Search results for: sensor network design
13696 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction
Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé
Abstract:
One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.Keywords: input variable disposition, machine learning, optimization, performance, time series prediction
Procedia PDF Downloads 10913695 Framework for Government ICT Projects
Authors: Manal Rayes
Abstract:
In its efforts to utilize the information and communication technology to enhance the quality of public service delivery, national and local governments around the world are competing to introduce more ICT applications as tools to automate processes related to law enforcement or policy execution, increase citizen orientation, trust, and satisfaction, and create one-stop-shops for public services. In its implementation, e-Government ICTs need to maintain transparency, participation, and collaboration. Due to this diverse of mixed goals and requirements, e-Government systems need to be designed based on special design considerations in order to eliminate the risks of failure to compliance to government regulations, citizen dissatisfaction, or market repulsion. In this article we suggest a framework with guidelines for designing government information systems that takes into consideration the special requirements of the public sector. Then we introduce two case studies and show how applying those guidelines would result in a more solid system design.Keywords: e-government, framework, guidelines, system design
Procedia PDF Downloads 36613694 Exploring the Activity Fabric of an Intelligent Environment with Hierarchical Hidden Markov Theory
Authors: Chiung-Hui Chen
Abstract:
The Internet of Things (IoT) was designed for widespread convenience. With the smart tag and the sensing network, a large quantity of dynamic information is immediately presented in the IoT. Through the internal communication and interaction, meaningful objects provide real-time services for users. Therefore, the service with appropriate decision-making has become an essential issue. Based on the science of human behavior, this study employed the environment model to record the time sequences and locations of different behaviors and adopted the probability module of the hierarchical Hidden Markov Model for the inference. The statistical analysis was conducted to achieve the following objectives: First, define user behaviors and predict the user behavior routes with the environment model to analyze user purposes. Second, construct the hierarchical Hidden Markov Model according to the logic framework, and establish the sequential intensity among behaviors to get acquainted with the use and activity fabric of the intelligent environment. Third, establish the intensity of the relation between the probability of objects’ being used and the objects. The indicator can describe the possible limitations of the mechanism. As the process is recorded in the information of the system created in this study, these data can be reused to adjust the procedure of intelligent design services.Keywords: behavior, big data, hierarchical hidden Markov model, intelligent object
Procedia PDF Downloads 23313693 Enabling the Physical Elements of a Pedestrian Friendly District around a Rail Station for Supporting Transit Oriented Development
Authors: Dyah Titisari Widyastuti
Abstract:
Rail-station area development that is based on the concept of TOD (Transit Oriented Development) is principally oriented to pedestrian accessibility for daily mobility. The aim of this research is elaborating how far the existing physical elements of a rail-station district could facilitate pedestrian mobility and establish a pedestrian friendly district toward implementation of a TOD concept. This research was conducted through some steps: (i) mapping the rail-station area pedestrian sidewalk and pedestrian network as well as activity nodes and transit nodes, (ii) assessing the level of pedestrian sidewalk connectivity joining trip origin and destination. The research area coverage in this case is limited to walking distance of the rail station (around 500 meters or 10-15 minutes walking). The findings of this research on the current condition of the street and pedestrian sidewalk network and connectivity, show good preference for the foot modal share (more than 50%) is achieved. Nevertheless, it depends on the distance from the trip origin to destination.Keywords: accessibility of daily mobility, pedestrian-friendly district, rail-station district, transit oriented development
Procedia PDF Downloads 23313692 Prediction of Survival Rate after Gastrointestinal Surgery Based on The New Japanese Association for Acute Medicine (JAAM Score) With Neural Network Classification Method
Authors: Ayu Nabila Kusuma Pradana, Aprinaldi Jasa Mantau, Tomohiko Akahoshi
Abstract:
The incidence of Disseminated intravascular coagulation (DIC) following gastrointestinal surgery has a poor prognosis. Therefore, it is important to determine the factors that can predict the prognosis of DIC. This study will investigate the factors that may influence the outcome of DIC in patients after gastrointestinal surgery. Eighty-one patients were admitted to the intensive care unit after gastrointestinal surgery in Kyushu University Hospital from 2003 to 2021. Acute DIC scores were estimated using the new Japanese Association for Acute Medicine (JAAM) score from before and after surgery from day 1, day 3, and day 7. Acute DIC scores will be compared with The Sequential Organ Failure Assessment (SOFA) score, platelet count, lactate level, and a variety of biochemical parameters. This study applied machine learning algorithms to predict the prognosis of DIC after gastrointestinal surgery. The results of this study are expected to be used as an indicator for evaluating patient prognosis so that it can increase life expectancy and reduce mortality from cases of DIC patients after gastrointestinal surgery.Keywords: the survival rate, gastrointestinal surgery, JAAM score, neural network, machine learning, disseminated intravascular coagulation (DIC)
Procedia PDF Downloads 26013691 Collapse Capacity Assessment of Inelastic Structures under Seismic Sequences
Authors: Shahrzad Mohammadi, Ghasem Boshrouei Sharq
Abstract:
All seismic design codes are based on the determination of the design earthquake without taking into account the effects of aftershocks in the design practice. In regions with a high level of seismicity, the occurrence of several aftershocks of various magnitudes and different time lags is very likely. This research aims to estimate the collapse capacity of a 10-story steel bundled tube moment frame subjected to as-recorded seismic sequences. The studied structure is designed according to the seismic regulations of the fourth revision of the Iranian code of practice for the seismic-resistant design of buildings (Code No.2800). A series of incremental dynamic analyses (IDA) is performed up to the collapse level of the intact structure. Then, in order to demonstrate the effects of aftershock events on the collapse vulnerability of the building, aftershock IDA analyzes are carried out. To gain deeper insight, collapse fragility curves are developed and compared for both series. Also, a study on the influence of various ground motion characteristics on collapse capacity is carried out. The results highlight the importance of considering the decisive effects of aftershocks in seismic codes due to their contribution to the occurrence of collapse.Keywords: IDA, aftershock, bundled tube frame, fragility assessment, GM characteristics, as-recorded seismic sequences
Procedia PDF Downloads 14113690 Health Monitoring of Concrete Assets in Refinery
Authors: Girish M. Bhatia
Abstract:
Most of the important structures in refinery complex are RCC Structures for which in-depth structural monitoring and inspection is required for incessant service. Reinforced concrete structures can be under threat from a combination of insidious challenges due to environmental conditions, including temperature and humidity that lead to accelerated deterioration mechanisms like carbonation, as well as marine exposure, above and below ground structures can experience ingress from aggressive ground waters carrying chlorides and sulphates leading to unexpected deterioration that threaten the integrity of a vital structural asset. By application of health monitoring techniques like corrosion monitoring with help of sensor probes, visual inspection of high rise structures with help of drones, it is possible to establish an early warning at the onset of these destructive processes.Keywords: concrete structures, corrosion sensors, drones, health monitoring
Procedia PDF Downloads 39813689 Carbon Nanofilms on Diamond for All-Carbon Chemical Sensors
Authors: Vivek Kumar, Alexander M. Zaitsev
Abstract:
A study on chemical sensing properties of carbon nanofilms on diamond for developing all-carbon chemical sensors is presented. The films were obtained by high temperature graphitization of diamond followed by successive plasma etchings. Characterization of the films was done by Raman spectroscopy, atomic force microscopy, and electrical measurements. Fast and selective response to common organic vapors as seen as sensitivity of electrical conductance was observed. The phenomenological description of the chemical sensitivity is proposed as a function of the surface and bulk material properties of the films.Keywords: chemical sensor, carbon nanofilm, graphitization of diamond, plasma etching, Raman spectroscopy, atomic force microscopy
Procedia PDF Downloads 44613688 Re-Constructing the Research Design: Dealing with Problems and Re-Establishing the Method in User-Centered Research
Authors: Kerem Rızvanoğlu, Serhat Güney, Emre Kızılkaya, Betül Aydoğan, Ayşegül Boyalı, Onurcan Güden
Abstract:
This study addresses the re-construction and implementation process of the methodological framework developed to evaluate how locative media applications accompany the urban experiences of international students coming to Istanbul with exchange programs in 2022. The research design was built on a three-stage model. The research team conducted a qualitative questionnaire in the first stage to gain exploratory data. These data were then used to form three persona groups representing the sample by applying cluster analysis. In the second phase, a semi-structured digital diary study was carried out on a gamified task list with a sample selected from the persona groups. This stage proved to be the most difficult to obtaining valid data from the participant group. The research team re-evaluated the design of this second phase to reach the participants who will perform the tasks given by the research team while sharing their momentary city experiences, to ensure the daily data flow for two weeks, and to increase the quality of the obtained data. The final stage, which follows to elaborate on the findings, is the “Walk & Talk,” which is completed with face-to-face and in-depth interviews. It has been seen that the multiple methods used in the research process contribute to the depth and data diversity of the research conducted in the context of urban experience and locative technologies. In addition, by adapting the research design to the experiences of the users included in the sample, the differences and similarities between the initial research design and the research applied are shown.Keywords: digital diary study, gamification, multi-model research, persona analysis, research design for urban experience, user-centered research, “Walk & Talk”
Procedia PDF Downloads 17113687 On-Chip Aging Sensor Circuit Based on Phase Locked Loop Circuit
Authors: Ararat Khachatryan, Davit Mirzoyan
Abstract:
In sub micrometer technology, the aging phenomenon starts to have a significant impact on the reliability of integrated circuits by bringing performance degradation. For that reason, it is important to have a capability to evaluate the aging effects accurately. This paper presents an accurate aging measurement approach based on phase-locked loop (PLL) and voltage-controlled oscillator (VCO) circuit. The architecture is rejecting the circuit self-aging effect from the characteristics of PLL, which is generating the frequency without any aging phenomena affects. The aging monitor is implemented in low power 32 nm CMOS technology, and occupies a pretty small area. Aging simulation results show that the proposed aging measurement circuit improves accuracy by about 2.8% at high temperature and 19.6% at high voltage.Keywords: aging effect, HCI, NBTI, nanoscale
Procedia PDF Downloads 35913686 Design of Optimal Proportional Integral Derivative Attitude Controller for an Uncoupled Flexible Satellite Using Particle Swarm Optimization
Authors: Martha C. Orazulume, Jibril D. Jiya
Abstract:
Flexible satellites are equipped with various appendages which vibrate under the influence of any excitation and make the attitude of the satellite to be unstable. Therefore, the system must be able to adjust to balance the effect of these appendages in order to point accurately and satisfactorily which is one of the most important problems in satellite design. Proportional Integral Derivative (PID) Controller is simple to design and computationally efficient to implement which is used to stabilize the effect of these flexible appendages. However, manual turning of the PID is time consuming, waste energy and money. Particle Swarm Optimization (PSO) is used to tune the parameters of PID Controller. Simulation results obtained show that PSO tuned PID Controller is able to re-orient the spacecraft attitude as well as dampen the effect of mechanical resonance and yields better performance when compared with manually tuned PID Controller.Keywords: Attitude Control, Flexible Satellite, Particle Swarm Optimization, PID Controller and Optimization
Procedia PDF Downloads 40113685 Organizational Ideologies and Their Embeddedness in Fashion Show Productions in Shanghai and London Fashion Week: International-Based-Chinese Independent Designers' Participatory Behaviors in Different Fashion Cities
Authors: Zhe Wang
Abstract:
The fashion week, as a critical international fashion event in shaping world fashion cities, is one of the most significant world events that serves as the core medium for designers to stage new collections. However, its role in bringing about and shaping design ideologies of major fashion cities have long been neglected from a fashion ecosystem perspective. With the expanding scale of international fashion weeks in terms of culture and commerce, the organizational structures of these fashion weeks are becoming more complex. In the emerging fashion city, typified by Shanghai, a newly-formed 'hodgepodge' transforming the current global fashion ecosystem. A city’s legitimate fashion institutions, typically the organizers of international fashion weeks, have cultivated various cultural characteristics via rules and regulations pertaining to international fashion weeks. Under these circumstances, designers’ participatory behaviors, specifically show design and production, are influenced by the cultural ideologies of official organizers and institutions. This research compares international based Chinese (IBC) independent designers’ participatory behavior in London and Shanghai Fashion Weeks: specifically, the way designers present their clothing and show production. both of which are found to be profoundly influenced by cultural and design ideologies of fashion weeks. They are, to a large degree, manipulated by domestic institutions and organizers. Shanghai fashion week has given rise to a multiple, mass-ended entertainment carnival design and cultural ideology in Shanghai, thereby impacting the explicit cultural codes or intangible rules that IBC designers must adhere to when designing and producing fashion shows. Therefore, influenced by various cultural characteristics in the two cities, IBC designers’ show design and productions, in turn, play an increasingly vital role in shaping the design characteristic of an international fashion week. Through researching the organizational systems and design preferences of organizers of London and Shanghai fashion weeks, this paper demonstrates the embeddedness of design systems in the forming of design ideologies under various cultural and institutional contexts. The core methodology utilized in this research is ethnography. As a crucial part of a Ph.D. project on innovations in fashion shows under a cross-cultural context run by Edinburgh College of Art, School of Design, the fashion week’s organizational culture in various cultural contexts is investigated in London and Shanghai for approximately six months respectively. Two IBC designers, Angel Chen and Xuzhi Chen were followed during their participation of London and Shanghai Fashion Weeks from September 2016 to June 2017, during which two consecutive seasons were researched in order to verify the consistency of design ideologies’ associations with organizational system and culture.Keywords: institutional ideologies, international fashion weeks, IBC independent designers; fashion show
Procedia PDF Downloads 11813684 Stochastic Control of Decentralized Singularly Perturbed Systems
Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan
Abstract:
Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.Keywords: decentralized, optimal control, output, singular perturb
Procedia PDF Downloads 37013683 Numerical Analysis of Real-Scale Polymer Electrolyte Fuel Cells with Cathode Metal Foam Design
Authors: Jaeseung Lee, Muhammad Faizan Chinannai, Mohamed Hassan Gundu, Hyunchul Ju
Abstract:
In this paper, we numerically investigated the effect of metal foams on a real scale 242.57cm2 (19.1 cm × 12.7 cm) polymer electrolyte membrane fuel cell (PEFCs) using a three-dimensional two-phase PEFC model to substantiate design approach for PEFCs using metal foam as the flow distributor. The simulations were conducted under the practical low humidity hydrogen, and air gases conditions in order to observe the detailed operation result in the PEFCs using the serpentine flow channel in the anode and metal foam design in the cathode. The three-dimensional contours of flow distribution in the channel, current density distribution in the membrane and hydrogen and oxygen concentration distribution are provided. The simulation results revealed that the use of highly porous and permeable metal foam can be beneficial to achieve a more uniform current density distribution and better hydration in the membrane under low inlet humidity conditions. This study offers basic directions to design channel for optimal water management of PEFCs.Keywords: polymer electrolyte fuel cells, metal foam, real-scale, numerical model
Procedia PDF Downloads 24013682 Data Collection Techniques for Robotics to Identify the Facial Expressions of Traumatic Brain Injured Patients
Authors: Chaudhary Muhammad Aqdus Ilyas, Matthias Rehm, Kamal Nasrollahi, Thomas B. Moeslund
Abstract:
This paper presents the investigation of data collection procedures, associated with robots when placed with traumatic brain injured (TBI) patients for rehabilitation purposes through facial expression and mood analysis. Rehabilitation after TBI is very crucial due to nature of injury and variation in recovery time. It is advantageous to analyze these emotional signals in a contactless manner, due to the non-supportive behavior of patients, limited muscle movements and increase in negative emotional expressions. This work aims at the development of framework where robots can recognize TBI emotions through facial expressions to perform rehabilitation tasks by physical, cognitive or interactive activities. The result of these studies shows that with customized data collection strategies, proposed framework identify facial and emotional expressions more accurately that can be utilized in enhancing recovery treatment and social interaction in robotic context.Keywords: computer vision, convolution neural network- long short term memory network (CNN-LSTM), facial expression and mood recognition, multimodal (RGB-thermal) analysis, rehabilitation, robots, traumatic brain injured patients
Procedia PDF Downloads 15513681 Correlation Analysis of Energy Use, Architectural Design and Residential Lifestyle in Japan Smart Community
Authors: Tran Le Na, Didit Novianto, Yoshiaki Ushifusa, Weijun Gao
Abstract:
This paper introduces the characteristics of Japanese residential lifestyle and Japanese Architectural housing design, meanwhile, summarizes the results from an analysis of energy use of 12 households in electric-only multi dwellings in Higashida Smart Community, Kitakyushu, Japan. Using hourly load and daily load data collected from smart meter, we explore correlations of energy use in households according to the incentive of different levels of architectural characteristics and lifestyle, following three factors: Space (Living room, Kitchen, Bedroom, Bathroom), Time (daytime and night time, weekdays and weekend) and User (Elderly, Parents, Kids). The energy consumption reports demonstrated that the essential demand of household’s response to variable factors. From that exploratory analysis, we can define the role of housing equipment layout and spatial layout in residential housing design. Likewise, determining preferred spaces and time use can help to optimize energy consumption in households. This paper contributes to the application of Smart Home Energy Management System in Smart Community in Japan and provides a good experience to other countries.Keywords: smart community, energy efficiency, architectural housing design, residential lifestyle
Procedia PDF Downloads 20413680 Deep Neural Networks for Restoration of Sky Images Affected by Static and Anisotropic Aberrations
Authors: Constanza A. Barriga, Rafael Bernardi, Amokrane Berdja, Christian D. Guzman
Abstract:
Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariable in the image plane. However, this latter condition is not always satisfied with real optical systems. PSF angular variations cannot be evaluated directly from the observations, neither be corrected at a pixel resolution. We have developed a method for the restoration of images affected by static and anisotropic aberrations using deep neural networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T-80 telescope optical system, an 80 cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image, which has a constant and known PSF across its field-of-view. The method was tested with the T-80 telescope, achieving better results than with PSF deconvolution techniques. We present the method and results on this telescope.Keywords: aberrations, deep neural networks, image restoration, variable point spread function, wide field images
Procedia PDF Downloads 13413679 Developing a Mathematical Model for Trade-Off Analysis of New Green Products
Authors: M. R. Gholizadeh, N. Bhuiyan, M. Salari
Abstract:
In the near future, companies will be increasingly forced to shift their activities along a new road in order to decrease the harmful effects of their design, production and after-life on our environment. Products must meet environmental standards to not only prevent penalties but to consider the sustainability for future generations. However, the most important factor that companies will face is selecting a reasonable strategy to maximize their profit. Thus, companies need to have precise forecast from their profit after design stage through Trade-off analysis. This paper is an attempt to introduce a mathematical model that considers effective factors that impact the total profit when products are designed for resource and energy efficiency or recyclability. The modification is according to different strategies based on a Cost-Volume-Profit model. Here, the cost structure consists of Recycling cost, Development cost, Ramp-up cost, Production cost, and Pollution cost. Also, the model shows the effect of implementation of design for recyclable on revenue structure through revenue of used parts and revenue of recycled materials. A numerical example is used to evaluate the proposed model. Results show that fulfillment of Green Product Development not only can reduce the environmental impact of products but also it will increase profit of company in long term.Keywords: green product, design for environment, C-V-P model, trade-off analysis
Procedia PDF Downloads 31613678 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks
Authors: Wang Yichen, Haruka Yamashita
Abstract:
In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.Keywords: recurrent neural network, players lineup, basketball data, decision making model
Procedia PDF Downloads 13313677 Approach to Functional Safety-Compliant Design of Electric Power Steering Systems for Commercial Vehicles
Authors: Hyun Chul Koag, Hyun-Sik Ahn
Abstract:
In this paper, we propose a design approach for the safety mechanism of an actuator used in a commercial vehicle’s EPS system. As the number of electric/electronic system in a vehicle increases, the importance of the functional safety has been receiving much attention. EPS(Electric Power Steering) systems for commercial vehicles require large power than passenger vehicles, and hence, dual motor can be applied to get more torque. We show how to formulate the development process for the design of hardware and software of an EPS system using dual motors. A lot of safety mechanisms for the processor, sensors, and memory have been suggested, however, those for actuators have not been fully researched. It is shown by metric analyses that the target ASIL(Automotive Safety Integrated Level) is satisfied in the point of view of hardware of EPS controller.Keywords: safety mechanism, functional safety, commercial vehicles, electric power steering
Procedia PDF Downloads 39313676 Durability Analysis of a Knuckle Arm Using VPG System
Authors: Geun-Yeon Kim, S. P. Praveen Kumar, Kwon-Hee Lee
Abstract:
A steering knuckle arm is the component that connects the steering system and suspension system. The structural performances such as stiffness, strength, and durability are considered in its design process. The former study suggested the lightweight design of a knuckle arm considering the structural performances and using the metamodel-based optimization. The six shape design variables were defined, and the optimum design was calculated by applying the kriging interpolation method. The finite element method was utilized to predict the structural responses. The suggested knuckle was made of the aluminum Al6082, and its weight was reduced about 60% in comparison with the base steel knuckle, satisfying the design requirements. Then, we investigated its manufacturability by performing foraging analysis. The forging was done as hot process, and the product was made through two-step forging. As a final step of its developing process, the durability is investigated by using the flexible dynamic analysis software, LS-DYNA and the pre and post processor, eta/VPG. Generally, a car make does not provide all the information with the part manufacturer. Thus, the part manufacturer has a limit in predicting the durability performance with the unit of full car. The eta/VPG has the libraries of suspension, tire, and road, which are commonly used parts. That makes a full car modeling. First, the full car is modeled by referencing the following information; Overall Length: 3,595mm, Overall Width: 1,595mm, CVW (Curve Vehicle Weight): 910kg, Front Suspension: MacPherson Strut, Rear Suspension: Torsion Beam Axle, Tire: 235/65R17. Second, the road is selected as the cobblestone. The road condition of the cobblestone is almost 10 times more severe than that of usual paved road. Third, the dynamic finite element analysis using the LS-DYNA is performed to predict the durability performance of the suggested knuckle arm. The life of the suggested knuckle arm is calculated as 350,000km, which satisfies the design requirement set up by the part manufacturer. In this study, the overall design process of a knuckle arm is suggested, and it can be seen that the developed knuckle arm satisfies the design requirement of the durability with the unit of full car. The VPG analysis is successfully performed even though it does not an exact prediction since the full car model is very rough one. Thus, this approach can be used effectively when the detail to full car is not given.Keywords: knuckle arm, structural optimization, Metamodel, forging, durability, VPG (Virtual Proving Ground)
Procedia PDF Downloads 41913675 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material
Authors: S. Boria
Abstract:
In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.Keywords: composite material, crashworthiness, finite element analysis, optimization
Procedia PDF Downloads 25613674 Layout Design Optimization of Spars under Multiple Load Cases of the High-Aspect-Ratio Wing
Authors: Yu Li, Jingwu He, Yuexi Xiong
Abstract:
The spar layout will affect the wing’s stiffness characteristics, and irrational spar arrangement will reduce the overall bending and twisting resistance capacity of the wing. In this paper, the active structural stiffness design theory is used to match the stiffness-center axis position and load-cases under the corresponding multiple flight conditions, in order to achieve better stiffness properties of the wing. The combination of active stiffness method and principle of stiffness distribution is proved to be reasonable supplying an initial reference for wing designing. The optimized layout of spars is eventually obtained, and the high-aspect-ratio wing will have better stiffness characteristics.Keywords: active structural stiffness design theory, high-aspect-ratio wing, flight load cases, layout of spars
Procedia PDF Downloads 32213673 Design and Burnback Analysis of Three Dimensional Modified Star Grain
Authors: Almostafa Abdelaziz, Liang Guozhu, Anwer Elsayed
Abstract:
The determination of grain geometry is an important and critical step in the design of solid propellant rocket motor. In this study, the design process involved parametric geometry modeling in CAD, MATLAB coding of performance prediction and 2D star grain ignition experiment. The 2D star grain burnback achieved by creating new surface via each web increment and calculating geometrical properties at each step. The 2D star grain is further modified to burn as a tapered 3D star grain. Zero dimensional method used to calculate the internal ballistic performance. Experimental and theoretical results were compared in order to validate the performance prediction of the solid rocket motor. The results show that the usage of 3D grain geometry will decrease the pressure inside the combustion chamber and enhance the volumetric loading ratio.Keywords: burnback analysis, rocket motor, star grain, three dimensional grains
Procedia PDF Downloads 24513672 Sustainability of Telecom Operators Orange-CI, MTN-CI, and MOOV Africa in Cote D’Ivoire
Authors: Odile Amoncou, Djedje-Kossu Zahui
Abstract:
The increased demand for digital communications during the COVID-19 pandemic has seen an unprecedented surge in new telecom infrastructure around the world. The expansion has been more remarkable in countries with developing telecom infrastructures. Particularly, the three telecom operators in Cote d’Ivoire, Orange CI, MTN CI, and MOOV Africa, have considerably scaled up their exploitation technologies and capacities in terms of towers, fiber optic installation, and customer service hubs. The trend will likely continue upward while expanding the carbon footprint of the Ivorian telecom operators. Therefore, the corporate social and environmental responsibilities of these telecommunication companies can no longer be overlooked. This paper assesses the sustainability of the three Ivorian telecommunication network operators by applying a combination of commonly used sustainability management indexes. These tools are streamlined and adapted to the relatively young and developing digital network of Cote D’Ivoire. We trust that this article will push the respective CEOs to make sustainability a top strategic priority and understand the substantial potential returns in terms of saving, new products, and new clients while improving their corporate image. In addition, good sustainability management can increase their stakeholders.Keywords: sustainability of telecom operators, sustainability management index, carbon footprint, digital communications
Procedia PDF Downloads 8813671 Modeling and Simulation Methods Using MATLAB/Simulink
Authors: Jamuna Konda, Umamaheswara Reddy Karumuri, Sriramya Muthugi, Varun Pishati, Ravi Shakya,
Abstract:
This paper investigates the challenges involved in mathematical modeling of plant simulation models ensuring the performance of the plant models much closer to the real time physical model. The paper includes the analysis performed and investigation on different methods of modeling, design and development for plant model. Issues which impact the design time, model accuracy as real time model, tool dependence are analyzed. The real time hardware plant would be a combination of multiple physical models. It is more challenging to test the complete system with all possible test scenarios. There are possibilities of failure or damage of the system due to any unwanted test execution on real time.Keywords: model based design (MBD), MATLAB, Simulink, stateflow, plant model, real time model, real-time workshop (RTW), target language compiler (TLC)
Procedia PDF Downloads 34313670 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction
Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan
Abstract:
Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.Keywords: decision trees, neural network, myocardial infarction, Data Mining
Procedia PDF Downloads 42913669 Investigation of Optical Requirements for Power System Assets Monitoring with Unmanned Aerial Vehicles
Authors: Ioana Pisica, Dimitrios Gkritzapis
Abstract:
The significance of UAS in scientific applications has been amply demonstrated in recent years. The combinations of portability and quasi-static positioning by means of flying in close loop path make them versatile and efficient in the inspection of power systems infrastructure. In this paper, we critically assess several platforms and sensor capabilities to identify their pros and cons in relation to the power systems assets to be monitored. In this respect, it is paramount the flights to be conducted by using UAS which bear certain suitable features, such as responsive and easy control, video capturing in real time, autonomous routing of pre-planned flight programming with differentiating payloads. The outcome of this research is a set of optimal requirements for power system assets monitoring with UAS.Keywords: platforms, power system, sensors, UAVs
Procedia PDF Downloads 28513668 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models
Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan
Abstract:
Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network
Procedia PDF Downloads 2813667 The Transformation of Architecture through the Technological Developments in History: Future Architecture Scenario
Authors: Adel Gurel, Ozge Ceylin Yildirim
Abstract:
Nowadays, design and architecture are being affected and underwent change with the rapid advancements in technology, economics, politics, society and culture. Architecture has been transforming with the latest developments after the inclusion of computers into design. Integration of design into the computational environment has revolutionized the architecture and new perspectives in architecture have been gained. The history of architecture shows the various technological developments and changes in which the architecture has transformed with time. Therefore, the analysis of integration between technology and the history of the architectural process makes it possible to build a consensus on the idea of how architecture is to proceed. In this study, each period that occurs with the integration of technology into architecture is addressed within historical process. At the same time, changes in architecture via technology are identified as important milestones and predictions with regards to the future of architecture have been determined. Developments and changes in technology and the use of technology in architecture within years are analyzed in charts and graphs comparatively. The historical process of architecture and its transformation via technology are supported with detailed literature review and they are consolidated with the examination of focal points of 20th-century architecture under the titles; parametric design, genetic architecture, simulation, and biomimicry. It is concluded that with the historical research between past and present; the developments in architecture cannot keep up with the advancements in technology and recent developments in technology overshadow the architecture, even the technology decides the direction of architecture. As a result, a scenario is presented with regards to the reach of technology in the future of architecture and the role of the architect.Keywords: computer technologies, future architecture, scientific developments, transformation
Procedia PDF Downloads 191