Search results for: capital flows composition
1156 Economic Growth: The Nexus of Oil Price Volatility and Renewable Energy Resources among Selected Developed and Developing Economies
Authors: Muhammad Siddique, Volodymyr Lugovskyy
Abstract:
This paper explores how nations might mitigate the unfavorable impacts of oil price volatility on economic growth by switching to renewable energy sources. The impacts of uncertain factor prices on economic activity are examined by looking at the Realized Volatility (RV) of oil prices rather than the more traditional method of looking at oil price shocks. The United States of America (USA), China (C), India (I), United Kingdom (UK), Germany (G), Malaysia (M), and Pakistan (P) are all included to round out the traditional literature's examination of selected nations, which focuses on oil-importing and exporting economies. Granger Causality Tests (GCT), Impulse Response Functions (IRF), and Variance Decompositions (VD) demonstrate that in a Vector Auto-Regressive (VAR) scenario, the negative impacts of oil price volatility extend beyond what can be explained by oil price shocks alone for all of the nations in the sample. Different nations have different levels of vulnerability to changes in oil prices and other factors that may play a role in a sectoral composition and the energy mix. The conventional method, which only takes into account whether a country is a net oil importer or exporter, is inadequate. The potential economic advantages of initiatives to decouple the macroeconomy from volatile commodities markets are shown through simulations of volatility shocks in alternative energy mixes (with greater proportions of renewables). It is determined that in developing countries like Pakistan, increasing the use of renewable energy sources might lessen an economy's sensitivity to changes in oil prices; nonetheless, a country-specific study is required to identify particular policy actions. In sum, the research provides an innovative justification for mitigating economic growth's dependence on stable oil prices in our sample countries.Keywords: oil price volatility, renewable energy, economic growth, developed and developing economies
Procedia PDF Downloads 791155 Determining Sources of Sediments at Nkula Dam in the Middle Shire River, Malawi, Using Mineral Magnetic Approach
Authors: M. K. Mzuza, W. Zhang, L. S. Chapola, M. Tembo
Abstract:
Shire River is the largest and longest river in Malawi emptying its water into the Zambezi River in Mozambique. Siltation is now a major problem in the Shire River due to catchment degradation. This study analysed soil samples from tributaries of the Shire River to determine sources of sediments that cause siltation using the mineral magnetic approach. Bulk sediments and separated particle size fractions of representative samples were collected from tributaries on the western and eastern sides of the Shire River, and Nkula Dam. Eastern tributaries showed relatively higher ferrimagnetic mineral contents and ferrimagnetic to anti ferromagnetic ratios than western tributaries. Sediments from both sides of the Shire River were distinguished by χARM, SIRM versus χlf and S-100 versus SIRM. Findings in this study showed that most of the sediments originated from the western part of the Shire River. Tributaries on the eastern side of the Shire River had higher values for concentration related parameters (χlf, χfd, χARM, SIRM, HIRM, S-100, and χARM/SIRM) than tributaries on the western side. Bulky and detailed magnetic measurements carried out on particle size fractions provided additional confirmation of magnetic contrasts between the two sides of the river suggesting differences in lithology, topography, climate and weather regimes in the catchments. This study demonstrated that the magnetic approach can provide a reliable means of understanding major sediment sources of Nkula Dam and similar situations. It can also help to assess future variations in sediment composition resulting from catchment changesKeywords: ferrimagnetic minerals, Shire River, tributaries rivers, particle size , topography
Procedia PDF Downloads 4681154 Advanced Phosphorus-Containing Polymer Materials towards Eco-Friendly Flame Retardant Epoxy Thermosets
Authors: Ionela-Daniela Carja, Diana Serbezeanu, Tachita Vlad-Bubulac, Corneliu Hamciuc
Abstract:
Nowadays, epoxy materials are extensively used in ever more areas and under ever more demanding environmental conditions due to their remarkable combination of properties, light weight and ease of processing. However, these materials greatly increase the fire risk due to their flammability and possible release of toxic by-products as a result of their chemical composition which consists mainly from carbon and hydrogen atoms. Therefore, improving the fire retardant behaviour to prevent the loss of life and property is of particular concern among government regulatory bodies, consumers and manufacturers alike. Modification of epoxy resins with organophosphorus compounds, as reactive flame retardants or additives, is the key to achieving non-flammable advanced epoxy materials. Herein, a detailed characterization of fire behaviour for a series of phosphorus-containing epoxy thermosets is reported. A carefully designed phosphorus flame retardant additive was simply blended with a bifunctional bisphenol-A based epoxy resin. Further thermal cross-linking in the presence of various aminic hardeners led to eco-friendly flame retardant epoxy resins. The type of hardener, concentration of flame retardant additive, compatibility between the components of the mixture, char formation and morphology, thermal stability, flame retardant mechanisms were investigated. It was found that even a very low content of phosphorus introduced into the epoxy matrix increased the limiting oxygen index value to about 30%. In addition, the peak of the heat release rate value decreased up to 45% as compared to the one of the neat epoxy system. The main flame retardant mechanism was the condensed-phase one as revealed by SEM and XPS measurements.Keywords: condensed-phase mechanism, eco-friendly phosphorus flame retardant, epoxy resin, thermal stability
Procedia PDF Downloads 3121153 High-Pressure CO₂ Adsorption Capacity of Selected Unusual Porous Materials and Rocks
Authors: Daniela Rimnacova, Maryna Vorokhta, Martina Svabova
Abstract:
CO₂ adsorption capacity of several materials - waste (power fly ash, slag, carbonized sewage sludge), rocks (Czech Silurian shale, black coal), and carbon (synthesized carbon, activated carbon as a reference material) - were measured on dry samples using a unique hand-made manometric sorption apparatus at a temperature of 45 °C and pressures of up to 7 MPa. The main aim was finding utilization of the waste materials and rocks for removal of the air or water pollutants caused by anthropogenic activities, as well as for the carbon dioxide storage. The equilibrium amount of the adsorbate depends on temperature, gas saturation pressure, porosity, surface area and volume of pores, and last but not least, on the composition of the adsorbents. Given experimental conditions can simulate in-situ situations in the rock bed and can be achieved just by a high-pressure apparatus. The CO₂ excess adsorption capacities ranged from 0.018 mmol/g (ash) to 13.55 mmol/g (synthesized carbon). The synthetized carbon had the highest adsorption capacity among all studied materials as well as the highest price. This material is usually used for the adsorption of specific pollutants. The excess adsorption capacity of activated carbon was 9.19 mmol/g. It is used for water and air cleaning. Ash can be used for chemisorption onto ash particle surfaces or capture of special pollutants. Shale is a potential material for enhanced gas recovery or CO₂ sequestration in-situ. Slag is a potential material for capture of gases with a possibility of the underground gas storage after the adsorption process. The carbonized sewage sludge is quite a good adsorbent for the removal and capture of pollutants, as well as shales or black coal which show an interesting relationship between the price and adsorption capacity.Keywords: adsorption, CO₂, high pressure, porous materials
Procedia PDF Downloads 1611152 Research on the Aesthetic Characteristics of Calligraphy Art Under The Cross-Cultural Background Based on Eye Tracking
Authors: Liu Yang
Abstract:
Calligraphy has a unique aesthetic value in Chinese traditional culture. Calligraphy reflects the physical beauty and the dynamic beauty of things through the structure of writing and the order of strokes to standardize the style of writing. In recent years, Chinese researchers have carried out research on the appreciation of calligraphy works from the perspective of psychology, such as how Chinese people appreciate the beauty of stippled lines, the beauty of virtual and real, and the beauty of the composition. However, there is currently no domestic research on how foreigners appreciate Chinese calligraphy. People's appreciation of calligraphy is mainly in the form of visual perception, and psychologists have been working on the use of eye trackers to record eye tracking data to explore the relationship between eye tracking and psychological activities. The purpose of this experimental study is to use eye tracking recorders to analyze the eye gaze trajectories of college students with different cultural backgrounds when they appreciate the same calligraphy work to reveal the differences in cognitive processing with different cultural backgrounds. It was found that Chinese students perceived calligraphy as words when viewing calligraphy works, so they first noticed fonts with easily recognizable glyphs, and the overall viewed time was short. Foreign students perceived calligraphy works as graphics, and they first noticed novel and abstract fonts, and the overall viewing time is longer. The understanding of calligraphy content has a certain influence on the appreciation of calligraphy works by foreign students. It is shown that when foreign students who understand the content of calligraphy works. The eye tracking path is more consistent with the calligraphy writing path, and it helps to develop associations with calligraphy works to better understand the connotation of calligraphy works. This result helps us understand the impact of cultural background differences on calligraphy appreciation and helps us to take more effective strategies to help foreign audiences understand Chinese calligraphy art.Keywords: Chinese calligraphy, eye-tracking, cross-cultural, cultural communication
Procedia PDF Downloads 1071151 Bi-Directional Impulse Turbine for Thermo-Acoustic Generator
Authors: A. I. Dovgjallo, A. B. Tsapkova, A. A. Shimanov
Abstract:
The paper is devoted to one of engine types with external heating – a thermoacoustic engine. In thermoacoustic engine heat energy is converted to an acoustic energy. Further, acoustic energy of oscillating gas flow must be converted to mechanical energy and this energy in turn must be converted to electric energy. The most widely used way of transforming acoustic energy to electric one is application of linear generator or usual generator with crank mechanism. In both cases, the piston is used. Main disadvantages of piston use are friction losses, lubrication problems and working fluid pollution which cause decrease of engine power and ecological efficiency. Using of a bidirectional impulse turbine as an energy converter is suggested. The distinctive feature of this kind of turbine is that the shock wave of oscillating gas flow passing through the turbine is reflected and passes through the turbine again in the opposite direction. The direction of turbine rotation does not change in the process. Different types of bidirectional impulse turbines for thermoacoustic engines are analyzed. The Wells turbine is the simplest and least efficient of them. A radial impulse turbine has more complicated design and is more efficient than the Wells turbine. The most appropriate type of impulse turbine was chosen. This type is an axial impulse turbine, which has a simpler design than that of a radial turbine and similar efficiency. The peculiarities of the method of an impulse turbine calculating are discussed. They include changes in gas pressure and velocity as functions of time during the generation of gas oscillating flow shock waves in a thermoacoustic system. In thermoacoustic system pressure constantly changes by a certain law due to acoustic waves generation. Peak values of pressure are amplitude which determines acoustic power. Gas, flowing in thermoacoustic system, periodically changes its direction and its mean velocity is equal to zero but its peak values can be used for bi-directional turbine rotation. In contrast with feed turbine, described turbine operates on un-steady oscillating flows with direction changes which significantly influence the algorithm of its calculation. Calculated power output is 150 W with frequency 12000 r/min and pressure amplitude 1,7 kPa. Then, 3-d modeling and numerical research of impulse turbine was carried out. As a result of numerical modeling, main parameters of the working fluid in turbine were received. On the base of theoretical and numerical data model of impulse turbine was made on 3D printer. Experimental unit was designed for numerical modeling results verification. Acoustic speaker was used as acoustic wave generator. Analysis if the acquired data shows that use of the bi-directional impulse turbine is advisable. By its characteristics as a converter, it is comparable with linear electric generators. But its lifetime cycle will be higher and engine itself will be smaller due to turbine rotation motion.Keywords: acoustic power, bi-directional pulse turbine, linear alternator, thermoacoustic generator
Procedia PDF Downloads 3781150 Inoculation of Cyanobacteria Improves the Lignin Content of Thymus vulgaris L.
Authors: Nasim Rasuli, Akram Ahmadi, Hossein Riahi, Zeinab Shariatmadari, Majid Ghorbani Nohooji, Pooyan Mehraban Joubani
Abstract:
Cyanobacteria are one of the most promising sources of new biostimulants and have received much attention due to their diverse applications in biotechnology. These microorganisms enhance the growth and productivity of plants by producing plant growth stimulants and fixing atmospheric nitrogen. Thymus vulgaris L., a valuable medicinal plant from the Lamiaceae family, is widely distributed across the globe. essential oil of T. vulgaris is best characterized by the prominence of phenols, making them the key compounds in its composition. Lignin biosynthesis as a natural plant polyphenol plays a crucial role in promoting plant growth, strengthening cell walls, and increasing resistance to pathogens. In this study, the bioelicitor activity of five cyanobacterial suspensions including Anabaena torulosa ISB213, Nostoc calcicola ISB215, Nostoc ellipsosporum ISB217, Trichormus doliolum ISB214, and Oscillatoria sp. ISB2116 on the lignin content of the T. vulgaris L. was investigated. Pot experiments were performed by inoculation of a %2 algal extract to the soil of treated plants one week before planting and then every 20 days. After four months, the lignin content in the leaves of both treated and control plants was evaluated. The results demonstrated that the application of cyanobacteria significantly increased the lignin content in the leaves of treated plants compared to the control. The treatment with Oscillatoria sp. ISB216 and N. ellipsosporum ISB217 resulted in the highest lignin content, with an increase of 93.33% and 86.67%, respectively. These findings highlight the potential of cyanobacteria as bioelicitors, offering a viable alternative for enhancing the production of secondary metabolites in T. vulgaris. Consequently, this could contribute to the economic value of this medicinal plant.Keywords: cyanobacteria, bioelicitor, thymus vulgaris, lignin
Procedia PDF Downloads 851149 Energy Loss Reduction in Oil Refineries through Flare Gas Recovery Approaches
Authors: Majid Amidpour, Parisa Karimi, Marzieh Joda
Abstract:
For the last few years, release of burned undesirable by-products has become a challenging issue in oil industries. Flaring, as one of the main sources of air contamination, involves detrimental and long-lasting effects on human health and is considered a substantial reason for energy losses worldwide. This research involves studying the implications of two main flare gas recovery methods at three oil refineries, all in Iran as the case I, case II, and case III in which the production capacities are increasing respectively. In the proposed methods, flare gases are converted into more valuable products, before combustion by the flare networks. The first approach involves collecting, compressing and converting the flare gas to smokeless fuel which can be used in the fuel gas system of the refineries. The other scenario includes utilizing the flare gas as a feed into liquefied petroleum gas (LPG) production unit already established in the refineries. The processes of these scenarios are simulated, and the capital investment is calculated for each procedure. The cumulative profits of the scenarios are evaluated using Net Present Value method. Furthermore, the sensitivity analysis based on total propane and butane mole fraction is carried out to make a rational comparison for LPG production approach, and the results are illustrated for different mole fractions of propane and butane. As the mole fraction of propane and butane contained in LPG differs in summer and winter seasons, the results corresponding to LPG scenario are demonstrated for each season. The results of the simulations show that cumulative profit in fuel gas production scenario and LPG production rate increase with the capacity of the refineries. Moreover, the investment return time in LPG production method experiences a decline, followed by a rising trend with an increase in C3 and C4 content. The minimum value of time return occurs at propane and butane sum concentration values of 0.7, 0.6, and 0.7 in case I, II, and III, respectively. Based on comparison of the time of investment return and cumulative profit, fuel gas production is the superior scenario for three case studies.Keywords: flare gas reduction, liquefied petroleum gas, fuel gas, net present value method, sensitivity analysis
Procedia PDF Downloads 1591148 Development of Materials Based on Phosphates of NaZr2(PO4)3 with Low Thermal Expansion
Authors: V. Yu. Volgutov, A. I. Orlova, S. A. Khainakov
Abstract:
NaZr2(PO4)3 (NZP) and their structural analogues are characterized by a peculiar behaviors on heating – they have different expansion and contraction along different crystallographic directions due to specific arrangements of crystal structure in these compounds. An important feature of such structures is the ability to incorporate into their structural analogues wide variety of metal cations having different size and oxidation states, with different combinations and concentrations. These cations are located in different crystallographic non-equivalent positions of octahedral tetrahedral crystal framework as well as in inter-framework cavities. Through, due to iso- and hetero-valent isomorphism of the cations (and the anions) in NZP, it becomes possible to tuning the compositions and to obtain the compounds with ‘on a plan’ properties. For the design of compounds with low and ultra-low thermal expansion including those with tailored thermal expansion properties, the following crystallochemical principles it seems are promising: 1) Insertion into crystal M1 position the cations having different sizes and, 2) the variation in the composition of compounds, providing different occupation of crystal M1 position. Following these principles we have designed and synthesized the next NZP-type phosphates series: a) where radii of the cations in the M1 crystal position was varied: Zr1/4Zr2(PO4)3 - Th1/4Zr2(PO4)3 (series I); R1/3Zr2(PO4)3 where R= Nd, Eu, Er (series II), b) where the occupation of M1 crystal position was varied: Zr1/4Zr2(PO4)3-Er1/3Zr2(PO4)3 (series III) and Zr1/4Zr2(PO4)3-Sr1/2Zr2(PO4)3 (series IV). The thermal expansion parameters were determined over the range of 25-800ºC. For each series the minimum axial coefficient of thermal expansion αa = αb, αc and their anisotropy Δα = Iαa - αcI, 10-6 K-1 was found as next: -1.51, 1.07, 2.58 for Th1/4Zr2(PO4)3 (series I); -0.72, 0.10, 0.81 for Nd1/3Zr2(PO4)3 (series II); -2.78, 1.35, 4.12 for Er1/6Zr1/8Zr2(PO4)3 (series III); 2.23, 1.32, 0.91 for Sr1/2Zr2(PO4)3 (series IV). The measured tendencies of the thermal expansion of crystals were in good agreement with predicted ones. For one of the members from the studied phosphates namely Th1/16Zr3/16Zr2(PO4)3 structural refinement have been carried out at 25, 200, 600, and 800°C. The dependencies of the structural parameters with the temperature have been determined.Keywords: high-temperature crystallography, NaZr2(PO4)3, (NZP) analogs, structural-chemical principles, tuning thermal expansion
Procedia PDF Downloads 2331147 Comparative Study on the Effect of Substitution of Li and Mg Instead of Ca on Structural and Biological Behaviors of Silicate Bioactive Glass
Authors: Alireza Arab, Morteza Elsa, Amirhossein Moghanian
Abstract:
In this study, experiments were carried out to achieve a promising multifunctional and modified silicate based bioactive glass (BG). The main aim of the study was investigating the effect of lithium (Li) and magnesium (Mg) substitution, on in vitro bioactivity of substituted-58S BG. Moreover, it is noteworthy to state that modified BGs were synthesized in 60SiO2–(36-x)CaO–4P2O5–(x)Li2O and 60SiO2–(36-x)CaO–4P2O5–(x)MgO (where x = 0, 5, 10 mol.%) quaternary systems, by sol-gel method. Their performance was investigated through different aspects such as biocompatibility, antibacterial activity as well as their effect on alkaline phosphatase (ALP) activity, and proliferation of MC3T3 cells. The antibacterial efficiency was evaluated against methicillin-resistant Staphylococcus aureus bacteria. To do so, CaO was substituted with Li2O and MgO up to 10 mol % in 58S-BGs and then samples were immersed in simulated body fluid up to 14 days and then, characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry, and scanning electron microscopy. Results indicated that this modification led to a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium revealed further pronounced effect. The 3-(4,5 dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) and ALP analysis illustrated that substitutions of both Li2O and MgO, up to 5 mol %, had increasing effect on biocompatibility and stimulating proliferation of the pre-osteoblast MC3T3 cells in comparison to the control specimen. Regarding to bactericidal efficiency, the substitution of either Li or Mg for Ca in the 58s BG composition led to statistically significant difference in antibacterial behaviors of substituted-BGs. Meanwhile, the sample containing 5 mol % CaO/Li2O substitution (BG-5L) was selected as a multifunctional biomaterial in bone repair/regeneration due to the improved biocompatibility, enhanced ALP activity and antibacterial efficiency among all of the synthesized L-BGs and M-BGs.Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes
Procedia PDF Downloads 1081146 Effect of Organophilic Clay on the Stability and Rheological Behavior of Oil-Based Drilling Muds
Authors: Hammadi Larbi
Abstract:
The major problem with oil-based drilling muds (reverse emulsions) is their thermodynamic instability and their high tendency to coalescence over time, irreversibly leading to destabilization. Water/Oil reverse emulsion drilling Muds are highly recommended when significant depths are reached. This study aimed to contribute experimentally to the knowledge of the structure (stability) and rheological behavior of drilling mud systems based on water/crude oil inverse emulsions through the investigation of the effect of organophilic clay. The chemical composition of organophilic clay such as VG69 shows a strong presence of silicon oxide (SiO2), followed by aluminum oxide (Al2O3), so these two elements are considered to be the main constituents of organophilic clays. The study also shows that the SiO2/Al2O3 ratio is equal to 3.52, which can be explained by the high content of free silica contained in the organophile clay used. The particle size analysis of the organophilic clays showed that the size of the of the particles analysed is in the range of 30 to 80 μm, this result ensures the correct particle size quality of organophilic clays and allows these powders to be used in Drilling mud systems.The experimental data of steady-state flow measurements are analyzed in the classic way by the Herschel-Bulkley model. Microscopic observation shows that the addition of quantities of organophilic clay type VG69 less than or equal to 3 g leading to the stability of the water/oil inverse emulsions, on the other hand, for quantities greater than 3 g, the emulsions are destabilized. The results obtained also showed that adding 3 g of organophilic clay to the crude oil drilling mud improves their stability by 70%.Keywords: drilling muds, inverse emulsions, rheological behavior, yield stress, stability, organophilic clay
Procedia PDF Downloads 131145 Determinants of Carbon-Certified Small-Scale Agroforestry Adoption In Rural Mount Kenyan
Authors: Emmanuel Benjamin, Matthias Blum
Abstract:
Purpose – We address smallholder farmers’ restricted possibilities to adopt sustainable technologies which have direct and indirect benefits. Smallholders often face little asset endowment due to small farm size und insecure property rights, therefore experiencing constraints in adopting agricultural innovation. A program involving payments for ecosystem services (PES) benefits poor smallholder farmers in developing countries in many ways and has been suggested as a means of easing smallholder farmers’ financial constraints. PES may also provide additional mainstay which can eventually result in more favorable credit contract terms due to the availability of collateral substitute. Results of this study may help to understand the barriers, motives and incentives for smallholders’ participation in PES and help in designing a strategy to foster participation in beneficial programs. Design/methodology/approach – This paper uses a random utility model and a logistic regression approach to investigate factors that influence agroforestry adoption. We investigate non-monetary factors, such as information spillover, that influence the decision to adopt such conservation strategies. We collected original data from non-government-run agroforestry mitigation programs with PES that have been implemented in the Mount Kenya region. Preliminary Findings – We find that spread of information, existing networks and peer involvement in such programs drive participation. Conversely, participation by smallholders does not seem to be influenced by education, land or asset endowment. Contrary to some existing literature, we found weak evidence for a positive correlation between the adoption of agroforestry with PES and age of smallholder, e.g., one increases with the other, in the Mount Kenyan region. Research implications – Poverty alleviation policies for developing countries should target social capital to increase the adoption rate of modern technologies amongst smallholders.Keywords: agriculture innovation, agroforestry adoption, smallholders, payment for ecosystem services, Sub-Saharan Africa
Procedia PDF Downloads 3811144 A Study on Characteristics of Runoff Analysis Methods at the Time of Rainfall in Rural Area, Okinawa Prefecture Part 2: A Case of Kohatu River in South Central Part of Okinawa Pref
Authors: Kazuki Kohama, Hiroko Ono
Abstract:
The rainfall in Japan is gradually increasing every year according to Japan Meteorological Agency and Intergovernmental Panel on Climate Change Fifth Assessment Report. It means that the rainfall difference between rainy season and non-rainfall is increasing. In addition, the increasing trend of strong rain for a short time clearly appears. In recent years, natural disasters have caused enormous human injuries in various parts of Japan. Regarding water disaster, local heavy rain and floods of large rivers occur frequently, and it was decided on a policy to promote hard and soft sides as emergency disaster prevention measures with water disaster prevention awareness social reconstruction vision. Okinawa prefecture in subtropical region has torrential rain and water disaster several times a year such as river flood, in which is caused in specific rivers from all 97 rivers. Also, the shortage of capacity and narrow width are characteristic of river in Okinawa and easily cause river flood in heavy rain. This study focuses on Kohatu River that is one of the specific rivers. In fact, the water level greatly rises over the river levee almost once a year but non-damage of buildings around. On the other hand in some case, the water level reaches to ground floor height of house and has happed nine times until today. The purpose of this research is to figure out relationship between precipitation, surface outflow and total treatment water quantity of Kohatu River. For the purpose, we perform hydrological analysis although is complicated and needs specific details or data so that, the method is mainly using Geographic Information System software and outflow analysis system. At first, we extract watershed and then divided to 23 catchment areas to understand how much surface outflow flows to runoff point in each 10 minutes. On second, we create Unit Hydrograph indicating the area of surface outflow with flow area and time. This index shows the maximum amount of surface outflow at 2400 to 3000 seconds. Lastly, we compare an estimated value from Unit Hydrograph to a measured value. However, we found that measure value is usually lower than measured value because of evaporation and transpiration. In this study, hydrograph analysis was performed using GIS software and outflow analysis system. Based on these, we could clarify the flood time and amount of surface outflow.Keywords: disaster prevention, water disaster, river flood, GIS software
Procedia PDF Downloads 1371143 Improving the Feeding Value of Straws with Pleurotus Ostreatus
Authors: S. Hussain, N. Ahmad, S. Alam, M. Bezabhi, W. H. Hendriks, P. Yu, J. W. Cone
Abstract:
The high content of lignin in cell walls is the major limiting factor in the digestion and utilisation of cereal crop residues by ruminants. The aim of this study was to evaluate the effectiveness of the white rot fungus, Pleurotus ostreatus (P. ostreatus), to degrade lignin and to enhance the rumen degradability of maize stover, rice straw, wheat straw and their mixture in equal proportion on a dry-matter (DM) basis. Four samples of each substrate were incubated aerobically in triplicate with P. ostreatus for 0 (Control), 21, 28 and 35 days under solid-state conditions (temperature, 24 ͦ C; humidity, 70± 5%). The changes in chemical composition, DM and nutrient losses, and rumen fermentation characteristics using in vitro DM digestibility (DMD) and the in vitro gas production (GP) technique were measured. The results showed that incubation with P. ostreatus decreased (P < 0.001) the contents of neutral detergent fibre and lignin with a concomitant increase (P < 0.001) in the contents of ash and crude protein. The losses of nutrients differed (P < 0.001) among the straw types, with rice straw and maize stover showing the largest (P < 0.05) lignin degradation compared to wheat and mixed straws. The DMD and 72-h cumulative GP increased (P < 0.001) consistently with increasing fungal incubation period and for all substrates the highest values of DMD and GP were measured after 35 days of incubation with P. ostreatus. The lignin degradation was strongly associated with hemicellulose degradation (r = 0.71) across the various straws. Results of the present study demonstrated that incubation of low-quality crop residues with P. ostreatus under solid-state conditions upgrades their feeding value by reducing the content of lignin and increasing the content of crude protein and ruminal degradation.Keywords: crop residues, lignin degradation, maize stovers, wheat straws, white rot fungi
Procedia PDF Downloads 621142 Emotional Intelligence in Educational Arena and Its Pragmatic Concerns
Authors: Mehar Fatima
Abstract:
This study intends to make analysis of Emotional Intelligence (EI) in the process of pedagogy and look into its repercussions in different educational institutions including school, college, and university in the capital state of India, Delhi in 2015. Field of education is a complex area with challenging issues in a modern society. Education is the breeding ground for nurturing human souls, and personalities. Since antiquity, man has been in search of truth, wisdom, contentment, peace. His efforts have brought him to acquire these through hardship, evidently through the process of teaching and learning. Computer aids and artificial intelligence have made life easy but complex. Efficient pedagogy involves direct human intervention despite the flux of technological advancements. Time and again, pedagogical practices demand sincere human efforts to understand and improve upon life’s many pragmatic concerns. Apart from the intense academic scientific approaches, EI in academia plays a vital role in the growth of education, positively achieving national progression; ‘pedagogy of pragmatic purpose.’ Use of literature is found to be one of the valuable pragmatic tools of Emotional Intelligence. This research examines the way literature provides useful influence in building better practices in teaching-learning process. The present project also scrutinizes various pieces of world literature and translation, incorporating efforts of intellectuals in promoting comprehensive amity. The importance of EI in educational arena with its pragmatic uses was established by the study of interviews, and questionnaire collected from teachers and students. In summary the analysis of obtained empirical data makes it possible to accomplish that the use Emotional Intelligence in academic scenario yields multisided positive pragmatic outcomes; positive attitude, constructive aptitude, value-added learning, enthusiastic participation, creative thinking, lower apprehension, diminished fear, leading to individual as well as collective advancement, progress, and growth of pedagogical agents.Keywords: emotional intelligence, human efforts, pedagogy, pragmatic concerns
Procedia PDF Downloads 3701141 Identification of Clay Mineral for Determining Reservoir Maturity Levels Based on Petrographic Analysis, X-Ray Diffraction and Porosity Test on Penosogan Formation Karangsambung Sub-District Kebumen Regency Central Java
Authors: Ayu Dwi Hardiyanti, Bernardus Anggit Winahyu, I. Gusti Agung Ayu Sugita Sari, Lestari Sutra Simamora, I. Wayan Warmada
Abstract:
The Penosogan Formation sandstone, that has Middle Miosen age, has been deemed as a reservoir potential based on sample data from sandstone outcrop in Kebakalan and Kedawung villages, Karangsambung sub-district, Kebumen Regency, Central Java. This research employs the following analytical methods; petrography, X-ray diffraction (XRD), and porosity test. Based on the presence of micritic sandstone, muddy micrite, and muddy sandstone, the Penosogan Formation sandstone has a fine-coarse granular size and middle-to-fine sorting. The composition of the sandstone is mostly made up of plagioclase, skeletal grain, and traces of micrite. The percentage of clay minerals based on petrographic analysis is 10% and appears to envelop grain, resulting enveloping grain which reduces the porosity of rocks. The porosity types as follows: interparticle, vuggy, channel, and shelter, with an equant form of cement. Moreover, the diagenesis process involves compaction, cementation, authigenic mineral growth, and dissolving due to feldspar alteration. The maturity of the reservoir can be seen through the X-ray diffraction analysis results, using ethylene glycol solution for clay minerals fraction transformed from smectite–illite. Porosity test analysis showed that the Penosogan Formation sandstones has a porosity value of 22% based on the Koeseomadinata classification, 1980. That shows high maturity is very influential for the quality of reservoirs sandstone of the Penosogan Formation.Keywords: sandstone reservoir, Penosogan Formation, smectite, XRD
Procedia PDF Downloads 1741140 Solid Particles Transport and Deposition Prediction in a Turbulent Impinging Jet Using the Lattice Boltzmann Method and a Probabilistic Model on GPU
Authors: Ali Abdul Kadhim, Fue Lien
Abstract:
Solid particle distribution on an impingement surface has been simulated utilizing a graphical processing unit (GPU). In-house computational fluid dynamics (CFD) code has been developed to investigate a 3D turbulent impinging jet using the lattice Boltzmann method (LBM) in conjunction with large eddy simulation (LES) and the multiple relaxation time (MRT) models. This paper proposed an improvement in the LBM-cellular automata (LBM-CA) probabilistic method. In the current model, the fluid flow utilizes the D3Q19 lattice, while the particle model employs the D3Q27 lattice. The particle numbers are defined at the same regular LBM nodes, and transport of particles from one node to its neighboring nodes are determined in accordance with the particle bulk density and velocity by considering all the external forces. The previous models distribute particles at each time step without considering the local velocity and the number of particles at each node. The present model overcomes the deficiencies of the previous LBM-CA models and, therefore, can better capture the dynamic interaction between particles and the surrounding turbulent flow field. Despite the increasing popularity of LBM-MRT-CA model in simulating complex multiphase fluid flows, this approach is still expensive in term of memory size and computational time required to perform 3D simulations. To improve the throughput of each simulation, a single GeForce GTX TITAN X GPU is used in the present work. The CUDA parallel programming platform and the CuRAND library are utilized to form an efficient LBM-CA algorithm. The methodology was first validated against a benchmark test case involving particle deposition on a square cylinder confined in a duct. The flow was unsteady and laminar at Re=200 (Re is the Reynolds number), and simulations were conducted for different Stokes numbers. The present LBM solutions agree well with other results available in the open literature. The GPU code was then used to simulate the particle transport and deposition in a turbulent impinging jet at Re=10,000. The simulations were conducted for L/D=2,4 and 6, where L is the nozzle-to-surface distance and D is the jet diameter. The effect of changing the Stokes number on the particle deposition profile was studied at different L/D ratios. For comparative studies, another in-house serial CPU code was also developed, coupling LBM with the classical Lagrangian particle dispersion model. Agreement between results obtained with LBM-CA and LBM-Lagrangian models and the experimental data is generally good. The present GPU approach achieves a speedup ratio of about 350 against the serial code running on a single CPU.Keywords: CUDA, GPU parallel programming, LES, lattice Boltzmann method, MRT, multi-phase flow, probabilistic model
Procedia PDF Downloads 2071139 Cross-Sectoral Energy Demand Prediction for Germany with a 100% Renewable Energy Production in 2050
Authors: Ali Hashemifarzad, Jens Zum Hingst
Abstract:
The structure of the world’s energy systems has changed significantly over the past years. One of the most important challenges in the 21st century in Germany (and also worldwide) is the energy transition. This transition aims to comply with the recent international climate agreements from the United Nations Climate Change Conference (COP21) to ensure sustainable energy supply with minimal use of fossil fuels. Germany aims for complete decarbonization of the energy sector by 2050 according to the federal climate protection plan. One of the stipulations of the Renewable Energy Sources Act 2017 for the expansion of energy production from renewable sources in Germany is that they cover at least 80% of the electricity requirement in 2050; The Gross end energy consumption is targeted for at least 60%. This means that by 2050, the energy supply system would have to be almost completely converted to renewable energy. An essential basis for the development of such a sustainable energy supply from 100% renewable energies is to predict the energy requirement by 2050. This study presents two scenarios for the final energy demand in Germany in 2050. In the first scenario, the targets for energy efficiency increase and demand reduction are set very ambitiously. To build a comparison basis, the second scenario provides results with less ambitious assumptions. For this purpose, first, the relevant framework conditions (following CUTEC 2016) were examined, such as the predicted population development and economic growth, which were in the past a significant driver for the increase in energy demand. Also, the potential for energy demand reduction and efficiency increase (on the demand side) was investigated. In particular, current and future technological developments in energy consumption sectors and possible options for energy substitution (namely the electrification rate in the transport sector and the building renovation rate) were included. Here, in addition to the traditional electricity sector, the areas of heat, and fuel-based consumptions in different sectors such as households, commercial, industrial and transport are taken into account, supporting the idea that for a 100% supply from renewable energies, the areas currently based on (fossil) fuels must be almost completely be electricity-based by 2050. The results show that in the very ambitious scenario a final energy demand of 1,362 TWh/a is required, which is composed of 818 TWh/a electricity, 229 TWh/a ambient heat for electric heat pumps and approx. 315 TWh/a non-electric energy (raw materials for non-electrifiable processes). In the less ambitious scenario, in which the targets are not fully achieved by 2050, the final energy demand will need a higher electricity part of almost 1,138 TWh/a (from the total: 1,682 TWh/a). It has also been estimated that 50% of the electricity revenue must be saved to compensate for fluctuations in the daily and annual flows. Due to conversion and storage losses (about 50%), this would mean that the electricity requirement for the very ambitious scenario would increase to 1,227 TWh / a.Keywords: energy demand, energy transition, German Energiewende, 100% renewable energy production
Procedia PDF Downloads 1341138 Stabilization of Pb, Cr, Cd, Cu and Zn in Solid Waste and Sludge Pyrolysis by Modified Vermiculite
Authors: Yuxuan Yang, Zhaoping Zhong
Abstract:
Municipal solid waste and sludge are important sources of waste energy and their proper disposal is of great importance. Pyrolysis can fully decompose solid wastes and sludge, and the pyrolysis products (charcoal, oil and gas) have important recovery values. Due to the complex composition of solid wastes and sludge, the pyrolysis process at high temperatures is prone to heavy metal emissions, which are harmful to humans and the environment and reduce the safety of pyrolysis products. In this paper, heavy metal emissions during pyrolysis of municipal sewage sludge, paper mill sludge, municipal domestic waste, and aged refuse at 450-650°C were investigated and the emissions and hazards of heavy metals (Pb, Cr, Cd, Cu and Zn) were effectively reduced by adding modified vermiculite as an additive. The vermiculite was modified by intercalation with cetyltrimethylammonium bromide, which resulted in more than twice the original layer spacing of the vermiculite. Afterward, the interpolated vermiculite was made into vermiculite flakes by exfoliation modification. After that, the expansion rate of vermiculite flakes was increased by Mg2+ modification and thermal activation. The expanded vermiculite flakes were acidified to improve the textural characteristics of the vermiculite. The modified vermiculite was analysed by XRD, FT-IR, BET and SEM to clarify the modification effect. The incorporation of modified vermiculite resulted in more than 80% retention of all heavy metals at 450°C. Cr, Cu and Zn were better retained than Pb and Cd. The incorporation of modified vermiculite effectively reduced the risk of heavy metals, and all risks were low for Pb, Cr, Cu and Zn. The toxicity of all heavy metals was greatly reduced by the incorporation of modified vermiculite and the morphology of heavy metals was transformed from Exchangeable and acid-soluble (F1) and Reducible (F2) to Oxidizable (F3) and Residual (F4). In addition, the increase in temperature favored the stabilization of heavy metal forms. This study provides a new insight into the cleaner use of energy and the safe management of solid waste.Keywords: heavy metal, pyrolysis, vermiculite, solid waste
Procedia PDF Downloads 681137 Flexible and Color Tunable Inorganic Light Emitting Diode Array for High Resolution Optogenetic Devices
Authors: Keundong Lee, Dongha Yoo, Youngbin Tchoe, Gyu-Chul Yi
Abstract:
Light emitting diode (LED) array is an ideal optical stimulation tool for optogenetics, which controls inhibition and excitation of specific neurons with light-sensitive ion channels or pumps. Although a fiber-optic cable with an external light source, either a laser or LED mechanically connected to the end of the fiber-optic cable has widely been used for illumination on neural tissue, a new approach to use micro LEDs (µLEDs) has recently been demonstrated. The LEDs can be placed directly either on the cortical surface or within the deep brain using a penetrating depth probe. Accordingly, this method would not need a permanent opening in the skull if the LEDs are integrated with miniature electrical power source and wireless communication. In addition, multiple color generation from single µLED cell would enable to excite and/or inhibit neurons in localized regions. Here, we demonstrate flexible and color tunable µLEDs for the optogenetic device applications. The flexible and color tunable LEDs was fabricated using multifaceted gallium nitride (GaN) nanorod arrays with GaN nanorods grown on InxGa1−xN/GaN single quantum well structures (SQW) anisotropically formed on the nanorod tips and sidewalls. For various electroluminescence (EL) colors, current injection paths were controlled through a continuous p-GaN layer depending on the applied bias voltage. The electric current was injected through different thickness and composition, thus changing the color of light from red to blue that the LED emits. We believe that the flexible and color tunable µLEDs enable us to control activities of the neuron by emitting various colors from the single µLED cell.Keywords: light emitting diode, optogenetics, graphene, flexible optoelectronics
Procedia PDF Downloads 2111136 Environmental Risk Assessment of Mechanization Waste Collection Scheme in Tehran
Authors: Amin Padash, Javad Kazem Zadeh Khoiy, Hossein Vahidi
Abstract:
Purpose: The mechanization system for the urban services was implemented in Tehran City in the year 2004 to promote the collection of domestic wastes; in 2010, in order to achieve the objectives of the project of urban services mechanization and qualitative promotion and improve the urban living environment, sustainable development and optimization of the recyclable solid wastes collection systems as well as other dry and non-organic wastes and conformity of the same to the modern urban management methods regarding integration of the mechanized urban services contractors and recycling contractors and in order to better and more correct fulfillment of the waste separation and considering the success of the mechanization plan of the dry wastes in most of the modern countries. The aim of this research is analyzing of Environmental Risk Assessment of the mechanization waste collection scheme in Tehran. Case Study: Tehran, the capital of Iran, with the population of 8.2 million people, occupies 730 km land expanse, which is 4% of total area of country. Tehran generated 2,788,912 ton (7,641 ton/day) of waste in year 2008. Hospital waste generation rate in Tehran reaches 83 ton/day. Almost 87% of total waste was disposed of by placing in a landfill located in Kahrizak region. This large amount of waste causes a significant challenge for the city. Methodology: To conduct the study, the methodology proposed in the standard Mil-St-88213 is used. This method is an efficient method to examine the position in opposition to the various processes and the action is effective. The method is based on the method of Military Standard and Specialized in the military to investigate and evaluate options to locate and identify the strengths and weaknesses of powers to decide on the best determining strategy has been used. Finding and Conclusion: In this study, the current status of mechanization systems to collect waste and identify its possible effects on the environment through a survey and assessment methodology Mil-St-88213, and then the best plan for action and mitigation of environmental risk has been proposed as Environmental Management Plan (EMP).Keywords: environmental risk assessment, mechanization waste collection scheme, Mil-St-88213
Procedia PDF Downloads 4391135 Evaluation of Suspended Particles Impact on Condensation in Expanding Flow with Aerodynamics Waves
Authors: Piotr Wisniewski, Sławomir Dykas
Abstract:
Condensation has a negative impact on turbomachinery efficiency in many energy processes.In technical applications, it is often impossible to dry the working fluid at the nozzle inlet. One of the most popular working fluid is atmospheric air that always contains water in form of steam, liquid, or ice crystals. Moreover, it always contains some amount of suspended particles which influence the phase change process. It is known that the phenomena of evaporation or condensation are connected with release or absorption of latent heat, what influence the fluid physical properties and might affect the machinery efficiency therefore, the phase transition has to be taken under account. This researchpresents an attempt to evaluate the impact of solid and liquid particles suspended in the air on the expansion of moist air in a low expansion rate, i.e., with expansion rate, P≈1000s⁻¹. The numerical study supported by analytical and experimental research is presented in this work. The experimental study was carried out using an in-house experimental test rig, where nozzle was examined for different inlet air relative humidity values included in the range of 25 to 51%. The nozzle was tested for a supersonic flow as well as for flow with shock waves induced by elevated back pressure. The Schlieren photography technique and measurement of static pressure on the nozzle wall were used for qualitative identification of both condensation and shock waves. A numerical model validated against experimental data available in the literature was used for analysis of occurring flow phenomena. The analysis of the suspended particles number, diameter, and character (solid or liquid) revealed their connection with heterogeneous condensation importance. If the expansion of fluid without suspended particlesis considered, the condensation triggers so called condensation wave that appears downstream the nozzle throat. If the solid particles are considered, with increasing number of them, the condensation triggers upwind the nozzle throat, decreasing the condensation wave strength. Due to the release of latent heat during condensation, the fluid temperature and pressure increase, leading to the shift of normal shock upstream the flow. Owing relatively large diameters of the droplets created during heterogeneous condensation, they evaporate partially on the shock and continues to evaporate downstream the nozzle. If the liquid water particles are considered, due to their larger radius, their do not affect the expanding flow significantly, however might be in major importance while considering the compression phenomena as they will tend to evaporate on the shock wave. This research proves the need of further study of phase change phenomena in supersonic flow especially considering the interaction of droplets with the aerodynamic waves in the flow.Keywords: aerodynamics, computational fluid dynamics, condensation, moist air, multi-phase flows
Procedia PDF Downloads 1181134 Profile of the Elderly Users of Alcohol and Other Drugs Attended at the Psychosocial Care Centers in the Federal District
Authors: J. S. P. Barbosa, L. C. Pereira, K. R. Garcia, P. C. P. Bouchardet, S. C. T. Vieira, A. O. Gomes, S. S. Funghetto, M. G. O. Kanikowski
Abstract:
For this population, height seems to be a good predictor of strength and body composition. This increase in life expectancy of the Brazilian's population is associated with sociodemographic variables, but also to more access to health services in the prevention and better living conditions. With the growth of elderly population, a problem that has been a concern to health's professionals and public health at all is the use of psychoactive substances. The purpose of this study was to identify the sociodemographic profile of the elderly people who was attended at the Center of Psychosocial Care of alcohol and other drugs in the Federal District of Brazil. 408 medical records of people aged 60 years or over were evaluated, and it is possible to know that most of them were males (85.3%), with a mean age of 64 years (DP ± 4.16), 60 and 84 years and a mean age of 64 years (DP ± 4.42); 88.2% have some family ties, are married and have children, with relatives living in masonry housing. The educational level of drug users was considered low with more emphasis on those who had elementary education being the majority retired or unemployed. Regarding the street situation, there was no significance (p = 0.084), and the women (OR = 2.98) had few chances of street situations compared to men (OR = 0.89). As for substance consumption, the highest quantity of drug consumption bids in relation to the number of illicit. It did not present significant statistical value, and there is a greater probability of consumption/abuse of legal and/or illicit drugs for both sexes (OR = 0.96) for men and (OR = 1.32) for women. In relation to the use of multiple drugs, there was no significant difference between the sexes, (OR = 1.1) male sex and (OR = 0.74) female sex. Based on the results found in the present study, it was concluded that alcohol consumption is the main agent that causes vulnerability in the elderly and predisposes the latter to the consumption of other associated drugs.Keywords: centers of attention psychosocial alcohol and drugs, elderly, mental disorder due to drug use, street situations
Procedia PDF Downloads 2121133 The Direct Deconvolutional Model in the Large-Eddy Simulation of Turbulence
Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang
Abstract:
The utilization of Large Eddy Simulation (LES) has been extensive in turbulence research. LES concentrates on resolving the significant grid-scale motions while representing smaller scales through subfilter-scale (SFS) models. The deconvolution model, among the available SFS models, has proven successful in LES of engineering and geophysical flows. Nevertheless, the thorough investigation of how sub-filter scale dynamics and filter anisotropy affect SFS modeling accuracy remains lacking. The outcomes of LES are significantly influenced by filter selection and grid anisotropy, factors that have not been adequately addressed in earlier studies. This study examines two crucial aspects of LES: Firstly, the accuracy of direct deconvolution models (DDM) is evaluated concerning sub-filter scale (SFS) dynamics across varying filter-to-grid ratios (FGR) in isotropic turbulence. Various invertible filters are employed, including Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The importance of FGR becomes evident as it plays a critical role in controlling errors for precise SFS stress prediction. When FGR is set to 1, the DDM models struggle to faithfully reconstruct SFS stress due to inadequate resolution of SFS dynamics. Notably, prediction accuracy improves when FGR is set to 2, leading to accurate reconstruction of SFS stress, except for cases involving Helmholtz I and II filters. Remarkably high precision, nearly 100%, is achieved at an FGR of 4 for all DDM models. Furthermore, the study extends to filter anisotropy and its impact on SFS dynamics and LES accuracy. By utilizing the dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with anisotropic filters, aspect ratios (AR) ranging from 1 to 16 are examined in LES filters. The results emphasize the DDM’s proficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. Notably high correlation coefficients exceeding 90% are observed in the a priori study for the DDM’s reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as filter anisotropy increases. In the a posteriori analysis, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, including velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strainrate tensors, and SFS stress. It is evident that as filter anisotropy intensifies, the results of DSM and DMM deteriorate, while the DDM consistently delivers satisfactory outcomes across all filter-anisotropy scenarios. These findings underscore the potential of the DDM framework as a valuable tool for advancing the development of sophisticated SFS models for LES in turbulence research.Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence
Procedia PDF Downloads 761132 The Importance of Storage Period on Biogas Potential of Cattle Manure
Authors: Seongwon Im, Jimin Kim, Kyeongcheol Kim, Dong-Hoon Kim
Abstract:
Cattle manure (CM) produced from farmhas been utilized to soils for increasing crop production owing to high nutrients content and effective microorganisms. Some cities with the concentrated activity of livestock industry have suffered from environmental problems, such as odorous gas emissions and soil and water pollution, caused by excessive use of compost. As an alternative option, the anaerobic digestion (AD) process can be utilized, which can reduce the volume of organic waste but also produce energy. According to Korea-Ministry of Trade, Industry, and Energy (KMTIE), the energy potential of CM via biogas production was estimated to be 0.8 million TOE per year, which is higher than that of other organic wastes. However, limited energy is recovered since useful organic matter, capable of converting to biogas, may be degraded during the long storage period (1-6 months).In this study, the effect of storage period on biogas potential of CM was investigated. Compared to fresh CM (VS 14±1 g/L, COD 205±5 g/L, TKN 7.4±0.8 g/L, NH4+-N 1.5±0.1), old CM has higher organic (35-37%) and nitrogen content (50-100%) due to the drying process during storage. After stabilization period, biogas potential of 0.09 L CH4/g VS was obtained in R1 (old CM supplement) at HRT of 150-100 d, and it was decreased further to 0.06 L CH4/g VS at HRT of 80 d. The drop of pH and organic acids accumulation were not observed during the whole operation of R1. Ammonia stripping and pretreatment of CM were found to be not effective to increase CH4 yield. On the other hand, a sudden increase of biogas potential to 0.19-0.22 L CH4/g VS was achieved in R2 after changing feedstock to fresh CM. The expected reason for the low biogas potential of old CM might be related with the composition of organic matters in CM. Easily biodegradable organic matters in the fresh CM were contained in high concentration, butthey were removed by microorganisms during storing CM in a farm, resulting low biogas yield. This study implies that fresh storage is important to make AD process applicable for CM.Keywords: storage period, cattle manure, biogas potential, microbial analysis
Procedia PDF Downloads 1731131 Evaluation Means in English and Russian Academic Discourse: Through Comparative Analysis towards Translation
Authors: Albina Vodyanitskaya
Abstract:
Given the culture- and language-specific nature of evaluation, this phenomenon is widely studied around the linguistic world and may be regarded as a challenge for translators. Evaluation penetrates all the levels of a scientific text, influences its composition and the reader’s attitude towards the information presented. One of the most challenging and rarely studied phenomena is the individual style of the scientific writer, which is mostly reflected in the use of evaluative language means. The evaluative and expressive potential of a scientific text is becoming more and more welcoming area for researchers, which stems in the shift towards anthropocentric paradigm in linguistics. Other reasons include: the cognitive and psycholinguistic processes that accompany knowledge acquisition, a genre-determined nature of a scientific text, the increasing public concern about the quality of scientific papers and some such. One more important issue, is the fact that linguists all over the world still argue about the definition of evaluation and its functions in the text. The author analyzes various approaches towards the study of evaluation and scientific texts. A comparative analysis of English and Russian dissertations and other scientific papers with regard to evaluative language means reveals major differences and similarities between English and Russian scientific style. Though standardized and genre-specific, English scientific texts contain more figurative and expressive evaluative means than the Russian ones, which should be taken into account while translating scientific papers. The processes that evaluation undergoes while being expressed by means of a target language are also analyzed. The author offers a target-language-dependent strategy for the translation of evaluation in English and Russian scientific texts. The findings may contribute to the theory and practice of translation and can increase scientific writers’ awareness of inter-language and intercultural differences in evaluative language means.Keywords: academic discourse, evaluation, scientific text, scientific writing, translation
Procedia PDF Downloads 3541130 A Review on Potential Utilization of Water Hyacinth (Eichhornia crassipes) as Livestock Feed with Particular Emphasis to Developing Countries in Africa
Authors: Shigdaf Mekuriaw, Firew Tegegne, A. Tsunekawa, Dereje Tewabe
Abstract:
The purpose of this paper is to make a comprehensive review on the use of water hyacinth (Eichhornia crassipes) as a potential livestock feed and argue its utilization as complementary strategy to other control methods. Water Hyacinth is one of the most noxious plant invaders of rivers and lakes. Such weeds cause environmental disaster and interfere with economic and recreational activities such as water transportation and fishing. Economic impacts of the weed in seven African countries have been estimated at between 20-50 million US$ every year. It would, therefore, be prudent to suggest utilization as a complementary control method. The majority of people in developing countries are dependent on traditional and inefficient crop-livestock production system that constrains their ability to enhance economic productivity and quality of life. Livestock in developing countries faces shortage of feed, especially during the long dry seasons. Existing literature shows the use of water hyacinth as livestock and fish feed. The chemical composition of water hyacinth varies considerably. Due to its relatively high crude protein (CP) content (5.8-20.0%), water hyacinth can be considered as a potential protein supplement for livestock which commonly feed cereal crop residues whose contribution as source of feed is increasing in Africa. Though the effects of anti-nutritional factors (ANFs) present in water hyacinth is not investigated, their concentrations are not above threshold hinder its utilization as livestock feed. In conclusion, water hyacinth could provide large quantities of nutritious feed for animals. Like other feeds, water hyacinth may not be offered as a sole feed and based on existing literature its optimum inclusion level reaches 50%.Keywords: Africa, livestock feed, water bodies, water hyacinth and weed control method
Procedia PDF Downloads 3861129 Influence of the Nature of Plants on Drainage, Purification Performance and Quality of Biosolids on Faecal Sludge Planted Drying Beds in Sub-Saharan Climate Conditions
Authors: El Hadji Mamadou Sonko, Mbaye Mbéguéré, Cheikh Diop, Linda Strande
Abstract:
In new approaches that are being developed for the treatment of sludge, the valorization of by-product is increasingly encouraged. In this perspective, Echinochloa pyramidalis has been successfully tested in Cameroon. Echinochloa pyramidalis is an efficient forage plant in the treatment of faecal sludge. It provides high removal rates and biosolids of high agronomic value. Thus in order to advise the use of this plant in planted drying beds in Senegal its comparison with the plants long been used in the field deserves to be carried out. That is the aim of this study showing the influence of the nature of the plants on the drainage, the purifying performances and the quality of the biosolids. Echinochloa pyramidalis, Typha australis, and Phragmites australis are the three macrophytes used in this study. The drainage properties of the beds were monitored through the frequency of clogging, the percentage of recovered leachate and the dryness of the accumulated sludge. The development of plants was followed through the measurement of the density. The purification performances were evaluated from the incoming raw sludge flows and the outflows of leachate for parameters such as Total Solids (TS), Total Suspended Solids (TSS), Total Volatile Solids (TVS), Chemical Oxygen Demand (COD), Total Kjeldahl Nitrogen (TKN), Ammonia (NH₄⁺), Nitrate (NO₃⁻), Total Phosphorus (TP), Orthophosphorus (PO₄³⁻) and Ascaris eggs. The quality of the biosolids accumulated on the beds was measured after 3 months of maturation for parameters such as dryness, C/N ratio NH₄⁺/NO₃⁻ ratio, ammonia, Ascaris eggs. The results have shown that the recovered leachate volume is about 40.4%; 45.6% and 47.3%; the dryness about 41.7%; 38.7% and 28.7%, and clogging frequencies about 6.7%; 8.2% and 14.2% on average for the beds planted with Echinochloa pyramidalis, Typha australis and Phragmites australis respectively. The plants of Echinochloa pyramidalis (198.6 plants/m²) and Phragmites australis (138 plants/m²) have higher densities than Typha australis (90.3 plants/m²). The nature of the plants has no influence on the purification performance with reduction percentages around 80% or more for all the parameters followed whatever the nature of the plants. However, the concentrations of these various leachate pollutants are above the limit values of the Senegalese standard NS 05-061 for the release into the environment. The biosolids harvested after 3 months of maturation are all mature with C/N ratios around 10 for all the macrophytes. The NH₄⁺/NO₃⁻ ratio is lower than 1 except for the biosolids originating from the Echinochloa pyramidalis beds. The ammonia is also less than 0.4 g/kg except for biosolids from Typha australis beds. Biosolids are also rich in mineral elements. Their concentrations of Ascaris eggs are higher than the WHO recommendations despite a percentage of inactivation around 80%. These biosolids must be stored for an additional time or composted. From these results, the use of Echinochloa pyramidalis as the main macrophyte can be recommended in the various drying beds planted in sub-Saharan climate conditions.Keywords: faecal sludge, nature of plants, quality of biosolids, treatment performances
Procedia PDF Downloads 1701128 From Poverty to Progress: A Comparative Analysis of Mongolia with PEER Countries
Authors: Yude Wu
Abstract:
Mongolia, grappling with significant socio-economic challenges, faces pressing issues of inequality and poverty, as evidenced by a high Gini coefficient and the highest poverty rate among the top 20 largest Asian countries. Despite government efforts, Mongolia's poverty rate experienced only a slight reduction from 29.6 percent in 2016 to 27.8 percent in 2020. PEER countries, such as South Africa, Botswana, Kazakhstan, and Peru, share characteristics with Mongolia, including reliance on the mining industry and classification as lower middle-income countries. Successful transitions of these countries to upper middle-income status between 1994 and the 2010s provide valuable insights. Drawing on secondary analyses of existing research and PEER country profiles, the study evaluates past policies, identifies gaps in current approaches, and proposes recommendations to combat poverty sustainably. The hypothesis includes a reliance on the mining industry and a transition from lower to upper middle-income status. Policies from these countries, such as the GEAR policy in South Africa and economic diversification in Botswana, offer insights into Mongolia's development. This essay aims to illuminate the multidimensional nature of underdevelopment in Mongolia through a secondary analysis of existing research and PEER country profiles, evaluating past policies, identifying gaps in current approaches, and providing recommendations for sustainable progress. Drawing inspiration from PEER countries, Mongolia can implement policies such as economic diversification to reduce vulnerability and create stable job opportunities. Emphasis on infrastructure, human capital, and strategic partnerships for Foreign Direct Investment (FDI) aligns with successful strategies implemented by PEER countries, providing a roadmap for Mongolia's development objectives.Keywords: inequality, PEER countries, comparative analysis, nomadic animal husbandry, sustainable growth
Procedia PDF Downloads 631127 Composition Dependent Spectroscopic Studies of Sm3+-Doped Alkali Fluoro Tungsten Tellurite Glasses
Authors: K. Swapna, Sk. Mahamuda, Ch, Annapurna, A. Srinivasa Rao, G. Vijaya Prakash
Abstract:
Samarium ions doped Alkali Fluoro Tungsten Tellurite (AFTT) Glasses have been prepared by using the melt quenching technique and characterized through various spectroscopic techniques such as optical absorption, excitation, emission and decay spectral studies. From the measured absorption spectra of Sm3+ ions in AFTT glasses, the optical band gap and Urbach energies have been evaluated. The spectroscopic parameters such as oscillator strengths (f), Judd-Ofelt (J-O) intensity parameters (Ωλ), spontaneous emission probability (AR), branching ratios (βR) and radiative lifetimes (τR) of various excited levels have been determined from the absorption spectrum by using J-O analysis. A strong luminescence in the reddish-orange spectral region has been observed for all the Sm3+ ions doped AFTT glasses. It consisting four emission transitions occurring from the 4G5/2metastable state to the lower lying states 6H5/2, 6H7/2, 6H9/2 and 6H11/2 upon exciting the sample with a 478 nm line of an argon ion laser. The stimulated emission cross-sections (σe) and branching ratios (βmeas) were estimated from the emission spectra for all emission transitions. Correlation of the radiative lifetime with the experimental lifetime measured from the day curves allows us to measure the quantum efficiency of the prepared glasses. In order to know the colour emission of the prepared glasses under near UV excitation, the emission intensities were analyzed using CIE 1931 colour chromaticity diagram. The aforementioned spectral studies carried out on Sm3+ ions doped AFTT glasses allowed us to conclude that, these glasses are best suited for orange-red visible lasers.Keywords: fluoro tungsten tellurite glasses, judd-ofelt intensity parameters, lifetime, stimulated emission cross-section
Procedia PDF Downloads 278