Search results for: artificial Bee colony algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5571

Search results for: artificial Bee colony algorithm

1821 Function Approximation with Radial Basis Function Neural Networks via FIR Filter

Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended Kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore, the number of centers will be considered since it affects the performance of approximation.

Keywords: extended Kalman filter, classification problem, radial basis function networks (RBFN), finite impulse response (FIR) filter

Procedia PDF Downloads 456
1820 A Review on Medical Image Registration Techniques

Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry

Abstract:

This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.

Keywords: image registration techniques, medical images, neural networks, optimisaztion, transformation

Procedia PDF Downloads 178
1819 Using Computer Vision to Detect and Localize Fractures in Wrist X-ray Images

Authors: John Paul Q. Tomas, Mark Wilson L. de los Reyes, Kirsten Joyce P. Vasquez

Abstract:

The most frequent type of fracture is a wrist fracture, which often makes it difficult for medical professionals to find and locate. In this study, fractures in wrist x-ray pictures were located and identified using deep learning and computer vision. The researchers used image filtering, masking, morphological operations, and data augmentation for the image preprocessing and trained the RetinaNet and Faster R-CNN models with ResNet50 backbones and Adam optimizers separately for each image filtering technique and projection. The RetinaNet model with Anisotropic Diffusion Smoothing filter trained with 50 epochs has obtained the greatest accuracy of 99.14%, precision of 100%, sensitivity/recall of 98.41%, specificity of 100%, and an IoU score of 56.44% for the Posteroanterior projection utilizing augmented data. For the Lateral projection using augmented data, the RetinaNet model with an Anisotropic Diffusion filter trained with 50 epochs has produced the highest accuracy of 98.40%, precision of 98.36%, sensitivity/recall of 98.36%, specificity of 98.43%, and an IoU score of 58.69%. When comparing the test results of the different individual projections, models, and image filtering techniques, the Anisotropic Diffusion filter trained with 50 epochs has produced the best classification and regression scores for both projections.

Keywords: Artificial Intelligence, Computer Vision, Wrist Fracture, Deep Learning

Procedia PDF Downloads 73
1818 An Efficient Fundamental Matrix Estimation for Moving Object Detection

Authors: Yeongyu Choi, Ju H. Park, S. M. Lee, Ho-Youl Jung

Abstract:

In this paper, an improved method for estimating fundamental matrix is proposed. The method is applied effectively to monocular camera based moving object detection. The method consists of corner points detection, moving object’s motion estimation and fundamental matrix calculation. The corner points are obtained by using Harris corner detector, motions of moving objects is calculated from pyramidal Lucas-Kanade optical flow algorithm. Through epipolar geometry analysis using RANSAC, the fundamental matrix is calculated. In this method, we have improved the performances of moving object detection by using two threshold values that determine inlier or outlier. Through the simulations, we compare the performances with varying the two threshold values.

Keywords: corner detection, optical flow, epipolar geometry, RANSAC

Procedia PDF Downloads 409
1817 Intelligent Chatbot Generating Dynamic Responses Through Natural Language Processing

Authors: Aarnav Singh, Jatin Moolchandani

Abstract:

The proposed research work aims to build a query-based AI chatbot that can answer any question related to any topic. A chatbot is software that converses with users via text messages. In the proposed system, we aim to build a chatbot that generates a response based on the user’s query. For this, we use natural language processing to analyze the query and some set of texts to form a concise answer. The texts are obtained through web-scrapping and filtering all the credible sources from a web search. The objective of this project is to provide a chatbot that is able to provide simple and accurate answers without the user having to read through a large number of articles and websites. Creating an AI chatbot that can answer a variety of user questions on a variety of topics is the goal of the proposed research project. This chatbot uses natural language processing to comprehend user inquiries and provides succinct responses by examining a collection of writings that were scraped from the internet. The texts are carefully selected from reliable websites that are found via internet searches. This project aims to provide users with a chatbot that provides clear and precise responses, removing the need to go through several articles and web pages in great detail. In addition to exploring the reasons for their broad acceptance and their usefulness across many industries, this article offers an overview of the interest in chatbots throughout the world.

Keywords: Chatbot, Artificial Intelligence, natural language processing, web scrapping

Procedia PDF Downloads 66
1816 Gaussian Mixture Model Based Identification of Arterial Wall Movement for Computation of Distension Waveform

Authors: Ravindra B. Patil, P. Krishnamoorthy, Shriram Sethuraman

Abstract:

This work proposes a novel Gaussian Mixture Model (GMM) based approach for accurate tracking of the arterial wall and subsequent computation of the distension waveform using Radio Frequency (RF) ultrasound signal. The approach was evaluated on ultrasound RF data acquired using a prototype ultrasound system from an artery mimicking flow phantom. The effectiveness of the proposed algorithm is demonstrated by comparing with existing wall tracking algorithms. The experimental results show that the proposed method provides 20% reduction in the error margin compared to the existing approaches in tracking the arterial wall movement. This approach coupled with ultrasound system can be used to estimate the arterial compliance parameters required for screening of cardiovascular related disorders.

Keywords: distension waveform, Gaussian Mixture Model, RF ultrasound, arterial wall movement

Procedia PDF Downloads 506
1815 Data-Driven Monitoring and Control of Water Sanitation and Hygiene for Improved Maternal Health in Rural Communities

Authors: Paul Barasa Wanyama, Tom Wanyama

Abstract:

Governments and development partners in low-income countries often prioritize building Water Sanitation and Hygiene (WaSH) infrastructure of healthcare facilities to improve maternal healthcare outcomes. However, the operation, maintenance, and utilization of this infrastructure are almost never considered. Many healthcare facilities in these countries use untreated water that is not monitored for quality or quantity. Consequently, it is common to run out of water while a patient is on their way to or in the operating theater. Further, the handwashing stations in healthcare facilities regularly run out of water or soap for months, and the latrines are typically not clean, in part due to the lack of water. In this paper, we present a system that uses Internet of Things (IoT), big data, cloud computing, and AI to initiate WaSH security in healthcare facilities, with a specific focus on maternal health. We have implemented smart sensors and actuators to monitor and control WaSH systems from afar to ensure their objectives are achieved. We have also developed a cloud-based system to analyze WaSH data in real time and communicate relevant information back to the healthcare facilities and their stakeholders (e.g., medical personnel, NGOs, ministry of health officials, facilities managers, community leaders, pregnant women, and new mothers and their families) to avert or mitigate problems before they occur.

Keywords: WaSH, internet of things, artificial intelligence, maternal health, rural communities, healthcare facilities

Procedia PDF Downloads 19
1814 An Earth Mover’s Distance Algorithm Based DDoS Detection Mechanism in SDN

Authors: Yang Zhou, Kangfeng Zheng, Wei Ni, Ren Ping Liu

Abstract:

Software-defined networking (SDN) provides a solution for scalable network framework with decoupled control and data plane. However, this architecture also induces a particular distributed denial-of-service (DDoS) attack that can affect or even overwhelm the SDN network. DDoS attack detection problem has to date been mostly researched as entropy comparison problem. However, this problem lacks the utilization of SDN, and the results are not accurate. In this paper, we propose a DDoS attack detection method, which interprets DDoS detection as a signature matching problem and is formulated as Earth Mover’s Distance (EMD) model. Considering the feasibility and accuracy, we further propose to define the cost function of EMD to be a generalized Kullback-Leibler divergence. Simulation results show that our proposed method can detect DDoS attacks by comparing EMD values with the ones computed in the case without attacks. Moreover, our method can significantly increase the true positive rate of detection.

Keywords: DDoS detection, EMD, relative entropy, SDN

Procedia PDF Downloads 338
1813 Observer-based Robust Diagnosis for Wind Turbine System

Authors: Sarah Odofin, Zhiwei Gao

Abstract:

Operations and maintenance of wind turbine have received much attention by researcher due to rapid expansion of wind farms. This paper explores a novel fault diagnosis that is designed and optimized to be very sensitive to faults and robust to disturbances. The faults considered are the sensor faults of which the augmented observer is considered to enlarge faults and to be robust to disturbance. A qualitative model based analysis is proposed for early fault diagnosis to minimize downtime mostly caused by components breakdown and exploit productivity. Simulation results are computed validating the models provided which demonstrates system performance using practical application of fault type examples. The results demonstrate the effectiveness of the developed techniques investigated in a Matlab/Simulink environment.

Keywords: wind turbine, condition monitoring, genetic algorithm, fault diagnosis, augmented observer, disturbance robustness, fault estimation, sensor monitoring

Procedia PDF Downloads 497
1812 Retina Registration for Biometrics Based on Characterization of Retinal Feature Points

Authors: Nougrara Zineb

Abstract:

The unique structure of the blood vessels in the retina has been used for biometric identification. The retina blood vessel pattern is a unique pattern in each individual and it is almost impossible to forge that pattern in a false individual. The retina biometrics’ advantages include high distinctiveness, universality, and stability overtime of the blood vessel pattern. Once the creases have been extracted from the images, a registration stage is necessary, since the position of the retinal vessel structure could change between acquisitions due to the movements of the eye. Image registration consists of following steps: Feature detection, feature matching, transform model estimation and image resembling and transformation. In this paper, we present an algorithm of registration; it is based on the characterization of retinal feature points. For experiments, retinal images from the DRIVE database have been tested. The proposed methodology achieves good results for registration in general.

Keywords: fovea, optic disc, registration, retinal images

Procedia PDF Downloads 266
1811 Bio-Inspired Information Complexity Management: From Ant Colony to Construction Firm

Authors: Hamza Saeed, Khurram Iqbal Ahmad Khan

Abstract:

Effective information management is crucial for any construction project and its success. Primary areas of information generation are either the construction site or the design office. There are different types of information required at different stages of construction involving various stakeholders creating complexity. There is a need for effective management of information flows to reduce uncertainty creating complexity. Nature provides a unique perspective in terms of dealing with complexity, in particular, information complexity. System dynamics methodology provides tools and techniques to address complexity. It involves modeling and simulation techniques that help address complexity. Nature has been dealing with complex systems since its creation 4.5 billion years ago. It has perfected its system by evolution, resilience towards sudden changes, and extinction of unadaptable and outdated species that are no longer fit for the environment. Nature has been accommodating the changing factors and handling complexity forever. Humans have started to look at their natural counterparts for inspiration and solutions for their problems. This brings forth the possibility of using a biomimetics approach to improve the management practices used in the construction sector. Ants inhabit different habitats. Cataglyphis and Pogonomyrmex live in deserts, Leafcutter ants reside in rainforests, and Pharaoh ants are native to urban developments of tropical areas. Detailed studies have been done on fifty species out of fourteen thousand discovered. They provide the opportunity to study the interactions in diverse environments to generate collective behavior. Animals evolve to better adapt to their environment. The collective behavior of ants emerges from feedback through interactions among individuals, based on a combination of three basic factors: The patchiness of resources in time and space, operating cost, environmental stability, and the threat of rupture. If resources appear in patches through time and space, the response is accelerating and non-linear, and if resources are scattered, the response follows a linear pattern. If the acquisition of energy through food is faster than energy spent to get it, the default is to continue with an activity unless it is halted for some reason. If the energy spent is rather higher than getting it, the default changes to stay put unless activated. Finally, if the environment is stable and the threat of rupture is low, the activation and amplification rate is slow but steady. Otherwise, it is fast and sporadic. To further study the effects and to eliminate the environmental bias, the behavior of four different ant species were studied, namely Red Harvester ants (Pogonomyrmex Barbatus), Argentine ants (Linepithema Humile), Turtle ants (Cephalotes Goniodontus), Leafcutter ants (Genus: Atta). This study aims to improve the information system in the construction sector by providing a guideline inspired by nature with a systems-thinking approach, using system dynamics as a tool. Identified factors and their interdependencies were analyzed in the form of a causal loop diagram (CLD), and construction industry professionals were interviewed based on the developed CLD, which was validated with significance response. These factors and interdependencies in the natural system corresponds with the man-made systems, providing a guideline for effective use and flow of information.

Keywords: biomimetics, complex systems, construction management, information management, system dynamics

Procedia PDF Downloads 137
1810 An Efficient Acquisition Algorithm for Long Pseudo-Random Sequence

Authors: Wan-Hsin Hsieh, Chieh-Fu Chang, Ming-Seng Kao

Abstract:

In this paper, a novel method termed the Phase Coherence Acquisition (PCA) is proposed for pseudo-random (PN) sequence acquisition. By employing complex phasors, the PCA requires only complex additions in the order of N, the length of the sequence, whereas the conventional method utilizing fast Fourier transform (FFT) requires complex multiplications and additions both in the order of Nlog2N . In order to combat noise, the input and local sequences are partitioned and mapped into complex phasors in PCA. The phase differences between pairs of input and local phasors are utilized for acquisition, and thus complex multiplications are avoided. For more noise-robustness capability, the multi-layer PCA is developed to extract the code phase step by step. The significant reduction of computational loads makes the PCA an attractive method, especially when the sequence length of is extremely large which becomes intractable for the FFT-based acquisition.

Keywords: FFT, PCA, PN sequence, convolution theory

Procedia PDF Downloads 478
1809 Kalman Filter Gain Elimination in Linear Estimation

Authors: Nicholas D. Assimakis

Abstract:

In linear estimation, the traditional Kalman filter uses the Kalman filter gain in order to produce estimation and prediction of the n-dimensional state vector using the m-dimensional measurement vector. The computation of the Kalman filter gain requires the inversion of an m x m matrix in every iteration. In this paper, a variation of the Kalman filter eliminating the Kalman filter gain is proposed. In the time varying case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix and the inversion of an m x m matrix in every iteration. In the time invariant case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix in every iteration. The proposed Kalman filter gain elimination algorithm may be faster than the conventional Kalman filter, depending on the model dimensions.

Keywords: discrete time, estimation, Kalman filter, Kalman filter gain

Procedia PDF Downloads 196
1808 Separate Powers Control Structure of DFIG Based on Fractional Regulator Fed by Multilevel Inverters DC Bus Voltages of a photovoltaic System

Authors: S. Ghoudelbourk, A. Omeiri, D. Dib, H. Cheghib

Abstract:

This paper shows that we can improve the performance of the auto-adjustable electric machines if a fractional dynamic is considered in the algorithm of the controlling order. This structure is particularly interested in the separate control of active and reactive power of the double-fed induction generator (DFIG) of wind power conversion chain. Fractional regulators are used in the regulation of chain of powers. Knowing that, usually, the source of DFIG is provided by converters through controlled rectifiers, all this system makes the currents of lines strongly polluted that can have a harmful effect for the connected loads and sensitive equipment nearby. The solution to overcome these problems is to replace the power of the rotor DFIG by multilevel inverters supplied by PV which improve the THD. The structure of the adopted adjustment is tested using Matlab/Simulink and the results are presented and analyzed for a variable wind.

Keywords: DFIG, fractional regulator, multilevel inverters, PV

Procedia PDF Downloads 401
1807 AI-Driven Forecasting Models for Anticipating Oil Market Trends and Demand

Authors: Gaurav Kumar Sinha

Abstract:

The volatility of the oil market, influenced by geopolitical, economic, and environmental factors, presents significant challenges for stakeholders in predicting trends and demand. This article explores the application of artificial intelligence (AI) in developing robust forecasting models to anticipate changes in the oil market more accurately. We delve into various AI techniques, including machine learning, deep learning, and time series analysis, that have been adapted to analyze historical data and current market conditions to forecast future trends. The study evaluates the effectiveness of these models in capturing complex patterns and dependencies in market data, which traditional forecasting methods often miss. Additionally, the paper discusses the integration of external variables such as political events, economic policies, and technological advancements that influence oil prices and demand. By leveraging AI, stakeholders can achieve a more nuanced understanding of market dynamics, enabling better strategic planning and risk management. The article concludes with a discussion on the potential of AI-driven models in enhancing the predictive accuracy of oil market forecasts and their implications for global economic planning and strategic resource allocation.

Keywords: AI forecasting, oil market trends, machine learning, deep learning, time series analysis, predictive analytics, economic factors, geopolitical influence, technological advancements, strategic planning

Procedia PDF Downloads 35
1806 Modeling of Surface Roughness in Hard Turning of DIN 1.2210 Cold Work Tool Steel with Ceramic Tools

Authors: Mehmet Erdi Korkmaz, Mustafa Günay

Abstract:

Nowadays, grinding is frequently replaced with hard turning for reducing set up time and higher accuracy. This paper focused on mathematical modeling of average surface roughness (Ra) in hard turning of AISI L2 grade (DIN 1.2210) cold work tool steel with ceramic tools. The steel was hardened to 60±1 HRC after the heat treatment process. Cutting speed, feed rate, depth of cut and tool nose radius was chosen as the cutting conditions. The uncoated ceramic cutting tools were used in the machining experiments. The machining experiments were performed according to Taguchi L27 orthogonal array on CNC lathe. Ra values were calculated by averaging three roughness values obtained from three different points of machined surface. The influences of cutting conditions on surface roughness were evaluated as statistical and experimental. The analysis of variance (ANOVA) with 95% confidence level was applied for statistical analysis of experimental results. Finally, mathematical models were developed using the artificial neural networks (ANN). ANOVA results show that feed rate is the dominant factor affecting surface roughness, followed by tool nose radius and cutting speed.

Keywords: ANN, hard turning, DIN 1.2210, surface roughness, Taguchi method

Procedia PDF Downloads 371
1805 A Topological Study of an Urban Street Network and Its Use in Heritage Areas

Authors: Jose L. Oliver, Taras Agryzkov, Leandro Tortosa, Jose F. Vicent, Javier Santacruz

Abstract:

This paper aims to demonstrate how a topological study of an urban street network can be used as a tool to be applied to some heritage conservation areas in a city. In the last decades, we find different kinds of approaches in the discipline of Architecture and Urbanism based in the so-called Sciences of Complexity. In this context, this paper uses mathematics from the Network Theory. Hence, it proposes a methodology based in obtaining information from a graph, which is created from a network of urban streets. Then, it is used an algorithm that establishes a ranking of importance of the nodes of that network, from its topological point of view. The results are applied to a heritage area in a particular city, confronting the data obtained from the mathematical model, with the ones from the field work in the case study. As a result of this process, we may conclude the necessity of implementing some actions in the area, and where those actions would be more effective for the whole heritage site.

Keywords: graphs, heritage cities, spatial analysis, urban networks

Procedia PDF Downloads 396
1804 The Design, Control and Dynamic Performance of an Interior Permanent Magnet Synchronous Generator for Wind Power System

Authors: Olusegun Solomon

Abstract:

This paper describes the concept for the design and maximum power point tracking control for an interior permanent magnet synchronous generator wind turbine system. Two design concepts are compared to outline the effect of magnet design on the performance of the interior permanent magnet synchronous generator. An approximate model that includes the effect of core losses has been developed for the machine to simulate the dynamic performance of the wind energy system. An algorithm for Maximum Power Point Tracking control is included to describe the process for maximum power extraction.

Keywords: permanent magnet synchronous generator, wind power system, wind turbine

Procedia PDF Downloads 221
1803 A Parallel Poromechanics Finite Element Method (FEM) Model for Reservoir Analyses

Authors: Henrique C. C. Andrade, Ana Beatriz C. G. Silva, Fernando Luiz B. Ribeiro, Samir Maghous, Jose Claudio F. Telles, Eduardo M. R. Fairbairn

Abstract:

The present paper aims at developing a parallel computational model for numerical simulation of poromechanics analyses of heterogeneous reservoirs. In the context of macroscopic poroelastoplasticity, the hydromechanical coupling between the skeleton deformation and the fluid pressure is addressed by means of two constitutive equations. The first state equation relates the stress to skeleton strain and pore pressure, while the second state equation relates the Lagrangian porosity change to skeleton volume strain and pore pressure. A specific algorithm for local plastic integration using a tangent operator is devised. A modified Cam-clay type yield surface with associated plastic flow rule is adopted to account for both contractive and dilative behavior.

Keywords: finite element method, poromechanics, poroplasticity, reservoir analysis

Procedia PDF Downloads 391
1802 Differential Survival Rates of Pseudomonas aeruginosa Strains on the Wings of Pantala flavescens

Authors: Banu Pradheepa Kamarajan, Muthusamy Ananthasubramanian

Abstract:

Biofilm forming Pseudomonads occupy the top third position in causing hospital acquired infections. P. aeruginosa is notoriously known for its tendency to develop drug resistance. Major classes of drug such as β-lactams, aminoglycosides, quinolones, and polymyxins are found ineffective against multi-drug resistance Pseudomonas. To combat the infections, rather than administration of a single antibiotic, use of combinations (tobramycin and essential oils from plants and/or silver nanoparticles, chitosan, nitric oxide, cis-2-decenoic acid) in single formulation are suggested to control P. aeruginosa biofilms. Conventional techniques to prevent hospital-acquired implant infections such as coatings with antibiotics, controlled release of antibiotics from the implant material, contact-killing surfaces, coating the implants with functional DNase I and, coating with glycoside hydrolase are being followed. Coatings with bioactive components besides having limited shelf-life, require cold-chain and, are likely to fail when bacteria develop resistance. Recently identified nano-scale physical architectures on the insect wings are expected to have potential bactericidal property. Nanopillars are bactericidal to Staphylococcus aureus, Bacillus subtilis, K. pnuemoniae and few species of Pseudomonas. Our study aims to investigate the survival rate of biofilm forming Pseudomonas aeruginosa strain over non-biofilm forming strain on the nanopillar architecture of dragonfly (Pantala flavescens) wing. Dragonflies were collected near house-hold areas and, insect identification was carried out by the Department of Entomology, Tamilnadu Agricultural University, Coimbatore, India. Two strains of P. aeruginosa such as PAO1 (potent biofilm former) and MTCC 1688 (non-weak biofilm former) were tested against the glass coverslip (control) and wings of dragonfly (test) for 48 h. The wings/glass coverslips were incubated with bacterial suspension in 48-well plate. The plates were incubated at 37 °C under static condition. Bacterial attachment on the nanopillar architecture of the wing surface was visualized using FESEM. The survival rate of P. aeruginosa was tested using colony counting technique and flow cytometry at 0.5 h, 1 h, 2 h, 7 h, 24 h, and 48 h post-incubation. Cell death was analyzed using propidium iodide staining and DNA quantification. The results indicated that the survival rate of non-biofilm forming P. aeruginosa is 0.2 %, whilst that of biofilm former is 45 % on the dragonfly wings at the end of 48 h. The reduction in the survival rate of biofilm and non-biofilm forming P. aeruginosa was 20% and 40% respectively on the wings compared to the glass coverslip. In addition, Fourier Transformed Infrared Radiation was used to study the modification in the surface chemical composition of the wing during bacterial attachment and, post-sonication. This result indicated that the chemical moieties are not involved in the bactericidal property of nanopillars by the conserved characteristic peaks of chitin pre and post-sonication. The nanopillar architecture of the dragonfly wing efficiently deters the survival of non-biofilm forming P. aeruginosa, but not the biofilm forming strain. The study highlights the ability of biofilm formers to survive on wing architecture. Understanding this survival strategy will help in designing the architecture that combats the colonization of biofilm forming pathogens.

Keywords: biofilm, nanopillars, Pseudomonas aeruginosa, survival rate

Procedia PDF Downloads 175
1801 Development of Generalized Correlation for Liquid Thermal Conductivity of N-Alkane and Olefin

Authors: A. Ishag Mohamed, A. A. Rabah

Abstract:

The objective of this research is to develop a generalized correlation for the prediction of thermal conductivity of n-Alkanes and Alkenes. There is a minority of research and lack of correlation for thermal conductivity of liquids in the open literature. The available experimental data are collected covering the groups of n-Alkanes and Alkenes.The data were assumed to correlate to temperature using Filippov correlation. Nonparametric regression of Grace Algorithm was used to develop the generalized correlation model. A spread sheet program based on Microsoft Excel was used to plot and calculate the value of the coefficients. The results obtained were compared with the data that found in Perry's Chemical Engineering Hand Book. The experimental data correlated to the temperature ranged "between" 273.15 to 673.15 K, with R2 = 0.99.The developed correlation reproduced experimental data that which were not included in regression with absolute average percent deviation (AAPD) of less than 7 %. Thus the spread sheet was quite accurate which produces reliable data.

Keywords: N-Alkanes, N-Alkenes, nonparametric, regression

Procedia PDF Downloads 654
1800 Encephalon-An Implementation of a Handwritten Mathematical Expression Solver

Authors: Shreeyam, Ranjan Kumar Sah, Shivangi

Abstract:

Recognizing and solving handwritten mathematical expressions can be a challenging task, particularly when certain characters are segmented and classified. This project proposes a solution that uses Convolutional Neural Network (CNN) and image processing techniques to accurately solve various types of equations, including arithmetic, quadratic, and trigonometric equations, as well as logical operations like logical AND, OR, NOT, NAND, XOR, and NOR. The proposed solution also provides a graphical solution, allowing users to visualize equations and their solutions. In addition to equation solving, the platform, called CNNCalc, offers a comprehensive learning experience for students. It provides educational content, a quiz platform, and a coding platform for practicing programming skills in different languages like C, Python, and Java. This all-in-one solution makes the learning process engaging and enjoyable for students. The proposed methodology includes horizontal compact projection analysis and survey for segmentation and binarization, as well as connected component analysis and integrated connected component analysis for character classification. The compact projection algorithm compresses the horizontal projections to remove noise and obtain a clearer image, contributing to the accuracy of character segmentation. Experimental results demonstrate the effectiveness of the proposed solution in solving a wide range of mathematical equations. CNNCalc provides a powerful and user-friendly platform for solving equations, learning, and practicing programming skills. With its comprehensive features and accurate results, CNNCalc is poised to revolutionize the way students learn and solve mathematical equations. The platform utilizes a custom-designed Convolutional Neural Network (CNN) with image processing techniques to accurately recognize and classify symbols within handwritten equations. The compact projection algorithm effectively removes noise from horizontal projections, leading to clearer images and improved character segmentation. Experimental results demonstrate the accuracy and effectiveness of the proposed solution in solving a wide range of equations, including arithmetic, quadratic, trigonometric, and logical operations. CNNCalc features a user-friendly interface with a graphical representation of equations being solved, making it an interactive and engaging learning experience for users. The platform also includes tutorials, testing capabilities, and programming features in languages such as C, Python, and Java. Users can track their progress and work towards improving their skills. CNNCalc is poised to revolutionize the way students learn and solve mathematical equations with its comprehensive features and accurate results.

Keywords: AL, ML, hand written equation solver, maths, computer, CNNCalc, convolutional neural networks

Procedia PDF Downloads 122
1799 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objetives

Authors: Mingyu Xie, Mietek Brdys

Abstract:

The paper develops a non-linear model predictive control (NMPC) of water quality in drinking water distribution systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.

Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives

Procedia PDF Downloads 317
1798 Control of a Stewart Platform for Minimizing Impact Energy in Simulating Spacecraft Docking Operations

Authors: Leonardo Herrera, Shield B. Lin, Stephen J. Montgomery-Smith, Ziraguen O. Williams

Abstract:

Three control algorithms: Proportional-Integral-Derivative, Linear-Quadratic-Gaussian, and Linear-Quadratic-Gaussian with the shift, were applied to the computer simulation of a one-directional dynamic model of a Stewart Platform. The goal was to compare the dynamic system responses under the three control algorithms and to minimize the impact energy when simulating spacecraft docking operations. Equations were derived for the control algorithms and the input and output of the feedback control system. Using MATLAB, Simulink diagrams were created to represent the three control schemes. A switch selector was used for the convenience of changing among different controllers. The simulation demonstrated the controller using the algorithm of Linear-Quadratic-Gaussian with the shift resulting in the lowest impact energy.

Keywords: controller, Stewart platform, docking operation, spacecraft

Procedia PDF Downloads 51
1797 Recovery of the Demolition and Construction Waste, Casablanca (Morocco)

Authors: Morsli Mourad, Tahiri Mohamed, Samdi Azzeddine

Abstract:

Casablanca is the biggest city in Morocco. It concentrates more than 60% of the economic and industrial activity of the kingdom. Its building and public works (BTP) sector is the leading source of inert waste scattered in open areas. This inert waste is a major challenge for the city of Casablanca, as it is not properly managed, thus causing a significant nuisance for the environment and the health of the population. Hence the vision of our project is to recycle and valorize concrete waste. In this work, we present concrete results in the exploitation of this abundant and permanent deposit. Typical wastes are concrete, clay and concrete bricks, ceramic tiles, marble panels, gypsum, scrap metal, wood . The work performed included: geolocation with a combination of artificial intelligence and Google Earth, estimation of the amount of waste per site, sorting, crushing, grinding, and physicochemical characterization of the samples. Then, we proceeded to the exploitation of the types of substrates to be developed: light cement, coating, and glue for ceramics... The said products were tested and characterized by X-ray fluorescence, specific surface, resistance to bending and crushing, etc. We will present in detail the main results of our research work and also describe the specific properties of each material developed.

Keywords: déchets de démolition et des chantiers de construction, logiciels de combinaison SIG, valorisation de déchets inertes, enduits, ciment leger, casablanca

Procedia PDF Downloads 112
1796 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 109
1795 Hydrologic Impacts of Climate Change and Urbanization on Quetta Watershed, Pakistan

Authors: Malik Muhammad Akhtar, Tanzeel Khan

Abstract:

Various natural and anthropogenic factors are affecting recharge processes in urban areas due to intense urban expansion; land-use/landcover change (LULC) and climate considerably influence the ecosystem functions. In Quetta, a terrible transformation of LULC has occurred due to an increase in human population and rapid urbanization over the past years; according to the Pakistan Bureau of Statistics, the increase of population from 252,577 in 1972 to 2,275,699 in 2017 shows an abrupt rise which in turn has affected the aquifer recharge capability, vegetation, and precipitation at Quetta. This study focuses on the influence of population growth and LULC on groundwater table level by employing multi-temporal, multispectral satellite data during the selected years, i.e. 2014, 2017, and 2020. The results of land classification showed that barren land had shown a considerable decrease, whereas the urban area has increased over time from 152.4sq/km in 2014 to 195.5sq/km in 2017 to 283.3sq/km in 2020, whereas surface-water area coverage has increased since 2014 because of construction of few dams around the valley. Rapid urbanization stresses limited hydrology resources, and this needs to be addressed to conserve/sustain the resources through educating the local community, awareness regarding water use and climate change, and supporting artificial recharge of the aquifers.

Keywords: climate changes, urbanization, GIS, land use, Quetta, watershed

Procedia PDF Downloads 124
1794 Microwave-Assisted Chemical Pre-Treatment of Waste Sorghum Leaves: Process Optimization and Development of an Intelligent Model for Determination of Volatile Compound Fractions

Authors: Daneal Rorke, Gueguim Kana

Abstract:

The shift towards renewable energy sources for biofuel production has received increasing attention. However, the use and pre-treatment of lignocellulosic material are inundated with the generation of fermentation inhibitors which severely impact the feasibility of bioprocesses. This study reports the profiling of all volatile compounds generated during microwave assisted chemical pre-treatment of sorghum leaves. Furthermore, the optimization of reducing sugar (RS) from microwave assisted acid pre-treatment of sorghum leaves was assessed and gave a coefficient of determination (R2) of 0.76, producing an optimal RS yield of 2.74 g FS/g substrate. The development of an intelligent model to predict volatile compound fractions gave R2 values of up to 0.93 for 21 volatile compounds. Sensitivity analysis revealed that furfural and phenol exhibited high sensitivity to acid concentration, alkali concentration and S:L ratio, while phenol showed high sensitivity to microwave duration and intensity as well. These findings illustrate the potential of using an intelligent model to predict the volatile compound fraction profile of compounds generated during pre-treatment of sorghum leaves in order to establish a more robust and efficient pre-treatment regime for biofuel production.

Keywords: artificial neural networks, fermentation inhibitors, lignocellulosic pre-treatment, sorghum leaves

Procedia PDF Downloads 248
1793 A New Design Methodology for Partially Reconfigurable Systems-on-Chip

Authors: Roukaya Dalbouchi, Abdelkrin Zitouni

Abstract:

In this paper, we propose a novel design methodology for Dynamic Partial Reconfigurable (DPR) system. This type of system has the property of being able to be modified after its design and during its execution. The suggested design methodology is generic in terms of granularity, number of modules, and reconfigurable region and suitable for any type of modern application. It is based on the interconnection between several design stages. The recommended methodology represents a guide for the design of DPR architectures that meet compromise reconfiguration/performance. To validate the proposed methodology, we use as an application a video watermarking. The comparison result shows that the proposed methodology supports all stages of DPR architecture design and characterized by a high abstraction level. It provides a dynamic/partial reconfigurable architecture; it guarantees material efficiency, the flexibility of reconfiguration, and superior performance in terms of frequency and power consumption.

Keywords: dynamically reconfigurable system, block matching algorithm, partial reconfiguration, motion vectors, video watermarking

Procedia PDF Downloads 95
1792 Binarization and Recognition of Characters from Historical Degraded Documents

Authors: Bency Jacob, S.B. Waykar

Abstract:

Degradations in historical document images appear due to aging of the documents. It is very difficult to understand and retrieve text from badly degraded documents as there is variation between the document foreground and background. Thresholding of such document images either result in broken characters or detection of false texts. Numerous algorithms exist that can separate text and background efficiently in the textual regions of the document; but portions of background are mistaken as text in areas that hardly contain any text. This paper presents a way to overcome these problems by a robust binarization technique that recovers the text from a severely degraded document images and thereby increases the accuracy of optical character recognition systems. The proposed document recovery algorithm efficiently removes degradations from document images. Here we are using the ostus method ,local thresholding and global thresholding and after the binarization training and recognizing the characters in the degraded documents.

Keywords: binarization, denoising, global thresholding, local thresholding, thresholding

Procedia PDF Downloads 344