Search results for: RP/SP fusion data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25440

Search results for: RP/SP fusion data

25080 Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering

Authors: Yunus Doğan, Ahmet Durap

Abstract:

Coastal regions are the one of the most commonly used places by the natural balance and the growing population. In coastal engineering, the most valuable data is wave behaviors. The amount of this data becomes very big because of observations that take place for periods of hours, days and months. In this study, some statistical methods such as the wave spectrum analysis methods and the standard statistical methods have been used. The goal of this study is the discovery profiles of the different coast areas by using these statistical methods, and thus, obtaining an instance based data set from the big data to analysis by using data mining algorithms. In the experimental studies, the six sample data sets about the wave behaviors obtained by 20 minutes of observations from Mersin Bay in Turkey and converted to an instance based form, while different clustering techniques in data mining algorithms were used to discover similar coastal places. Moreover, this study discusses that this summarization approach can be used in other branches collecting big data such as medicine.

Keywords: clustering algorithms, coastal engineering, data mining, data summarization, statistical methods

Procedia PDF Downloads 361
25079 Access to Health Data in Medical Records in Indonesia in Terms of Personal Data Protection Principles: The Limitation and Its Implication

Authors: Anny Retnowati, Elisabeth Sundari

Abstract:

This research aims to elaborate the meaning of personal data protection principles on patient access to health data in medical records in Indonesia and its implications. The method uses normative legal research by examining health law in Indonesia regarding the patient's right to access their health data in medical records. The data will be analysed qualitatively using the interpretation method to elaborate on the limitation of the meaning of personal data protection principles on patients' access to their data in medical records. The results show that patients only have the right to obtain copies of their health data in medical records. There is no right to inspect directly at any time. Indonesian health law limits the principle of patients' right to broad access to their health data in medical records. This restriction has implications for the reduction of personal data protection as part of human rights. This research contribute to show that a limitaion of personal data protection may abuse the human rights.

Keywords: access, health data, medical records, personal data, protection

Procedia PDF Downloads 93
25078 Conceptualizing the Knowledge to Manage and Utilize Data Assets in the Context of Digitization: Case Studies of Multinational Industrial Enterprises

Authors: Martin Böhmer, Agatha Dabrowski, Boris Otto

Abstract:

The trend of digitization significantly changes the role of data for enterprises. Data turn from an enabler to an intangible organizational asset that requires management and qualifies as a tradeable good. The idea of a networked economy has gained momentum in the data domain as collaborative approaches for data management emerge. Traditional organizational knowledge consequently needs to be extended by comprehensive knowledge about data. The knowledge about data is vital for organizations to ensure that data quality requirements are met and data can be effectively utilized and sovereignly governed. As this specific knowledge has been paid little attention to so far by academics, the aim of the research presented in this paper is to conceptualize it by proposing a “data knowledge model”. Relevant model entities have been identified based on a design science research (DSR) approach that iteratively integrates insights of various industry case studies and literature research.

Keywords: data management, digitization, industry 4.0, knowledge engineering, metamodel

Procedia PDF Downloads 356
25077 Analysis and Forecasting of Bitcoin Price Using Exogenous Data

Authors: J-C. Leneveu, A. Chereau, L. Mansart, T. Mesbah, M. Wyka

Abstract:

Extracting and interpreting information from Big Data represent a stake for years to come in several sectors such as finance. Currently, numerous methods are used (such as Technical Analysis) to try to understand and to anticipate market behavior, with mixed results because it still seems impossible to exactly predict a financial trend. The increase of available data on Internet and their diversity represent a great opportunity for the financial world. Indeed, it is possible, along with these standard financial data, to focus on exogenous data to take into account more macroeconomic factors. Coupling the interpretation of these data with standard methods could allow obtaining more precise trend predictions. In this paper, in order to observe the influence of exogenous data price independent of other usual effects occurring in classical markets, behaviors of Bitcoin users are introduced in a model reconstituting Bitcoin value, which is elaborated and tested for prediction purposes.

Keywords: big data, bitcoin, data mining, social network, financial trends, exogenous data, global economy, behavioral finance

Procedia PDF Downloads 355
25076 Adsorption of Acetone Vapors by SBA-16 and MCM-48 Synthesized from Rice Husk Ash

Authors: Wanting Zeng, Hsunling Bai

Abstract:

Silica was extracted from agriculture waste rice husk ash (RHA) and was used as the silica source for synthesis of RMCM-48 and RSBA-16. An alkali fusion process was utilized to separate silicate supernatant and the sediment effectively. The CTAB/Si and F127/Si molar ratio was employed to control the structure properties of the obtained RMCM-48 and RSBA-16 materials. The N2 adsorption-desorption results showed the micro-mesoporous RSBA-16 possessed high specific surface areas (662-1001 m2/g). All the obtained RSBA-16 materials were applied as the adsorbents for acetone adsorption. And the breakthrough tests clearly revealed that the RSBA-16(0.004) materials could achieve the highest acetone adsorption capacity of 186 mg/g under 1000 ppmv acetone vapor concentration at 25oC, which was also superior to ZSM-5 (71mg/g) and MCM-41 (157mg/g) under same test conditions. This can help to reduce the solid waste and the high adsorption performance of the obtained materials could consider as potential adsorbents for acetone adsorption.

Keywords: acetone, adsorption, micro-mesoporous material, rice husk ash (RHA), RSBA-16

Procedia PDF Downloads 340
25075 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment: A Practical Example

Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh

Abstract:

With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper, we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.

Keywords: mobile health, data integration, expert systems, disease-related malnutrition

Procedia PDF Downloads 477
25074 The Prospects of Leveraging (Big) Data for Accelerating a Just Sustainable Transition around Different Contexts

Authors: Sombol Mokhles

Abstract:

This paper tries to show the prospects of utilising (big)data for enabling just the transition of diverse cities. Our key purpose is to offer a framework of applications and implications of utlising (big) data in comparing sustainability transitions across different cities. Relying on the cosmopolitan comparison, this paper explains the potential application of (big) data but also its limitations. The paper calls for adopting a data-driven and just perspective in including different cities around the world. Having a just and inclusive approach at the front and centre ensures a just transition with synergistic effects that leave nobody behind.

Keywords: big data, just sustainable transition, cosmopolitan city comparison, cities

Procedia PDF Downloads 99
25073 Strategic Workplace Security: The Role of Malware and the Threat of Internal Vulnerability

Authors: Modesta E. Ezema, Christopher C. Ezema, Christian C. Ugwu, Udoka F. Eze, Florence M. Babalola

Abstract:

Some employees knowingly or unknowingly contribute to loss of data and also expose data to threat in the process of getting their jobs done. Many organizations today are faced with the challenges of how to secure their data as cyber criminals constantly devise new ways of attacking the organization’s secret data. However, this paper enlists the latest strategies that must be put in place in order to protect these important data from being attacked in a collaborative work place. It also introduces us to Advanced Persistent Threats (APTs) and how it works. The empirical study was conducted to collect data from the employee in data centers on how data could be protected from malicious codes and cyber criminals and their responses are highly considered to help checkmate the activities of malicious code and cyber criminals in our work places.

Keywords: data, employee, malware, work place

Procedia PDF Downloads 382
25072 Acceptance of Big Data Technologies and Its Influence towards Employee’s Perception on Job Performance

Authors: Jia Yi Yap, Angela S. H. Lee

Abstract:

With the use of big data technologies, organization can get result that they are interested in. Big data technologies simply load all the data that is useful for the organizations and provide organizations a better way of analysing data. The purpose of this research is to get employees’ opinion from films in Malaysia to explore the use of big data technologies in their organization in order to provide how it may affect the perception of the employees on job performance. Therefore, in order to identify will accepting big data technologies in the organization affect the perception of the employee, questionnaire will be distributed to different employee from different Small and medium-sized enterprises (SME) organization listed in Malaysia. The conceptual model proposed will test with other variables in order to see the relationship between variables.

Keywords: big data technologies, employee, job performance, questionnaire

Procedia PDF Downloads 298
25071 Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition

Authors: Matthew Ferguson, Tatyana Konkova, Ioannis Violatos

Abstract:

Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat-affected zone (HAZ), experiencing rapid thermal gyrations resulting in thermal-induced transformations. Inconel 718 was utilized as work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. The thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. The interface region of the blocks was analyzed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), including the electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.

Keywords: additive manufacturing, direct energy deposition, electron back-scattered diffraction, finite element analysis, inconel 718, microstructure, optical microscopy, scanning electron microscopy, substrate-deposit interface region

Procedia PDF Downloads 203
25070 The Application on Interactivity of Light in New Media Art

Authors: Yansong Chen

Abstract:

In the age of media convergence, new media technology is constantly impacting, changing, and even reshaping the limits of Art. From the technological ontology of the new media art, the concept of interaction design has always been dominated by I/O (Input/Output) systems through the ages, which ignores the content of systems and kills the aura of art. Light, as a fusion media, basically comes from the extension of some human feelings and can be the content of the input or the effect of output. In this paper, firstly, on the basis of literature review, the interaction characteristics research was conducted on light. Secondly, starting from discourse patterns of people and machines, people and people, people, and imagining things, we propose three light modes: object-oriented interaction, Immersion interaction, Tele-Presence interaction. Finally, this paper explains how to regain the aura of art through light elements in new media art and understand multiple levels of 'Interaction design'. In addition, the new media art, especially the light-based interaction art, enriches the language patterns and motivates emerging art forms to be more widespread and popular, which achieves its aesthetics growth.

Keywords: new media art, interaction design, light art, immersion

Procedia PDF Downloads 235
25069 Data Poisoning Attacks on Federated Learning and Preventive Measures

Authors: Beulah Rani Inbanathan

Abstract:

In the present era, it is vivid from the numerous outcomes that data privacy is being compromised in various ways. Machine learning is one technology that uses the centralized server, and then data is given as input which is being analyzed by the algorithms present on this mentioned server, and hence outputs are predicted. However, each time the data must be sent by the user as the algorithm will analyze the input data in order to predict the output, which is prone to threats. The solution to overcome this issue is federated learning, where the models alone get updated while the data resides on the local machine and does not get exchanged with the other local models. Nevertheless, even on these local models, there are chances of data poisoning, and it is crystal clear from various experiments done by many people. This paper delves into many ways where data poisoning occurs and the many methods through which it is prevalent that data poisoning still exists. It includes the poisoning attacks on IoT devices, Edge devices, Autoregressive model, and also, on Industrial IoT systems and also, few points on how these could be evadible in order to protect our data which is personal, or sensitive, or harmful when exposed.

Keywords: data poisoning, federated learning, Internet of Things, edge computing

Procedia PDF Downloads 87
25068 The Manufacturing of Metallurgical Grade Silicon from Diatomaceous Silica by an Induction Furnace

Authors: Shahrazed Medeghri, Saad Hamzaoui, Mokhtar Zerdali

Abstract:

The metallurgical grade silicon (MG-Si) is obtained from the reduction of silica (SiO2) in an induction furnace or an electric arc furnace. Impurities inherent in reduction process also depend on the quality of the raw material used. Among the applications of the silicon, it is used as a substrate for the photovoltaic conversion of solar energy and this conversion is wider as the purity of the substrate is important. Research is being done where the purpose is looking for new methods of manufacturing and purification of silicon, as well as new materials that can be used as substrates for the photovoltaic conversion of light energy. In this research, the technique of production of silicon in an induction furnace, using a high vacuum for fusion. Diatomaceous Silica (SiO2) used is 99 mass% initial purities, the carbon used is 6N of purity and the particle size of 63μm as starting materials. The final achieved purity of the material was above 50% by mass. These results demonstrate that this method is a technically reliable, and allows obtaining a better return on the amount 50% of silicon.

Keywords: induction furnaces, amorphous silica, carbon microstructure, silicon

Procedia PDF Downloads 404
25067 Simulation and Hardware Implementation of Data Communication Between CAN Controllers for Automotive Applications

Authors: R. M. Kalayappan, N. Kathiravan

Abstract:

In automobile industries, Controller Area Network (CAN) is widely used to reduce the system complexity and inter-task communication. Therefore, this paper proposes the hardware implementation of data frame communication between one controller to other. The CAN data frames and protocols will be explained deeply, here. The data frames are transferred without any collision or corruption. The simulation is made in the KEIL vision software to display the data transfer between transmitter and receiver in CAN. ARM7 micro-controller is used to transfer data’s between the controllers in real time. Data transfer is verified using the CRO.

Keywords: control area network (CAN), automotive electronic control unit, CAN 2.0, industry

Procedia PDF Downloads 398
25066 Improving the Statistics Nature in Research Information System

Authors: Rajbir Cheema

Abstract:

In order to introduce an integrated research information system, this will provide scientific institutions with the necessary information on research activities and research results in assured quality. Since data collection, duplication, missing values, incorrect formatting, inconsistencies, etc. can arise in the collection of research data in different research information systems, which can have a wide range of negative effects on data quality, the subject of data quality should be treated with better results. This paper examines the data quality problems in research information systems and presents the new techniques that enable organizations to improve their quality of research information.

Keywords: Research information systems (RIS), research information, heterogeneous sources, data quality, data cleansing, science system, standardization

Procedia PDF Downloads 157
25065 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores

Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan

Abstract:

Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.

Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics

Procedia PDF Downloads 130
25064 Data Mining Meets Educational Analysis: Opportunities and Challenges for Research

Authors: Carla Silva

Abstract:

Recent development of information and communication technology enables us to acquire, collect, analyse data in various fields of socioeconomic – technological systems. Along with the increase of economic globalization and the evolution of information technology, data mining has become an important approach for economic data analysis. As a result, there has been a critical need for automated approaches to effective and efficient usage of massive amount of educational data, in order to support institutions to a strategic planning and investment decision-making. In this article, we will address data from several different perspectives and define the applied data to sciences. Many believe that 'big data' will transform business, government, and other aspects of the economy. We discuss how new data may impact educational policy and educational research. Large scale administrative data sets and proprietary private sector data can greatly improve the way we measure, track, and describe educational activity and educational impact. We also consider whether the big data predictive modeling tools that have emerged in statistics and computer science may prove useful in educational and furthermore in economics. Finally, we highlight a number of challenges and opportunities for future research.

Keywords: data mining, research analysis, investment decision-making, educational research

Procedia PDF Downloads 358
25063 Tritium Activities in Romania, Potential Support for Development of ITER Project

Authors: Gheorghe Ionita, Sebastian Brad, Ioan Stefanescu

Abstract:

In any fusion device, tritium plays a key role both as a fuel component and, due to its radioactivity and easy incorporation, as tritiated water (HTO). As for the ITER project, to reduce the constant potential of tritium emission, there will be implemented a Water Detritiation System (WDS) and an Isotopic Separation System (ISS). In the same time, during operation of fission CANDU reactors, the tritium content increases in the heavy water used as moderator and cooling agent (due to neutron activation) and it has to be reduced, too. In Romania, at the National Institute for Cryogenics and Isotopic Technologies (ICIT Rm-Valcea), there is an Experimental Pilot Plant for Tritium Removal (Exp. TRF), with the aim of providing technical data on the design and operation of an industrial plant for heavy water depreciation of CANDU reactors from Cernavoda NPP. The selected technology is based on the catalyzed isotopic exchange process between deuterium and liquid water (LPCE) combined with the cryogenic distillation process (CD). This paper presents an updated review of activities in the field carried out in Romania after the year 2000 and in particular those related to the development and operation of Tritium Removal Experimental Pilot Plant. It is also presented a comparison between the experimental pilot plant and industrial plant to be implemented at Cernavoda NPP. The similarities between the experimental pilot plant from ICIT Rm-Valcea and water depreciation and isotopic separation systems from ITER are also presented and discussed. Many aspects or 'opened issues' relating to WDS and ISS could be checked and clarified by a special research program, developed within ExpTRF. By these achievements and results, ICIT Rm - Valcea has proved its expertise and capability concerning tritium management therefore its competence may be used within ITER project.

Keywords: ITER project, heavy water detritiation, tritium removal, isotopic exchange

Procedia PDF Downloads 413
25062 Energy Metabolism and Mitochondrial Biogenesis in Muscles of Rats Subjected to Cold Water Immersion

Authors: Bosiacki Mateusz, Anna Lubkowska, Dariusz Chlubek, Irena Baranowska-Bosiacka

Abstract:

Exposure to cold temperatures can be considered a stressor that can lead to adaptive responses. The present study hypothesized the possibility of a positive effect of cold water exercise on mitochondrial biogenesis and muscle energy metabolism in aging rats. The purpose of this study was to evaluate the effects of cold water exercise on energy status, purine compounds, and mitochondrial biogenesis in the muscles of aging rats as indicators of the effects of cold water exercise and their usefulness in monitoring adaptive changes. The study was conducted on 64 aging rats of both sexes, 15 months old at the time of the experiment. The rats (male and female separately) were randomly assigned to the following study groups: control, sedentary animals; 5°C groups animals - training swimming in cold water at 5°C; 36°C groups - animals training swimming in water at thermal comfort temperature. The study was conducted with the approval of the Local Ethical Committee for Animal Experiments. The animals in the experiment were subjected to swimming training for 9 weeks. During the first week of the study, the duration of the first swimming training was 2 minutes (on the first day), increasing daily by 0.5 minutes up to 4 minutes on the fifth day of the first week. From the second to the eighth week, the swimming training was 4 minutes per day, five days a week. At the end of the study, forty-eight hours after the last swim training, the animals were dissected. In the skeletal muscle tissue of the thighs of the rats, we determined the concentrations of ATP, ADP, AMP, Ado (HPLC), PGC-1a protein expression (Western blot), PGC1A, Mfn1, Mfn2, Opa1, and Drp1 gene expression (qRT PCR). The study showed that swimming in water at a thermally comfortable temperature improved the energy metabolism of the aging rat muscles by increasing the metabolic rate (increase in ATP, ADP, TAN, AEC) and enhancing mitochondrial fusion (increase in mRNA expression of regulatory proteins Mfn1 and Mfn2). Cold water swimming improved muscle energy metabolism in aging rats by increasing the rate of muscle energy metabolism (increase in ATP, ADP, TAN, AEC concentrations) and enhancing mitochondrial biogenesis and dynamics (increase in the mRNA expression of proteins of fusion-regulating factors – Mfn1, Mfn2, and Opa1, and the factor regulating mitochondrial fission – Drp1). The concentration of high-energy compounds and the expression of proteins regulating mitochondrial dynamics in the muscle may be a useful indicator in monitoring adaptive changes occurring in aging muscles under the influence of exercise in cold water. It represents a short-term adaptation to changing environmental conditions and has a beneficial effect on maintaining the bioenergetic capacity of muscles in the long term. Conclusion: exercise in cold water can exert positive effects on energy metabolism, biogenesis and dynamics of mitochondria in aging rat muscles. Enhancement of mitochondrial dynamics under cold water exercise conditions can improve mitochondrial function and optimize the bioenergetic capacity of mitochondria in aging rat muscles.

Keywords: cold water immersion, adaptive responses, muscle energy metabolism, aging

Procedia PDF Downloads 81
25061 Exploring Mechanical Properties of Additive Manufacturing Ceramic Components Across Techniques and Materials

Authors: Venkatesan Sundaramoorthy

Abstract:

The field of ceramics has undergone a remarkable transformation with the advent of additive manufacturing technologies. This comprehensive review explores the mechanical properties of additively manufactured ceramic components, focusing on key materials such as Alumina, Zirconia, and Silicon Carbide. The study delves into various authors' review technology into the various additive manufacturing techniques, including Stereolithography, Powder Bed Fusion, and Binder Jetting, highlighting their advantages and challenges. It provides a detailed analysis of the mechanical properties of these ceramics, offering insights into their hardness, strength, fracture toughness, and thermal conductivity. Factors affecting mechanical properties, such as microstructure and post-processing, are thoroughly examined. Recent advancements and future directions in 3D-printed ceramics are discussed, showcasing the potential for further optimization and innovation. This review underscores the profound implications of additive manufacturing for ceramics in industries such as aerospace, healthcare, and electronics, ushering in a new era of engineering and design possibilities for ceramic components.

Keywords: mechanical properties, additive manufacturing, ceramic materials, PBF

Procedia PDF Downloads 64
25060 A Method of Detecting the Difference in Two States of Brain Using Statistical Analysis of EEG Raw Data

Authors: Digvijaysingh S. Bana, Kiran R. Trivedi

Abstract:

This paper introduces various methods for the alpha wave to detect the difference between two states of brain. One healthy subject participated in the experiment. EEG was measured on the forehead above the eye (FP1 Position) with reference and ground electrode are on the ear clip. The data samples are obtained in the form of EEG raw data. The time duration of reading is of one minute. Various test are being performed on the alpha band EEG raw data.The readings are performed in different time duration of the entire day. The statistical analysis is being carried out on the EEG sample data in the form of various tests.

Keywords: electroencephalogram(EEG), biometrics, authentication, EEG raw data

Procedia PDF Downloads 464
25059 Green Transport Solutions for Developing Cities: A Case Study of Nairobi, Kenya

Authors: Benedict O. Muyale, Emmanuel S. Murunga

Abstract:

Cities have always been the loci for nationals as well as growth of cultural fusion and innovation. Over 50%of global population dwells in cities and urban centers. This means that cities are prolific users of natural resources and generators of waste; hence they produce most of the greenhouse gases which are causing global climate change. The root cause of increase in the transport sector carbon curve is mainly the greater numbers of individually owned cars. Development in these cities is geared towards economic progress while environmental sustainability is ignored. Infrastructure projects focus on road expansion, electrification, and more parking spaces. These lead to more carbon emissions, traffic congestion, and air pollution. Recent development plans for Nairobi city are now on road expansion with little priority for electric train solutions. The Vision 2030, Kenya’s development guide, has shed some light on the city with numerous road expansion projects. This chapter seeks to realize the following objectives; (1) to assess the current transport situation of Nairobi; (2) to review green transport solutions being undertaken in the city; (3) to give an overview of alternative green transportation solutions, and (4) to provide a green transportation framework matrix. This preliminary study will utilize primary and secondary data through mainly desktop research and analysis, literature, books, magazines and on-line information. This forms the basis for formulation of approaches for incorporation into the green transportation framework matrix of the main study report.The main goal is the achievement of a practical green transportation system for implementation by the City County of Nairobi to reduce carbon emissions and congestion and promote environmental sustainability.

Keywords: cities, transport, Nairobi, green technologies

Procedia PDF Downloads 321
25058 A Study on Big Data Analytics, Applications and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 83
25057 A Study on Big Data Analytics, Applications, and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 95
25056 Improved K-Means Clustering Algorithm Using RHadoop with Combiner

Authors: Ji Eun Shin, Dong Hoon Lim

Abstract:

Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases.

Keywords: big data, combiner, K-means clustering, RHadoop

Procedia PDF Downloads 438
25055 Framework for Integrating Big Data and Thick Data: Understanding Customers Better

Authors: Nikita Valluri, Vatcharaporn Esichaikul

Abstract:

With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.

Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data

Procedia PDF Downloads 162
25054 Incremental Learning of Independent Topic Analysis

Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda

Abstract:

In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.

Keywords: text mining, topic extraction, independent, incremental, independent component analysis

Procedia PDF Downloads 309
25053 Open Data for e-Governance: Case Study of Bangladesh

Authors: Sami Kabir, Sadek Hossain Khoka

Abstract:

Open Government Data (OGD) refers to all data produced by government which are accessible in reusable way by common people with access to Internet and at free of cost. In line with “Digital Bangladesh” vision of Bangladesh government, the concept of open data has been gaining momentum in the country. Opening all government data in digital and customizable format from single platform can enhance e-governance which will make government more transparent to the people. This paper presents a well-in-progress case study on OGD portal by Bangladesh Government in order to link decentralized data. The initiative is intended to facilitate e-service towards citizens through this one-stop web portal. The paper further discusses ways of collecting data in digital format from relevant agencies with a view to making it publicly available through this single point of access. Further, possible layout of this web portal is presented.

Keywords: e-governance, one-stop web portal, open government data, reusable data, web of data

Procedia PDF Downloads 355
25052 Concentrated Solar Energy Sintering of Multifunctional Metallic Alloys

Authors: Catalin Croitoru, Ionut Claudiu Roata

Abstract:

Employing concentrated solar energy (CSE) for sintering metallic parts offers distinct advantages, notably in the rapid thermal cycling that significantly influences their microstructure and phase transitions. This study uses the thermal control that CSE affords, enhancing the mechanical properties and tailoring the functionality of nickel-based alloys. We synthesized bulk alloys by sintering Ni-Cr-Al-Y powders in varied ratios using a vertical solar furnace at PROMES-CNRS, Font-Romeu Odeillo, France. The process achieved optimal fusion at 800°C for 10 minutes, resulting in materials with a notable hydrophilic surface due to oxide formation. The alloys’ performance was evaluated through corrosion resistance tests in a 3.5% wt. NaCl solution, utilizing potentiodynamic scanning and electrochemical impedance spectroscopy. Our findings demonstrate the potential of CSE in advancing the material properties of nickel-based alloys for diverse applications.

Keywords: concentrated solar energy, sintering, corrosion resistance, surface properties

Procedia PDF Downloads 20
25051 Resource Framework Descriptors for Interestingness in Data

Authors: C. B. Abhilash, Kavi Mahesh

Abstract:

Human beings are the most advanced species on earth; it's all because of the ability to communicate and share information via human language. In today's world, a huge amount of data is available on the web in text format. This has also resulted in the generation of big data in structured and unstructured formats. In general, the data is in the textual form, which is highly unstructured. To get insights and actionable content from this data, we need to incorporate the concepts of text mining and natural language processing. In our study, we mainly focus on Interesting data through which interesting facts are generated for the knowledge base. The approach is to derive the analytics from the text via the application of natural language processing. Using semantic web Resource framework descriptors (RDF), we generate the triple from the given data and derive the interesting patterns. The methodology also illustrates data integration using the RDF for reliable, interesting patterns.

Keywords: RDF, interestingness, knowledge base, semantic data

Procedia PDF Downloads 162