Search results for: thermal environmental
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9543

Search results for: thermal environmental

5763 Investigation of Municipal Solid Waste Incineration Filter Cake as Minor Additional Constituent in Cement Production

Authors: Veronica Caprai, Katrin Schollbach, Miruna V. A. Florea, H. J. H. Brouwers

Abstract:

Nowadays MSWI (Municipal Solid Waste Incineration) bottom ash (BA) produced by Waste-to-Energy (WtE) plants represents the majority of the solid residues derived from MSW incineration. Once processed, the BA is often landfilled resulting in possible environmental problems, additional costs for the plant and increasing occupation of public land. In order to limit this phenomenon, European countries such as the Netherlands aid the utilization of MSWI BA in the construction field, by providing standards about the leaching of contaminants into the environment (Dutch Soil Quality Decree). Commonly, BA has a particle size below 32 mm and a heterogeneous chemical composition, depending on its source. By washing coarser BA, an MSWI sludge is obtained. It is characterized by a high content of heavy metals, chlorides, and sulfates as well as a reduced particle size (below 0.25 mm). To lower its environmental impact, MSWI sludge is filtered or centrifuged for removing easily soluble contaminants, such as chlorides. However, the presence of heavy metals is not easily reduced, compromising its possible application. For lowering the leaching of those contaminants, the use of MSWI residues in combination with cement represents a precious option, due to the known retention of those ions into the hydrated cement matrix. Among the applications, the European standard for common cement EN 197-1:1992 allows the incorporation of up to 5% by mass of a minor additional constituent (MAC), such as fly ash or blast furnace slag but also an unspecified filler into cement. To the best of the author's knowledge, although it is widely available, it has the appropriate particle size and a chemical composition similar to cement, FC has not been investigated as possible MAC in cement production. Therefore, this paper will address the suitability of MSWI FC as MAC for CEM I 52.5 R, within a 5% maximum replacement by mass. After physical and chemical characterization of the raw materials, the crystal phases of the pastes are determined by XRD for 3 replacement levels (1%, 3%, and 5%) at different ages. Thereafter, the impact of FC on mechanical and environmental performances of cement is assessed according to EN 196-1 and the Dutch Soil Quality Decree, respectively. The investigation of the reaction products evidences the formation of layered double hydroxides (LDH), in the early stage of the reaction. Mechanically the presence of FC results in a reduction of 28 days compressive strength by 8% for a replacement of 5% wt., compared with the pure CEM I 52.5 R without any MAC. In contrast, the flexural strength is not affected by the presence of FC. Environmentally, the Dutch legislation for the leaching of contaminants for unshaped (granular) material is satisfied. Based on the collected results, FC represents a suitable candidate as MAC in cement production.

Keywords: environmental impact evaluation, Minor additional constituent, MSWI residues, X-ray diffraction crystallography

Procedia PDF Downloads 152
5762 Heat Transfer Enhancement Due to the Optimal Porosity in Plate Heat Exchangers with Sinusoidal Plates

Authors: Hossein Shokouhmand, Seyyed Mostafa Saadat

Abstract:

In this paper, the effect of thermal dispersion on the performance of plate heat exchangers (PHEs) with sinusoidal plates is investigated. In this regard, the PHE is considered as a porous medium. The important property of a porous medium is porosity that is defined as the total fluid volume divided by the total volume occupied by the solid and fluid. A 2D array of parallel sinusoidal plates with laminar periodically developed forced convection and single-phase constant property flows and conduction in a homogenous solid phase in two directions is considered. The array of flows is counter and the flows heat capacities are equal. Numerical study of conjugate heat transfer and axial conduction in the solid phase with different plate thicknesses showed that there is an optimal porosity in which the efficiency of heat transfer is up to 4% more than the time when the porosity is near one. It is shown that the optimal porosity at zero angle of inclination depends both on Reynolds number and the aspect ratio. The optimal porosity increased while either the Reynolds number or waviness of plates increased.

Keywords: plate heat exchanger, optimal porosity, efficiency, aspect ratio

Procedia PDF Downloads 388
5761 Advancing Aviation: A Multidisciplinary Approach to Innovation, Management, and Technology Integration in the 21st Century

Authors: Fatih Frank Alparslan

Abstract:

The aviation industry is at a crucial turning point due to modern technologies, environmental concerns, and changing ways of transporting people and goods globally. The paper examines these challenges and opportunities comprehensively. It emphasizes the role of innovative management and advanced technology in shaping the future of air travel. This study begins with an overview of the current state of the aviation industry, identifying key areas where innovation and technology could be highly beneficial. It explores the latest advancements in airplane design, propulsion, and materials. These technological advancements are shown to enhance aircraft performance and environmental sustainability. The paper also discusses the use of artificial intelligence and machine learning in improving air traffic control, enhancing safety, and making flight operations more efficient. The management of these technologies is critically important. Therefore, the research delves into necessary changes in organization, culture, and operations to support innovation. It proposes a management approach that aligns with these modern technologies, underlining the importance of forward-thinking leaders who collaborate across disciplines and embrace innovative ideas. The paper addresses challenges in adopting these innovations, such as regulatory barriers, the need for industry-wide standards, and the impact of technological changes on jobs and society. It recommends that governments, aviation businesses, and educational institutions collaborate to address these challenges effectively, paving the way for a more innovative and eco-friendly aviation industry. In conclusion, the paper argues that the future of aviation relies on integrating new management practices with innovative technologies. It urges a collective effort to push beyond current capabilities, envisioning an aviation industry that is safer, more efficient, and environmentally responsible. By adopting a broad approach, this research contributes to the ongoing discussion about resolving the complex issues facing today's aviation sector, offering insights and guidance to prepare for future advancements.

Keywords: aviation innovation, technology integration, environmental sustainability, management strategies, multidisciplinary approach

Procedia PDF Downloads 23
5760 Sustainable Campus Assessment Tool: Case Study of Engineering Faculty, Alexandria University

Authors: Faten Fares

Abstract:

Undoubtedly, the world today faces difficult environmental, financial, and social challenges. In order to change people’s lifestyle to be more sustainable, one must change people’s culture then spaces by focusing on education. Further, the higher education has a key role to play in the move toward a more sustainable world. In the overall analysis, the true sustainable university will make a significant effect. Since the sustainable campus is not only a green built environment, which aims at energy efficiency, water efficiency, waste management, and conserving resources but also it is how to implement green built environment. This implementation takes place while engaging the campus stakeholders (students, academic staff, assistants, workers, and administrators) through educating for sustainability. The main purpose of the research is to develop a tool to assess the sustainable campus and to be a framework for achieving more sustainable campuses. In the case study, the data were analyzed to know existing efforts and capabilities then measure the sustainability performance using the proposal framework at Alexandria University Engineering Campus. Finally, the findings of the research explain that campus is partially adherence with the proposal tool and need to be more sustainable in a formally implemented.

Keywords: sustainability, higher education, sustainable campus, sustainability teaching and research, campus participation culture, environmental improvement

Procedia PDF Downloads 396
5759 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System

Authors: Anas Hallak, Latifa Seblini, Juergen Wilde

Abstract:

In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.

Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive

Procedia PDF Downloads 173
5758 Furnishing The Envelope; 3D Printed Construction Unit as Furniture

Authors: Maryam Kalkatechi

Abstract:

The paper presents the construction unit that was proposed as a result of researching and finding solutions for challenges of the traditional masonry unit. The concept of ‘unit as arrangements of cells’ was investigated in four categories of structure, handling and assembly, thermal characteristics and weather ability which resulted in construction unit as an independent system which shapes a part of the envelope. Comparing to the traditional wall systems in which the system is in layers, the part system is a monolithic piece by itself. Even though the overall wythe-10 inches- is less than the combined layers-14 inches- in a traditional wall system, it is still seen as a spatial component. The component as a furnishing of envelope is discussed from material application point of view. The algorithm definition of the arrangement cells crafts the relationship between cells and functionality with material. This craft is realized as the envelope furnishing. Three alternative materials in relation to furnishing the envelope are discussed for printing the construction unit; transparent plastic, opaque plastic and glass. The qualities vary in the four categories, however this paper focuses on the visual qualities of materials applied. In a diagram the qualities of the materials are compared in relation to each other.

Keywords: furnishing envelope, 3D printed construction unit, opaque plastic, transparent plastic, glass

Procedia PDF Downloads 163
5757 Efficiency and Performance of Legal Institutions in the Middle East in the 21st Century

Authors: Marco Khalaf Ayad Milhaail

Abstract:

In thinking about the role of legal rules and their impact on social ethics and social structures, scholars have explored many issues related to gender, power, and ideology. First, it provides a framework for defining feminist legal studies through an overview of the field's evolution in terms of equality, rights, and justice. Secondly, it encourages those interested in equality, rights, and justice regarding women's issues to participate in international comparative law research. Third, we must emphasize that those seeking solutions to disability and discrimination must be aware of the need to confront the so-called undermining of culture. Therefore, an effective way for women to solve this problem is to rely heavily on international law, which establishes basic legal principles such as gender equality, rights, and justice and can help create a domestic environment. Woman has gained many advantages by adopting the law of Divorce in the Islamic Sharea. Any Egyptian woman can get divorce by letting her rightful rights and wealth to her husband in return for her freedom.

Keywords: stability, harsh environments, techniques, thermal, properties, materials, applications, brittleness, fragility, disadvantages, bank, branches, profitability, setting prediction, effective target, measurement, evaluation, performance, commercial, business, profitability, sustainability, financial, system, banks

Procedia PDF Downloads 20
5756 Solid Waste Disposal Site Selection in Thiruvananthapuram Corporation Area by Data Analysis Using GIS and Remote Sensing Tools

Authors: C. Asha Poorna, P. G. Vinod, A. R. R. Menon

Abstract:

Currently increasing population and their activities like urbanization and industrialization generating the greatest environmental, issue called Waste. And the major problem in waste management is selection of an appropriate site for waste disposal. The selection of suitable site have constrains like environmental, economical and political considerations. In this paper we discuss the strategies to be followed while selecting a site for decentralized system for solid waste disposal, using Geographic Information System (GIS), the Analytical Hierarchy Process (AHP) and the remote sensing method for Thiruvananthapuram corporation area. It is located on the west coast of India near the extreme south of the mainland. It lies on the shores of Killiyar and Karamana River. Being on the basin the waste managements must be regulated with the water body. The different criteria considered for waste disposal site selection are lithology, surface water, aquifer, groundwater, land use, contours, aspect, elevation, slope, and distance to road, distance from settlement are examined in relation to land fill site selection. Each criterion was identified and weighted by AHP score and mapped using GIS technique and suitable map is prepared by overlay analysis.

Keywords: waste disposal, solid waste management, Geographic Information System (GIS), Analytical Hierarchy Process (AHP)

Procedia PDF Downloads 375
5755 Characterization and Comparative Analysis of North Bengal Sand

Authors: Marzia Hoque Tania, Oishy Roy, ASW Kurny, Fahmida Gulshan

Abstract:

This paper presents results of the investigation on the characterization of silica sand of northern region of Bangladesh on the basis of material composition, particle shape, and size, density, transportation, crystallinity, etc. before and after upgradation. The raw sand samples collected from Nilphamari and Lalmonirhat district were studied and compared for the prospect silica as a high valued commodity rather than heavy minerals. The raw sand particles were colorful in appearance with varying particle size distribution. Scanning Electron Microscopy (SEM) showed uniformity in grain size and mineralogical composition. X-ray fluorescence (XRF) analysis indicated the silica content of the as-received sample to be 75%. Thermogravimetric and Differential Thermal Analysis (DTA) did not detect the presence of any organic material. These tests revealed the sample to be alpha-quartz. Samples were washed with organic and inorganic acid with a combination of varying rotation speed, concentration, solid-liquid ratio. Experiments showed the silica content could be enhanced to more than 85% by washing with 15% sulphuric acid in room temperature. Beneficiation can be improved in further work considering the effect of varying temperature or advanced technology.

Keywords: beneficiation, characterization, commercial grade sand, glass sand, silica, upgradation

Procedia PDF Downloads 121
5754 Thermal Pre-Treatment of Sewage Sludge in Fluidized Bed for Enhancing Its Solid Fuel Properties

Authors: Sujeeta Karki, Jeeban Poudel, Ja Hyung Choi, Sea Cheon Oh

Abstract:

A lab-scale fluidized bed was used for the study of sewage sludge, a non-lignocellulosic biomass, torrefaction. The influence of torrefaction temperature ranging from 200–350 °C and residence time of 0–50 minutes on the physical and chemical properties of the torrefied product was investigated. Properties of the torrefied product were analyzed on the basis of degree of torrefaction, ultimate and proximate analysis, gas analysis and chemical exergy. The degree of torrefaction and chemical exergy had a positive influence on increasing the torrefaction temperature. Moreover, the effect of torrefaction temperature and residence time on the elemental variation of sewage sludge exhibited an increase in the weight percentage of carbon while the content of H/C and O/C molar ratios decreased. The product gas emitted during torrefaction was analyzed to study the pathway of hydrocarbons and oxygen-containing compounds. The compounds with oxygen were emitted at higher temperatures in contrast to hydrocarbon gases. An attempt was made to obtain the chemical exergy of sewage sludge. In addition, the study of various correlations for predicting the calorific value of torrefied sewage sludge was made.

Keywords: chemical exergy, degree of torrefaction, fluidized bed, higher heating value (HHV), O/C and H/C molar ratios, sewage sludge

Procedia PDF Downloads 156
5753 Integrating Sustainable Construction Principles into Curriculum Design for Built Environment Professional Programs in Nigeria

Authors: M. Yakubu, M. B. Isah, S. Bako

Abstract:

This paper presents the findings of a research which sought to investigate the readiness to integrate sustainable construction principles into curriculum design for built environment professional programs in the Nigerian Universities. Developing the knowledge and understanding that construction professionals acquire of sustainable construction practice leads to considerable improvement in the environmental performance of the construction sector. Integrating sustainable environmental issues within the built environment education curricula provide the basis of this research. An integration of sustainable development principles into the universities built environment professional programmes are carried out with a view of finding solutions to the key issues identified. The perspectives of academia have been assessed and findings tested for validity through the analysis of primary quantitative data that has been collected. The secondary data generated has shown that there are significant differences in the approach to curriculum design within the built environment professional programmes, and this reveals that there is no ‘best practice’ that is clearly identifiable. Sequel to the above, this research reveals that engaging all stakeholders would be a useful component of built environment curriculum development, and that the curriculum be negotiated with interested parties. These parties have been identified as academia, government, construction industry and built environment professionals.

Keywords: built environment, curriculum development, sustainable construction, sustainable development

Procedia PDF Downloads 402
5752 Environment-Specific Political Risk Discourse, Environmental Reputation, and Stock Price Crash Risk

Authors: Sohanur Rahman, Elisabeth Sinnewe, Larelle (Ellie) Chapple, Sarah Osborne

Abstract:

Greater political attention to global climate change exposes firms to a higher level of political uncertainty, which can lead to adverse capital market consequences. However, a higher level of discourse on environment-specific political risk (EPR) between management and investors can mitigate information asymmetry, followed by less stock price crash risk. This study examines whether EPR discourse in discourse in the earnings conference calls (ECC) reduces firm-level stock price crash risk in the US market. This research also explores if adverse disclosures via media channels further moderates the association between EPR on crash risk. Employing a dataset of 28,933 firm-year observations from 2002 to 2020, the empirical analysis reveals that EPR discourse in ECC reduces future stock price crash risk. However, adverse disclosures via media channels can offset the favourable effect of EPR discourse on crash risk. The results are robust to the potential endogeneity concern in a quasi-natural experiment setting.

Keywords: earnings conference calls, environment, environment-specific political risk discourse, environmental disclosures, information asymmetry, reputation risk, stock price crash risk

Procedia PDF Downloads 117
5751 Separation Performance of CO₂ by Mixed Matrix Membrane Comprising Carbide-Derived Carbon

Authors: Musa Najimu, Isam Aljundi

Abstract:

In this study, the development of mixed matrix membrane (MMM) containing carbide-derived carbon (CDC) for the separation of CO₂ was investigated. MMM with four different loadings (0.1 to 2 wt%) were prepared by the dry/wet phase inversion technique. Prior to this, the formula of the control polysulfone (PSF) membrane was optimized in terms of the PSF concentration in a mixture of NMP/THF solvents and ethanol. Prepared samples were characterized and tested for CO₂ and CH₄ gas permeation. The optimization of the control PSF membrane revealed that 30 wt% PSF is the critical polymer concentration in the formulation. Characterization results unveiled reinforcement of thermal stability and improved polarity imparted by CDC in the MMM, in addition to uniform dispersion of filler up to 1 wt% loading. Furthermore, the incorporation of CDC in PSF membrane formulation enhanced both the CO₂ permeance and ideal selectivity over the control membrane. A CDC loading of 0.5 wt% resulted in the highest CO₂ permeance of 5.5 GPU corresponding to 120% increase in permeance while a CDC loading of 1 wt% resulted in the highest selectivity (CO₂ /CH₄) of 27 corresponding to 29% increase in selectivity. Studies of operating temperature effect showed that an optimum operating temperature for M1.0 membrane is 20 ⁰C. In addition, the feed pressure studies showed that high pressure feeds will favor high performance of the membrane and a good CO₂ /CH₄ separation.

Keywords: carbide derived carbon, mixed matrix membrane, CO₂ separation, polysulfone

Procedia PDF Downloads 189
5750 Thermodynamic Modeling of Three Pressure Level Reheat HRSG, Parametric Analysis and Optimization Using PSO

Authors: Mahmoud Nadir, Adel Ghenaiet

Abstract:

The main purpose of this study is the thermodynamic modeling, the parametric analysis, and the optimization of three pressure level reheat HRSG (Heat Recovery Steam Generator) using PSO method (Particle Swarm Optimization). In this paper, a parametric analysis followed by a thermodynamic optimization is presented. The chosen objective function is the specific work of the steam cycle that may be, in the case of combined cycle (CC), a good criterion of thermodynamic performance analysis, contrary to the conventional steam turbines in which the thermal efficiency could be also an important criterion. The technologic constraints such as maximal steam cycle temperature, minimal steam fraction at steam turbine outlet, maximal steam pressure, minimal stack temperature, minimal pinch point, and maximal superheater effectiveness are also considered. The parametric analyses permitted to understand the effect of design parameters and the constraints on steam cycle specific work variation. PSO algorithm was used successfully in HRSG optimization, knowing that the achieved results are in accordance with those of the previous studies in which genetic algorithms were used. Moreover, this method is easy to implement comparing with the other methods.

Keywords: combined cycle, HRSG thermodynamic modeling, optimization, PSO, steam cycle specific work

Procedia PDF Downloads 362
5749 Attitude Towards Carnivore-Livestock Conflict and It’s Effect on Households Willingness to Pay for Organic Meat: A Contingent Valuation Approach

Authors: Abinet Tilahun Aweke

Abstract:

In Europe, there is a growing interest in food produced ethically and with a broader benefit for society. Consumers could consider numerous extrinsic and intrinsic quality attributes, including organically produced, when selecting meat to purchase. Many studies recorded various reasons why consumers may choose to pay the premium price for organic foods, although willingness to pay (WTP) for organic meat and motives behind the WTPs differ depending on the meat type/cut and place. Employing state of the art stated preference (SP) method, this study seeks to find out how environmental attitudes and health concerns shape the demand for organic agriculture in Norway. More specifically, this paper contributes to the existing knowledge on consumer preferences by exploring if consumer's attitude towards carnivore-sheep conflict affects the willingness to pay (WTP) for organic meat. This study will also have a methodological contribution by investigating whether having environmental attitude and carnivore-livestock conflict questions prior to the organic meat WTP question will significantly affect the will to pay and the amount paid. Understanding the effect of the content of the auxiliary questions posed before WTP questions will help to improve future CV survey designs and hence the validity of the results obtained.

Keywords: attitude, consumer reference, contingent valuation, meat, organic, stated preference, survey design

Procedia PDF Downloads 78
5748 Metazoan Meiofauna and Their Abundance in Relation to Environmental Variables in the Northern Red Sea

Authors: Hamed A. El-Serehy, Khaled A. Al-Rasheid, Fahad A. Al-Misned

Abstract:

The composition and distribution of the benthic meiofauna assemblages of the Egyptian coasts along the Red Sea are described in relation to abiotic variables. Sediment samples were collected seasonally from twelve stations chosen along the northern part of the Red Sea to observe the meiofaunal community structure, its temporal distribution and horizontal fluctuation in relation to environmental conditions of the Red Sea marine ecosystem. The meiofaunal assemblage in the area of study was well diversified including 140 taxa. The temperature, salinity, pH, dissolved oxygen, and redox potential were measured at the time of collection. The water content of the sediments, total organic matters and chlorophyll a values were determined, and sediment samples were subjected to granulometric analysis. A total of 10 meiofauna taxa were identified, with the meiofauna being primarily represented by nematodes (on annual average from 42% to 84%), harpacticoids, polycheates and ostracodes; and the meiofauna abundances ranging from 41- to 167 ind. / 10 cm2. The meiofaunal population density fluctuated seasonally with a peak of 192.52 ind. / 10 cm2 during summer at station II. The vertical zonation in the distribution of meiofaunal community was significantly correlated with interstitial water, chlorophyll a and total organic matter values. The present study indicates that the existing of well diversified meiofaunal group which can serve as food for higher trophic levels in the Red Sea interstitial environment.

Keywords: benthos, diversity, meiofauna, Red Sea

Procedia PDF Downloads 369
5747 Effect of Environmental Conditions on E. Coli o157:h7 Atcc 43888 and L. Monocytogenes Atcc 7644 Cell Surface Hydrophobicity, Motility and Cell Attachment on Food-Contact Surfaces

Authors: Stanley Dula, Oluwatosini A. Ijabadeniyi

Abstract:

Biofilm formation is a major source of materials and foodstuffs contamination, contributing to occurrence of pathogenic and spoilage microbes in food processing resulting in food spoilage, transmission of diseases and significant food hygiene and safety issues. This study elucidates biofilm formation of E. coli O157:H7 and L. monocytogenes ATCC 7644 grown under food related environmental stress conditions of varying pH (5.0;7.0; and 8.5) and temperature (15, 25 and 37 ℃). Both strains showed confluent biofilm formation at 25 ℃ and 37 ℃, at pH 8.5 after 5 days. E. coli showed curli fimbriae production at various temperatures, while L. monocytogenes did not show pronounced expression. Swarm, swimming and twitching plate assays were used to determine strain motilities. Characterization of cell hydrophobicity was done using the microbial adhesion to hydrocarbons (MATH) assay using n-hexadecane. Both strains showed hydrophilic characteristics as they fell within a < 20 % interval. FT-IR revealed COOH at 1622 cm-1, and a strong absorption band at 3650 cm-1 – 3200 cm-1 indicating the presence of both -OH and -NH groups. Both strains were hydrophilic and could form biofilm at different combinations of temperature and pH. EPS produced in both species proved to be an acidic hetero-polysaccharide.

Keywords: biofilm, pathogens, hydrophobicity, motility

Procedia PDF Downloads 221
5746 NENU2PHAR: PHA-Based Materials from Micro-Algae for High-Volume Consumer Products

Authors: Enrique Moliner, Alba Lafarga, Isaac Herraiz, Evelina Castellana, Mihaela Mirea

Abstract:

NENU2PHAR (GA 887474) is an EU-funded project aimed at the development of polyhydroxyalkanoates (PHAs) from micro-algae. These biobased and biodegradable polymers are being tested and validated in different high-volume market applications including food packaging, cosmetic packaging, 3D printing filaments, agro-textiles and medical devices, counting on the support of key players like Danone, BEL Group, Sofradim or IFG. At the moment the project has achieved to produce PHAs from micro-algae with a cumulated yield around 17%, i.e. 1 kg PHAs produced from 5.8 kg micro-algae biomass, which in turn capture 11 kg CO₂ for growing up. These algae-based plastics can therefore offer the same environmental benefits than current bio-based plastics (reduction of greenhouse gas emissions and fossil resource depletion), using a 3rd generation biomass feedstock that avoids the competition with food and the environmental impacts of agricultural practices. The project is also dealing with other sustainability aspects like the ecodesign and life cycle assessment of the plastic products targeted, considering not only the use of the biobased plastics but also many other ecodesign strategies. This paper will present the main progresses and results achieved to date in the project.

Keywords: NENU2PHAR, Polyhydroxyalkanoates, micro-algae, biopolymer, ecodesign, life cycle assessment

Procedia PDF Downloads 64
5745 Cellulose Acetate/Polyacrylic Acid Filled with Nano-Hydroxapatite Composites: Spectroscopic Studies and Search for Biomedical Applications

Authors: E. M. AbdelRazek, G. S. ElBahy, M. A. Allam, A. M. Abdelghany, A. M. Hezma

Abstract:

Polymeric biocomposite of hydroxyapatite/polyacrylic acid were prepared and their thermal and mechanical properties were improved by addition of cellulose acetate. FTIR spectroscopy technique and X-ray diffraction analysis were employed to examine the physical and chemical characteristics of the biocomposites. Scanning electron microscopy shows a uniform distribution of HAp nano-particles through the polymeric matrix of two organic/inorganic composites weight ratios (60/40 and 70/30), at which the material crystallinity reaches a considerable value appropriate for the needed applications were studied and revealed that the HAp nano-particles are uniformly distributed in the polymeric matrix. Kinetic parameters were determined from the weight loss data using non isothermal thermogravimetric analysis (TGA). Also, the main degradation steps were described and discussed. The mechanical properties of composites were evaluated by measuring tensile strength and elastic modulus. The data indicate that the addition of cellulose acetate can make homogeneous composites scaffold significantly resistant to higher stress. Elastic modulus of the composites was also improved by the addition of cellulose acetate, making them more appropriate for bioapplications.

Keywords: biocomposite, chemical synthesis, infrared spectroscopy, mechanical properties

Procedia PDF Downloads 442
5744 The Determinant Factors of Technology Adoption for Improving Firm’s Performance; Toward a Conceptual Model

Authors: Zainal Arifin, Avanti Fontana

Abstract:

Considering that TOE framework is the most useful instrument for studying technology adoption in firm context, this paper will analyze the influence of technological, organizational and environmental (TOE) factors to the Dynamic capabilities (DCs) associated with technology adoption strategy for improving the firm’s performance. Focusing on the determinant factors of technology adoption at the firm level, the study will contribute to the broader study of resource base view (RBV) and dynamic capability (DC). There is no study connecting directly the TOE factors to the DCs, this paper proposes technology adoption as a functional competence/capability which mediates a relationship between technology adoptions with firm’s performance. The study wants to show a conceptual model of the indirect effects of DCs at the firm level, which can be key predictors of firm performance in dynamic business environment. The results of this research is mostly relevant to top corporate executives (BOD) or top management team (TMT) who seek to provide some supporting ‘hardware’ content and condition such as technological factors, organizational factors, environmental factors, and to improve firm's ‘software ‘ ability such as adaptive capability, absorptive capability and innovative capability, in order to achieve a successful technology adoption in organization. There are also mediating factors which are elaborated at this paper; timing and external network. A further research for showing its empirical results is highly recommended.

Keywords: technology adoption, TOE framework, dynamic capability, resources based view

Procedia PDF Downloads 313
5743 A Social Life Cycle Assessment Framework to Achieve Sustainable Cultural Tourism Destinations

Authors: Mojtaba Javdan, Kamran Jafarpour Ghalehteimouri, Moslem Ghasemi, Arezu Riazi

Abstract:

Tourism has a huge multiplier effect on other socioeconomic sectors, resulting in better infrastructure and public services. However, its environmental impact is still a source of concern. As a result, a greater emphasis has been placed on improving the sustainability of tourist destinations. Despite the global significance of sustainability assessment, only a few widely accepted methods for measuring sustainability exist. As a result, the life cycle concept is used to evaluate environmental, economic, and social consequences. The Social Life Cycle Assessment (S-LCA) is a crucial life cycle tool. Due to the tourism-specific service specifications, tourism-related activities are well-suited for the elaboration of data related to social sustainability. Therefore, the possibility of how the S-LCA is involved in ensuring cultural tourism destinations' long-term viability can be the main question. To answer this question, this article examines the theoretical evolution of both the S-LCA and cultural tourism. Potential application gaps are investigated, and an S-LCA framework for sustainable cultural tourism destinations is proposed and discussed. Thus, by bringing all stakeholders' interests together, the proposed S-LCA conceptual framework can play an effective role in achieving the principles and objectives of sustainable tourism destination management.

Keywords: social life cycle assessment, sustainable cultural tourism destinations, sustainable tourism destination management, S-LCA framework

Procedia PDF Downloads 55
5742 The Beam Expansion Method, A Simplified and Efficient Approach of Field Propagation and Resonators Modes Study

Authors: Zaia Derrar Kaddour

Abstract:

The study of a beam throughout an optical path is generally achieved by means of diffraction integral. Unfortunately, in some problems, this tool turns out to be not very friendly and hard to implement. Instead, the beam expansion method for computing field profiles appears to be an interesting alternative. The beam expansion method consists of expanding the field pattern as a series expansion in a set of orthogonal functions. Propagating each individual component through a circuit and adding up the derived elements leads easily to the result. The problem is then reduced to finding how the expansion coefficients change in a circuit. The beam expansion method requires a systematic study of each type of optical element that can be met in the considered optical path. In this work, we analyze the following fundamental elements: first order optical systems, hard apertures and waveguides. We show that the former element type is completely defined thanks to the Gouy phase shift expression we provide and the latters require a suitable mode conversion. For endorsing the usefulness and relevance of the beam expansion approach, we show here some of its applications such as the treatment of the thermal lens effect and the study of unstable resonators.

Keywords: gouy phase shift, modes, optical resonators, unstable resonators

Procedia PDF Downloads 42
5741 Physical Properties and Elastic Studies of Fluoroaluminate Glasses Based on Alkali

Authors: C. Benhamideche

Abstract:

Fluoroaluminate glasses have been reported as the earliest heavy metal fluoride glasses. By comparison with flurozirconate glasses, they offer a set of similar optical features, but also some differences in their elastic and chemical properties. In practice they have been less developed because their stability against devitrification is smaller than that of the most stable fluoroziconates. The purpose of this study was to investigate glass formation in systems AlF3-YF3-PbF2-MgF2-MF2 (M= Li, Na, K). Synthesis was implemented at room atmosphere using the ammonium fluoride processing. After fining, the liquid was into a preheated brass mold, then annealed below the glass transition temperature for several hours. The samples were polished for optical measurements. Glass formation has been investigated in a systematic way, using pseudo ternary systems in order to allow parameters to vary at the same time. We have chosen the most stable glass compositions for the determination of the physical properties. These properties including characteristic temperatures, density and proprieties elastic. Glass stability increases in multicomponent glasses. Bulk samples have been prepared for physical characterization. These glasses have a potential interest for passive optical fibers because they are less sensitive to water attack than ZBLAN glass, mechanically stronger. It is expected they could have a larger damage threshold for laser power transmission.

Keywords: fluoride glass, aluminium fluoride, thermal properties, density, proprieties elastic

Procedia PDF Downloads 225
5740 Biogas Production from University Canteen Waste: Effect of Organic Loading Rate and Retention Time

Authors: Khamdan Cahyari, Gumbolo Hadi Susanto, Pratikno Hidayat, Sukirman

Abstract:

University canteen waste was used as raw material to produce biogas in Faculty of Industrial Technology, Islamic University of Indonesia. This faculty was home to more than 3000 students and lecturers who work and study for 5 days/week (8 hours/day). It produced approximately 85 ton/year organic fraction of canteen waste. Yet, this waste had been dumped for years in landfill area which cause severe environmental problems. It was proposed to utilize the waste as raw material for producing renewable energy source of biogas. This research activities was meant to investigate the effect of organic loading rate (OLR) and retention time (RT) of continuous anaerobic digestion process for 200 days. Organic loading rate was set at value 2, 3, 4 and 5 g VS/l/d whereas the retention time was adjusted at 30, 24, 18 and 14.4 days. Optimum condition was achieved at OLR 4 g VS/l/d and RT 24 days with biogas production rate between 0.75 to 1.25 liter/day (40-60% CH4). This indicated that the utilization of canteen waste to produce biogas was promising method to mitigate environmental problem of university canteen waste. Furthermore, biogas could be used as alternative energy source to supply energy demand at the university. This implementation is simultaneous solution for both waste and energy problems to achieve green campus.

Keywords: canteen waste, biogas, anaerobic digestion, university, green campus

Procedia PDF Downloads 384
5739 Cellulose Containing Metal Organic Frameworks in Environmental Applications

Authors: Hossam El-Sayed Emam

Abstract:

As an essential issue for life, water while it’s important for all living organisms. However, the world is dangerously facing the serious problem for the deficiency of the sources of drinking water. Within the aquatic systems, there are various gases, microbes, and other toxic ingredients (chemical compounds and heavy metals) occurred owing to the draining of agricultural and industrial wastewater, resulting in water pollution. On the other hand, fuel (gaseous, liquid, or in solid phase) is one of the extensively consumable energy sources, and owing to its origin from fossil, it contains some sulfur-, nitrogen- and oxygen-based compounds that cause serious problems (toxicity, catalyst poisoning, corrosion, and gum formation andcarcinogenic effects), to be ascribed as undesirable pollutants.MOFs as porous coordinating polymers are superiorly exploited in the adsorption and separationof contaminants for wastewater treatment and fuel purification. The inclusion of highly adsorbent materials like MOFs to be immobilized within cellulosic materialscould be investigated as a new challenge for the separation of contaminants with high efficiency and opportunity for recyclability. Therefore, the current approach ascribes the exploitation of different MOFsimmobilized within cellulose (powder, films, and fabrics)for applications in environmental. Herein, using cellulose containing MOFs in dye removal (degradation and adsorption), pharmaceutical intermediates removal, and fuel purification were summarized.

Keywords: cellulose, MOFs, dye removal, pharmaceutical intermediates, fuel purification

Procedia PDF Downloads 134
5738 A Sensitivity Analysis on the Production of Potable Water, Green Hydrogen and Derivatives from South-West African Seawater

Authors: Shane David van Zyl, A. J. Burger

Abstract:

The global green energy shift has placed significant value on the production of green hydrogen and its derivatives. The study examines the impact on capital expenditure (CAPEX), operational expenditure (OPEX), levelized cost, and environmental impact, depending on the relationship between various production capacities of potable water, green hydrogen, and green ammonia. A model-based sensitivity analysis approach was used to determine the relevance of various process parameters in the production of potable water combined with green hydrogen or green ammonia production. The effects of changes on CAPEX, OPEX and levelized costs of the products were determined. Furthermore, a qualitative environmental impact analysis was done to determine the effect on the environment. The findings indicated the individual process unit contribution to the overall CAPEX and OPEX while also determining the major contributors to changes in the levelized costs of products. The results emphasize the difference in costs associated with potable water, green hydrogen, and green ammonia production, indicating the extent to which potable water production costs become insignificant in the complete process, which, therefore, can have a large social benefit through increased potable water production resulting in decreased water scarcity in the south-west African region.

Keywords: CAPEX and OPEX, desalination, green hydrogen and green ammonia, sensitivity analysis

Procedia PDF Downloads 11
5737 Life Cycle Datasets for the Ornamental Stone Sector

Authors: Isabella Bianco, Gian Andrea Blengini

Abstract:

The environmental impact related to ornamental stones (such as marbles and granites) is largely debated. Starting from the industrial revolution, continuous improvements of machineries led to a higher exploitation of this natural resource and to a more international interaction between markets. As a consequence, the environmental impact of the extraction and processing of stones has increased. Nevertheless, if compared with other building materials, ornamental stones are generally more durable, natural, and recyclable. From the scientific point of view, studies on stone life cycle sustainability have been carried out, but these are often partial or not very significant because of the high percentage of approximations and assumptions in calculations. This is due to the lack, in life cycle databases (e.g. Ecoinvent, Thinkstep, and ELCD), of datasets about the specific technologies employed in the stone production chain. For example, databases do not contain information about diamond wires, chains or explosives, materials commonly used in quarries and transformation plants. The project presented in this paper aims to populate the life cycle databases with specific data of specific stone processes. To this goal, the methodology follows the standardized approach of Life Cycle Assessment (LCA), according to the requirements of UNI 14040-14044 and to the International Reference Life Cycle Data System (ILCD) Handbook guidelines of the European Commission. The study analyses the processes of the entire production chain (from-cradle-to-gate system boundaries), including the extraction of benches, the cutting of blocks into slabs/tiles and the surface finishing. Primary data have been collected in Italian quarries and transformation plants which use technologies representative of the current state-of-the-art. Since the technologies vary according to the hardness of the stone, the case studies comprehend both soft stones (marbles) and hard stones (gneiss). In particular, data about energy, materials and emissions were collected in marble basins of Carrara and in Beola and Serizzo basins located in the province of Verbano Cusio Ossola. Data were then elaborated through an appropriate software to build a life cycle model. The model was realized setting free parameters that allow an easy adaptation to specific productions. Through this model, the study aims to boost the direct participation of stone companies and encourage the use of LCA tool to assess and improve the stone sector environmental sustainability. At the same time, the realization of accurate Life Cycle Inventory data aims at making available, to researchers and stone experts, ILCD compliant datasets of the most significant processes and technologies related to the ornamental stone sector.

Keywords: life cycle assessment, LCA datasets, ornamental stone, stone environmental impact

Procedia PDF Downloads 218
5736 Study of Petroleum Hydrocarbons Biodegradation and the Role of Biosurfactants Produced by Bacteria Isolated from the Lagoon of Mar Chica in This Process

Authors: Ikram Kamal, Mohamed Blaghen

Abstract:

Petroleum hydrocarbons are serious problems and global pollutants in the environment due to their toxicity, carcinogenicity and persistent organic pollutant properties. One of the approaches to enhance biodegradation of petroleum hydrocarbons is to use biosurfactant. Biosurfactants are amphiphilic biomolecules produced as metabolic by-products from microorganisms they received considerable attention in the field of environmental remediation processes such as bioremediation. Biosurfactants have been considered as a desirable alternative to synthetic surfactants in various applications particularly in the environmental field. In comparison with their synthetic counterparts, biosurfactants have been reported to be less toxic, biodegradable and persistent. In this study we have investigated the potential of bacterial strains collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition, a HPLC/MS was used to separate and identify different biosurfactants purified.

Keywords: petroleum hydrocarbons, biosurfactants, biodegradation, lagoon marchika, emulsification index

Procedia PDF Downloads 242
5735 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System

Authors: O. Afshar

Abstract:

A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.

Keywords: receiver tube, heat convection, heat conduction, Nusselt number

Procedia PDF Downloads 338
5734 Production and Leftovers Usage Policies to Minimize Food Waste under Uncertain and Correlated Demand

Authors: Esma Birisci, Ronald McGarvey

Abstract:

One of the common problems in food service industry is demand uncertainty. This research presents a multi-criteria optimization approach to identify the efficient frontier of points lying between the minimum-waste and minimum-shortfall solutions within uncertain demand environment. It also addresses correlation across demands for items (e.g., hamburgers are often demanded with french fries). Reducing overproduction food waste (and its corresponding environmental impacts) and an aversion to shortfalls (leave some customer hungry) need to consider as two contradictory objectives in an all-you-care-to-eat environment food service operation. We identify optimal production adjustments relative to demand forecasts, demand thresholds for utilization of leftovers, and percentages of demand to be satisfied by leftovers, considering two alternative metrics for overproduction waste: mass; and greenhouse gas emissions. Demand uncertainty and demand correlations are addressed using a kernel density estimation approach. A statistical analysis of the changes in decision variable values across each of the efficient frontiers can then be performed to identify the key variables that could be modified to reduce the amount of wasted food at minimal increase in shortfalls. We illustrate our approach with an application to empirical data from Campus Dining Services operations at the University of Missouri.

Keywords: environmental studies, food waste, production planning, uncertain and correlated demand

Procedia PDF Downloads 352