodological and methodical development of Critical Systems Heuristics (CSH) – as a valid representative of the emancipatory paradigm – in order to determine the conditions, ways, and achievements of its application in managing the coercive problems in organizations. The basic hypothesis is that CSH, as the emancipatory methodology, given its own theoretical foundations and methodological-methodical development, can be employed in a scientifically based and practically useful manner in creative addressing the coercive problems. The scientific instrumentarium corresponding to this research aim is critical systems thinking with its three key commitments to: a) Critical awareness of the strengths and weaknesses of each research instrument (theory, methodology, method, technique, model) for structuring the problem situations in organizations, b) Improvement of managing the coercive problems in organizations, and c) Pluralism – respect the different perceptions and interpretations of problem situations, and enable the combined use of research instruments. The relevant research result is that CSH – considering its theoretical foundations, methodological and methodical development – enables to reveal the normative content of the proposed or existing designs of organizational systems. Accordingly, it can be concluded that through the use of critically heuristic categories and dialectical debate between those involved and those affected by the designs, but who are not included in designing organizational systems, CSH endeavours to – in the application – support the process of improving position of all stakeholders.

Keywords: coercion and conflict in organizations, creative management, critical systems heuristics, the emancipatory systems methodology

Procedia PDF Downloads 442
50 Identification and Optimisation of South Africa's Basic Access Road Network

Authors: Diogo Prosdocimi, Don Ross, Matthew Townshend

Abstract:

Road authorities are mandated within limited budgets to both deliver improved access to basic services and facilitate economic growth. This responsibility is further complicated if maintenance backlogs and funding shortfalls exist, as evident in many countries including South Africa. These conditions require authorities to make difficult prioritisation decisions, with the effect that Road Asset Management Systems with a one-dimensional focus on traffic volumes may overlook the maintenance of low-volume roads that provide isolated communities with vital access to basic services. Given these challenges, this paper overlays the full South African road network with geo-referenced information for population, primary and secondary schools, and healthcare facilities to identify the network of connective roads between communities and basic service centres. This connective network is then rationalised according to the Gross Value Added and number of jobs per mesozone, administrative and functional road classifications, speed limit, and road length, location, and name to estimate the Basic Access Road Network. A two-step floating catchment area (2SFCA) method, capturing a weighted assessment of drive-time to service centres and the ratio of people within a catchment area to teachers and healthcare workers, is subsequently applied to generate a Multivariate Road Index. This Index is used to assign higher maintenance priority to roads within the Basic Access Road Network that provide more people with better access to services. The relatively limited incidence of Basic Access Roads indicates that authorities could maintain the entire estimated network without exhausting the available road budget before practical economic considerations get any purchase. Despite this fact, a final case study modelling exercise is performed for the Namakwa District Municipality to demonstrate the extent to which optimal relocation of schools and healthcare facilities could minimise the Basic Access Road Network and thereby release budget for investment in roads that best promote GDP growth.

Keywords: basic access roads, multivariate road index, road prioritisation, two-step floating catchment area method

Procedia PDF Downloads 231
49 Optimization of Traffic Agent Allocation for Minimizing Bus Rapid Transit Cost on Simplified Jakarta Network

Authors: Gloria Patricia Manurung

Abstract:

Jakarta Bus Rapid Transit (BRT) system which was established in 2009 to reduce private vehicle usage and ease the rush hour gridlock throughout the Jakarta Greater area, has failed to achieve its purpose. With gradually increasing the number of private vehicles ownership and reduced road space by the BRT lane construction, private vehicle users intuitively invade the exclusive lane of BRT, creating local traffic along the BRT network. Invaded BRT lanes costs become the same with the road network, making BRT which is supposed to be the main public transportation in the city becoming unreliable. Efforts to guard critical lanes with preventing the invasion by allocating traffic agents at several intersections have been expended, lead to the improving congestion level along the lane. Given a set of number of traffic agents, this study uses an analytical approach to finding the best deployment strategy of traffic agent on a simplified Jakarta road network in minimizing the BRT link cost which is expected to lead to the improvement of BRT system time reliability. User-equilibrium model of traffic assignment is used to reproduce the origin-destination demand flow on the network and the optimum solution conventionally can be obtained with brute force algorithm. This method’s main constraint is that traffic assignment simulation time escalates exponentially with the increase of set of agent’s number and network size. Our proposed metaheuristic and heuristic algorithms perform linear simulation time increase and result in minimized BRT cost approaching to brute force algorithm optimization. Further analysis of the overall network link cost should be performed to see the impact of traffic agent deployment to the network system.

Keywords: traffic assignment, user equilibrium, greedy algorithm, optimization

Procedia PDF Downloads 229
48 Workplace Development Programmes for Small and Medium-Sized Enterprises in Europe and Singapore: A Conceptual Study

Authors: Zhan Jie How

Abstract:

With the heightened awareness of workplace learning and its impact on improving organizational performance and developing employee competence, governments and corporations around the world are forced to intensify their cooperation to establish national workplace development programmes to guide these corporations in fostering engaging and collaborative workplace learning cultures. This conceptual paper aims to conduct a comparative study of existing workplace development programmes for small and medium-sized enterprises (SMEs) in Europe and Singapore, focusing primarily on the Swedish Production Leap, Finnish TEKES Liideri Programme, and Singapore SkillsFuture SME Mentors Programme. The study carries out a systematic review of the three workplace development programmes to examine the roles of external mentors or coaches in influencing the design and implementation of workplace learning strategies and practices in SMEs. Organizational, personal and external factors that promote or inhibit effective workplace mentorship are also scrutinized, culminating in a critical comparison and evaluation of the strengths and weaknesses of the aforementioned programmes. Based on the findings from the review and analyses, a heuristic conceptual framework is developed to illustrate the complex interrelationships among external workplace development programmes, internal learning and development initiatives instituted by the organization’s higher management, and employees' continuous learning activities at the workplace. The framework also includes a set of guiding principles that can be used as the basis for internal mediation between the competing perspectives of mentors and mentees (employers and employees of the organization) regarding workplace learning conditions, practices and their intended impact on the organization. The conceptual study provides a theoretical blueprint for future empirical research on organizational workplace learning and the impact of government-initiated workplace development programmes.

Keywords: employee competence, mentorship, organizational performance, workplace development programme, workplace learning culture

Procedia PDF Downloads 141
47 A Regression Model for Predicting Sugar Crystal Size in a Fed-Batch Vacuum Evaporative Crystallizer

Authors: Sunday B. Alabi, Edikan P. Felix, Aniediong M. Umo

Abstract:

Crystal size distribution is of great importance in the sugar factories. It determines the market value of granulated sugar and also influences the cost of production of sugar crystals. Typically, sugar is produced using fed-batch vacuum evaporative crystallizer. The crystallization quality is examined by crystal size distribution at the end of the process which is quantified by two parameters: the average crystal size of the distribution in the mean aperture (MA) and the width of the distribution of the coefficient of variation (CV). Lack of real-time measurement of the sugar crystal size hinders its feedback control and eventual optimisation of the crystallization process. An attractive alternative is to use a soft sensor (model-based method) for online estimation of the sugar crystal size. Unfortunately, the available models for sugar crystallization process are not suitable as they do not contain variables that can be measured easily online. The main contribution of this paper is the development of a regression model for estimating the sugar crystal size as a function of input variables which are easy to measure online. This has the potential to provide real-time estimates of crystal size for its effective feedback control. Using 7 input variables namely: initial crystal size (Lo), temperature (T), vacuum pressure (P), feed flowrate (Ff), steam flowrate (Fs), initial super-saturation (S0) and crystallization time (t), preliminary studies were carried out using Minitab 14 statistical software. Based on the existing sugar crystallizer models, and the typical ranges of these 7 input variables, 128 datasets were obtained from a 2-level factorial experimental design. These datasets were used to obtain a simple but online-implementable 6-input crystal size model. It seems the initial crystal size (Lₒ) does not play a significant role. The goodness of the resulting regression model was evaluated. The coefficient of determination, R² was obtained as 0.994, and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R² (~1.0) and the reasonably low MARE values are an indication that the model is able to predict sugar crystal size accurately as a function of the 6 easy-to-measure online variables. Thus, the model can be used as a soft sensor to provide real-time estimates of sugar crystal size during sugar crystallization process in a fed-batch vacuum evaporative crystallizer.

Keywords: crystal size, regression model, soft sensor, sugar, vacuum evaporative crystallizer

Procedia PDF Downloads 208
46 A Fast Optimizer for Large-scale Fulfillment Planning based on Genetic Algorithm

Authors: Choonoh Lee, Seyeon Park, Dongyun Kang, Jaehyeong Choi, Soojee Kim, Younggeun Kim

Abstract:

Market Kurly is the first South Korean online grocery retailer that guarantees same-day, overnight shipping. More than 1.6 million customers place an average of 4.7 million orders and add 3 to 14 products into a cart per month. The company has sold almost 30,000 kinds of various products in the past 6 months, including food items, cosmetics, kitchenware, toys for kids/pets, and even flowers. The company is operating and expanding multiple dry, cold, and frozen fulfillment centers in order to store and ship these products. Due to the scale and complexity of the fulfillment, pick-pack-ship processes are planned and operated in batches, and thus, the planning that decides the batch of the customers’ orders is a critical factor in overall productivity. This paper introduces a metaheuristic optimization method that reduces the complexity of batch processing in a fulfillment center. The method is an iterative genetic algorithm with heuristic creation and evolution strategies; it aims to group similar orders into pick-pack-ship batches to minimize the total number of distinct products. With a well-designed approach to create initial genes, the method produces streamlined plans, up to 13.5% less complex than the actual plans carried out in the company’s fulfillment centers in the previous months. Furthermore, our digital-twin simulations show that the optimized plans can reduce 3% of operation time for packing, which is the most complex and time-consuming task in the process. The optimization method implements a multithreading design on the Spring framework to support the company’s warehouse management systems in near real-time, finding a solution for 4,000 orders within 5 to 7 seconds on an AWS c5.2xlarge instance.

Keywords: fulfillment planning, genetic algorithm, online grocery retail, optimization

Procedia PDF Downloads 83