Search results for: linear motor motion stage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8564

Search results for: linear motor motion stage

4874 Vibration Behavior of Nanoparticle Delivery in a Single-Walled Carbon Nanotube Using Nonlocal Timoshenko Beam Theory

Authors: Haw-Long Lee, Win-Jin Chang, Yu-Ching Yang

Abstract:

In the paper, the coupled equation of motion for the dynamic displacement of a fullerene moving in a (10,10) single-walled carbon nanotube (SWCNT) is derived using nonlocal Timoshenko beam theory, including the effects of rotary inertia and shear deformation. The effects of confined stiffness between the fullerene and nanotube, foundation stiffness, and nonlocal parameter on the dynamic behavior are analyzed using the Runge-Kutta Method. The numerical solution is in agreement with the analytical result for the special case. The numerical results show that increasing the confined stiffness and foundation stiffness decrease the dynamic displacement of SWCNT. However, the dynamic displacement increases with increasing the nonlocal parameter. In addition, result using the Euler beam theory and the Timoshenko beam theory are compared. It can be found that ignoring the effects of rotary inertia and shear deformation leads to an underestimation of the displacement.

Keywords: single-walled carbon nanotube, nanoparticle delivery, Nonlocal Timoshenko beam theory, Runge-Kutta Method, Van der Waals force

Procedia PDF Downloads 377
4873 Digital Memory in Motion: (Re) Creating and (Re) Posting of “Gaja-gamini walk” Reels as a Collective Feminist Practices on Instagram

Authors: Gazal Khan

Abstract:

This paper investigates the phenomenon of (re) creating and (re) posting of what is popularly known as "gaja-gamini walk" on instagram as a form of digital feminism, examining how these reels (short videos) make meaning in digital spaces. The study analyzes xyz “gaja- gamini walk” reels created by Indian influencers and instagram users, employing qualitative textual analysis, close readings, and digital ethnography to analyze the interplay between media, memory and digital spaces. The research highlights how “gaja-gamini walk” reels, characterized by an assertive presentation, redefines female body aesthetics, re (orients) sexual gaze to provide layered, interwoven and contested narratives. These reels facilitate a unique form of engagement by allowing users to re-share and participate in feminist discourse and allowing reels to function as sites of memory. The paper also discusses the social dynamics of these reels, their intertextuality with cultural narratives, and the limitations of the format for sustained feminist action. Through this analysis, the paper contributes to understanding the role of digital memory in contemporary feminist movements in context of Indian feminism.

Keywords: instagram, gaja-gamni walk, female gaze, digital feminism

Procedia PDF Downloads 33
4872 Time Effective Structural Frequency Response Testing with Oblique Impact

Authors: Khoo Shin Yee, Lian Yee Cheng, Ong Zhi Chao, Zubaidah Ismail, Siamak Noroozi

Abstract:

Structural frequency response testing is accurate in identifying the dynamic characteristic of a machinery structure. In practical perspective, conventional structural frequency response testing such as experimental modal analysis with impulse technique (also known as “impulse testing”) has limitation especially on its long acquisition time. The high acquisition time is mainly due to the redundancy procedure where the engineer has to repeatedly perform the test in 3 directions, namely the axial-, horizontal- and vertical-axis, in order to comprehensively define the dynamic behavior of a 3D structure. This is unfavorable to numerous industries where the downtime cost is high. This study proposes to reduce the testing time by using oblique impact. Theoretically, a single oblique impact can induce significant vibration responses and vibration modes in all the 3 directions. Hence, the acquisition time with the implementation of the oblique impulse technique can be reduced by a factor of three (i.e. for a 3D dynamic system). This study initiates an experimental investigation of impulse testing with oblique excitation. A motor-driven test rig has been used for the testing purpose. Its dynamic characteristic has been identified using the impulse testing with the conventional normal impact and the proposed oblique impact respectively. The results show that the proposed oblique impulse testing is able to obtain all the desired natural frequencies in all 3 directions and thus providing a feasible solution for a fast and time effective way of conducting the impulse testing.

Keywords: frequency response function, impact testing, modal analysis, oblique angle, oblique impact

Procedia PDF Downloads 501
4871 A Quadratic Model to Early Predict the Blastocyst Stage with a Time Lapse Incubator

Authors: Cecile Edel, Sandrine Giscard D'Estaing, Elsa Labrune, Jacqueline Lornage, Mehdi Benchaib

Abstract:

Introduction: The use of incubator equipped with time-lapse technology in Artificial Reproductive Technology (ART) allows a continuous surveillance. With morphocinetic parameters, algorithms are available to predict the potential outcome of an embryo. However, the different proposed time-lapse algorithms do not take account the missing data, and then some embryos could not be classified. The aim of this work is to construct a predictive model even in the case of missing data. Materials and methods: Patients: A retrospective study was performed, in biology laboratory of reproduction at the hospital ‘Femme Mère Enfant’ (Lyon, France) between 1 May 2013 and 30 April 2015. Embryos (n= 557) obtained from couples (n=108) were cultured in a time-lapse incubator (Embryoscope®, Vitrolife, Goteborg, Sweden). Time-lapse incubator: The morphocinetic parameters obtained during the three first days of embryo life were used to build the predictive model. Predictive model: A quadratic regression was performed between the number of cells and time. N = a. T² + b. T + c. N: number of cells at T time (T in hours). The regression coefficients were calculated with Excel software (Microsoft, Redmond, WA, USA), a program with Visual Basic for Application (VBA) (Microsoft) was written for this purpose. The quadratic equation was used to find a value that allows to predict the blastocyst formation: the synthetize value. The area under the curve (AUC) obtained from the ROC curve was used to appreciate the performance of the regression coefficients and the synthetize value. A cut-off value has been calculated for each regression coefficient and for the synthetize value to obtain two groups where the difference of blastocyst formation rate according to the cut-off values was maximal. The data were analyzed with SPSS (IBM, Il, Chicago, USA). Results: Among the 557 embryos, 79.7% had reached the blastocyst stage. The synthetize value corresponds to the value calculated with time value equal to 99, the highest AUC was then obtained. The AUC for regression coefficient ‘a’ was 0.648 (p < 0.001), 0.363 (p < 0.001) for the regression coefficient ‘b’, 0.633 (p < 0.001) for the regression coefficient ‘c’, and 0.659 (p < 0.001) for the synthetize value. The results are presented as follow: blastocyst formation rate under cut-off value versus blastocyst rate formation above cut-off value. For the regression coefficient ‘a’ the optimum cut-off value was -1.14.10-3 (61.3% versus 84.3%, p < 0.001), 0.26 for the regression coefficient ‘b’ (83.9% versus 63.1%, p < 0.001), -4.4 for the regression coefficient ‘c’ (62.2% versus 83.1%, p < 0.001) and 8.89 for the synthetize value (58.6% versus 85.0%, p < 0.001). Conclusion: This quadratic regression allows to predict the outcome of an embryo even in case of missing data. Three regression coefficients and a synthetize value could represent the identity card of an embryo. ‘a’ regression coefficient represents the acceleration of cells division, ‘b’ regression coefficient represents the speed of cell division. We could hypothesize that ‘c’ regression coefficient could represent the intrinsic potential of an embryo. This intrinsic potential could be dependent from oocyte originating the embryo. These hypotheses should be confirmed by studies analyzing relationship between regression coefficients and ART parameters.

Keywords: ART procedure, blastocyst formation, time-lapse incubator, quadratic model

Procedia PDF Downloads 306
4870 Time Optimal Control Mode Switching between Detumbling and Pointing in the Early Orbit Phase

Authors: W. M. Ng, O. B. Iskender, L. Simonini, J. M. Gonzalez

Abstract:

A multitude of factors, including mechanical imperfections of the deployment system and separation instance of satellites from launchers, oftentimes results in highly uncontrolled initial tumbling motion immediately after deployment. In particular, small satellites which are characteristically launched as a piggyback to a large rocket, are generally allocated a large time window to complete detumbling within the early orbit phase. Because of the saturation risk of the actuators, current algorithms are conservative to avoid draining excessive power in the detumbling phase. This work aims to enable time-optimal switching of control modes during the early phase, reducing the time required to transit from launch to sun-pointing mode for power budget conscious satellites. This assumes the usage of B-dot controller for detumbling and PD controller for pointing. Nonlinear Euler's rotation equations are used to represent the attitude dynamics of satellites and Commercial-off-the-shelf (COTS) reaction wheels and magnetorquers are used to perform the manoeuver. Simulation results will be based on a spacecraft attitude simulator and the use case will be for multiple orbits of launch deployment general to Low Earth Orbit (LEO) satellites.

Keywords: attitude control, detumbling, small satellites, spacecraft autonomy, time optimal control

Procedia PDF Downloads 117
4869 Induction Heating and Electromagnetic Stirring of Bi-Phasic Metal/Glass Molten Bath for Mixed Nuclear Waste Treatment

Authors: P. Charvin, R. Bourrou, F. Lemont, C. Lafon, A. Russello

Abstract:

For nuclear waste treatment and confinement, a specific IN-CAN melting module based on low-frequency induction heating have been designed. The frequency of 50Hz has been chosen to improve penetration length through metal. In this design, the liquid metal, strongly stirred by electromagnetic effects, presents shape of a dome caused by strong Laplace forces developing in the bulk of bath. Because of a lower density, the glass phase is located above the metal phase and is heated and stirred by metal through interface. Electric parameters (Intensity, frequency) give precious information about metal load and composition (resistivity of alloy) through impedance modification. Then, power supply can be adapted to energy transfer efficiency for suitable process supervision. Modeling of this system allows prediction of metal dome shape (in agreement with experimental measurement with a specific device), glass and metal velocity, heat and motion transfer through interface. MHD modeling is achieved with COMSOL and Fluent. First, a simplified model is used to obtain the shape of the metal dome. Then the shape is fixed to calculate the fluid flow and the thermal part.

Keywords: electromagnetic stirring, induction heating, interface modeling, metal load

Procedia PDF Downloads 267
4868 Real-Time Classification of Marbles with Decision-Tree Method

Authors: K. S. Parlak, E. Turan

Abstract:

The separation of marbles according to the pattern quality is a process made according to expert decision. The classification phase is the most critical part in terms of economic value. In this study, a self-learning system is proposed which performs the classification of marbles quickly and with high success. This system performs ten feature extraction by taking ten marble images from the camera. The marbles are classified by decision tree method using the obtained properties. The user forms the training set by training the system at the marble classification stage. The system evolves itself in every marble image that is classified. The aim of the proposed system is to minimize the error caused by the person performing the classification and achieve it quickly.

Keywords: decision tree, feature extraction, k-means clustering, marble classification

Procedia PDF Downloads 382
4867 An Empirical Dynamic Fuel Cell Model Used for Power System Verification in Aerospace

Authors: Giuliano Raimondo, Jörg Wangemann, Peer Drechsel

Abstract:

In systems development involving Fuel Cells generators, it is important to have from an early stage of the project a dynamic model for the electrical behavior of the stack to be shared between involved development parties. It allows independent and early design and tests of fuel cell related power electronic. This paper presents an empirical Fuel Cell system model derived from characterization tests on a real system. Moreover, it is illustrated how the obtained model is used to build and validate a real-time Fuel Cell system emulator which is used for aerospace electrical integration testing activities.

Keywords: fuel cell, modelling, real time emulation, testing

Procedia PDF Downloads 336
4866 Smartphone Addiction and Reaction Time in Geriatric Population

Authors: Anjali N. Shete, G. D. Mahajan, Nanda Somwanshi

Abstract:

Context: Smartphones are the new generation of mobile phones; they have emerged over the last few years. Technology has developed so much that it has become part of our life and mobile phones are one of them. These smartphones are equipped with the capabilities to display photos, play games, watch videos and navigation, etc. The advances have a huge impact on many walks of life. The adoption of new technology has been challenging for the elderly. But, the elder population is also moving towards digitally connected lives. As age advances, there is a decline in the motor and cognitive functions of the brain, and hence the reaction time is affected. The study was undertaken to assess the usefulness of smartphones in improving cognitive functions. Aims and Objectives: The aim of the study was to observe the effects of smartphone addiction on reaction time in elderly population Material and Methods: This is an experimental study. 100 elderly subjects were enrolled in this study randomly from urban areas. They all were using smartphones for several hours a day. They were divided into two groups according to the scores of the mobile phone addiction scale (MPAS). Simple reaction time was estimated by the Ruler drop method. The reaction time was then calculated for each subject in both groups. The data were analyzed using mean, standard deviation, and Pearson correlation test. Results: The mean reaction time in Group A is 0.27+ 0.040 and in Group B is 0.20 + 0.032. The values show a statistically significant change in reaction time. Conclusion: Group A with a high MPAS score has a low reaction time compared to Group B with a low MPAS score. Hence, it can be concluded that the use of smartphones in the elderly is useful, delaying the neurological decline, and smarten the brain.

Keywords: smartphones, MPAS, reaction time, elderly population

Procedia PDF Downloads 177
4865 Microseismicity of the Tehran Region Based on Three Seismic Networks

Authors: Jamileh Vasheghani Farahani

Abstract:

The main purpose of this research is to show the current active faults and active tectonic of the area by three seismic networks in Tehran region: 1-Tehran Disaster Mitigation and Management Organization (TDMMO), 2-Broadband Iranian National Seismic Network Center (BIN), 3-Iranian Seismological Center (IRSC). In this study, we analyzed microearthquakes happened in Tehran city and its surroundings using the Tehran networks from 1996 to 2015. We found some active faults and trends in the region. There is a 200-year history of historical earthquakes in Tehran. Historical and instrumental seismicity show that the east of Tehran is more active than the west. The Mosha fault in the North of Tehran is one of the active faults of the central Alborz. Moreover, other major faults in the region are Kahrizak, Eyvanakey, Parchin and North Tehran faults. An important seismicity region is an intersection of the Mosha and North Tehran fault systems (Kalan village in Lavasan). This region shows a cluster of microearthquakes. According to the historical and microseismic events analyzed in this research, there is a seismic gap in SE of Tehran. The empirical relationship is used to assess the Mmax based on the rupture length. There is a probability of occurrence of a strong motion of 7.0 to 7.5 magnitudes in the region (based on the assessed capability of the major faults such as Parchin and Eyvanekey faults and historical earthquakes).

Keywords: Iran, major faults, microseismicity, Tehran

Procedia PDF Downloads 365
4864 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images

Authors: Firas Gerges, Frank Y. Shih

Abstract:

Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.

Keywords: deep learning, skin cancer, image processing, melanoma

Procedia PDF Downloads 148
4863 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards

Authors: Golnush Masghati-Amoli, Paul Chin

Abstract:

Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.

Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering

Procedia PDF Downloads 134
4862 Analysing the Cost of Immigrants to the National Health System in Eastern Macedonia and Thrace

Authors: T. Theodosiou, P. Polychronidou, A. G. Karasavvoglou

Abstract:

The latest years the number of immigrants at Greece has increased dramatically. Their impact on the National Health System (NHS) has not been yet thoroughly investigated. This paper analyses the cost of immigrants to the NHS hospitals of the region of Eastern Macedonia and Thrace. The data are collected from 2005 to 2011 from five different hospitals and are analysed using linear mixed effects models in order to investigate the effects of nationality and year on the cost of hospitalization and treatment. The results show that generally the Greek nationality patients have a higher mean cost of hospitalization compared to the immigrants and that there is an increasing trend for the cost except for the year 2010.

Keywords: cost, Eastern Macedonia and Thrace, immigrants, national health system

Procedia PDF Downloads 245
4861 Speeding-up Gray-Scale FIC by Moments

Authors: Eman A. Al-Hilo, Hawraa H. Al-Waelly

Abstract:

In this work, fractal compression (FIC) technique is introduced based on using moment features to block indexing the zero-mean range-domain blocks. The moment features have been used to speed up the IFS-matching stage. Its moments ratio descriptor is used to filter the domain blocks and keep only the blocks that are suitable to be IFS matched with tested range block. The results of tests conducted on Lena picture and Cat picture (256 pixels, resolution 24 bits/pixel) image showed a minimum encoding time (0.89 sec for Lena image and 0.78 of Cat image) with appropriate PSNR (30.01dB for Lena image and 29.8 of Cat image). The reduction in ET is about 12% for Lena and 67% for Cat image.

Keywords: fractal gray level image, fractal compression technique, iterated function system, moments feature, zero-mean range-domain block

Procedia PDF Downloads 492
4860 Real Estate Trend Prediction with Artificial Intelligence Techniques

Authors: Sophia Liang Zhou

Abstract:

For investors, businesses, consumers, and governments, an accurate assessment of future housing prices is crucial to critical decisions in resource allocation, policy formation, and investment strategies. Previous studies are contradictory about macroeconomic determinants of housing price and largely focused on one or two areas using point prediction. This study aims to develop data-driven models to accurately predict future housing market trends in different markets. This work studied five different metropolitan areas representing different market trends and compared three-time lagging situations: no lag, 6-month lag, and 12-month lag. Linear regression (LR), random forest (RF), and artificial neural network (ANN) were employed to model the real estate price using datasets with S&P/Case-Shiller home price index and 12 demographic and macroeconomic features, such as gross domestic product (GDP), resident population, personal income, etc. in five metropolitan areas: Boston, Dallas, New York, Chicago, and San Francisco. The data from March 2005 to December 2018 were collected from the Federal Reserve Bank, FBI, and Freddie Mac. In the original data, some factors are monthly, some quarterly, and some yearly. Thus, two methods to compensate missing values, backfill or interpolation, were compared. The models were evaluated by accuracy, mean absolute error, and root mean square error. The LR and ANN models outperformed the RF model due to RF’s inherent limitations. Both ANN and LR methods generated predictive models with high accuracy ( > 95%). It was found that personal income, GDP, population, and measures of debt consistently appeared as the most important factors. It also showed that technique to compensate missing values in the dataset and implementation of time lag can have a significant influence on the model performance and require further investigation. The best performing models varied for each area, but the backfilled 12-month lag LR models and the interpolated no lag ANN models showed the best stable performance overall, with accuracies > 95% for each city. This study reveals the influence of input variables in different markets. It also provides evidence to support future studies to identify the optimal time lag and data imputing methods for establishing accurate predictive models.

Keywords: linear regression, random forest, artificial neural network, real estate price prediction

Procedia PDF Downloads 103
4859 Guillain Barre Syndrome in Children

Authors: A. Erragh, K. Amanzoui, M. Elharit, H. Salem, M. Ababneh, K. Elfakhr, S. Kalouch, A. Chlilek

Abstract:

Guillain-Barre syndrome (GBS) is the most common form of acute polyradiculoneuritis (PRNA). It is a medical emergency in pediatrics that requires rapid diagnosis and immediate assessment of the severity criteria for the implementation of appropriate treatment. Retrospective, descriptive study in 24 patients under the age of 18 who presented with GBS between September 2017 and July 2021 and were hospitalized in the multipurpose pediatric intensive care unit of the Abderrahim EL Harouchi children's hospital in Casablanca. The average age was 7.91 years, with extremes ranging from 18 months and 14 years and a male predominance of 75%. After a prodromal event, most often infectious (80%) and a free interval of 12 days on average, 2 types of motor disorders begin either hypo or arereflectic flaccid paralysis of the lower limbs (45.8%) or flaccid quadriplegia hypo or arereflectic (54.2%). During GBS, the most formidable complication is respiratory distress, which can occur at any time. In our study, respiratory impairment was observed in 70.8% of cases. In addition, other signs of severity, such as swallowing disorders (75%) and dysautonomic disorders (8.33%), were also observed, which justified care in the intensive care unit for all of our patients. The use of invasive ventilation was necessary in 76.5% of cases, and specific treatments based on immunoglobulins were administered in all our patients. Despite everything, the death rate remains high (25%) and is mainly due to complications related to hospitalization. Guillain Barré syndrome is, therefore, a pediatric emergency that requires rapid diagnosis and immediate assessment of severity criteria for the implementation of appropriate treatment.

Keywords: guillain barre syndrome, emergency, children, medical

Procedia PDF Downloads 71
4858 Energy Deposited by Secondary Electrons Generated by Swift Proton Beams through Polymethylmethacrylate

Authors: Maurizio Dapor, Isabel Abril, Pablo de Vera, Rafael Garcia-Molina

Abstract:

The ionization yield of ion tracks in polymers and bio-molecular systems reaches a maximum, known as the Bragg peak, close to the end of the ion trajectories. Along the path of the ions through the materials, many electrons are generated, which produce a cascade of further ionizations and, consequently, a shower of secondary electrons. Among these, very low energy secondary electrons can produce damage in the biomolecules by dissociative electron attachment. This work deals with the calculation of the energy distribution of electrons produced by protons in a sample of polymethylmethacrylate (PMMA), a material that is used as a phantom for living tissues in hadron therapy. PMMA is also of relevance for microelectronics in CMOS technologies and as a photoresist mask in electron beam lithography. We present a Monte Carlo code that, starting from a realistic description of the energy distribution of the electrons ejected by protons moving through PMMA, simulates the entire cascade of generated secondary electrons. By following in detail the motion of all these electrons, we find the radial distribution of the energy that they deposit in PMMA for several initial proton energies characteristic of the Bragg peak.

Keywords: Monte Carlo method, secondary electrons, energetic ions, ion-beam cancer therapy, ionization cross section, polymethylmethacrylate, proton beams, secondary electrons, radial energy distribution

Procedia PDF Downloads 286
4857 The Determinants of Financing to Deposit Ratio of Islamic Bank in Malaysia

Authors: Achsania Hendratmi, Puji Sucia Sukmaningrum, Fatin Fadhilah Hasib, Nisful Laila

Abstract:

The research aimed to know the influence of Capital Adequacy Ratio (CAR), Return on Assets (ROA) and Size of the Financing to Deposit Ratio (FDR) Islamic Banks in Malaysia by using eleven Islamic Banks in Indonesia and fifteen Islamic Banks in Malaysia in the period 2012 to 2016 as samples. The research used a quantitative approach method, and the analysis technique used multiple linear regression. Based on the result of t-test (partial), CAR, ROA and size significantly affect of FDR. While the results of f-test (simultaneous) showed that CAR, ROA and Size significant effect on FDR.

Keywords: capital adequacy ratio, financing to deposit ratio, return on assets, size

Procedia PDF Downloads 339
4856 Micromechanism of Ionization Effects on Metal/Gas Mixing Instabilty at Extreme Shock Compressing Conditions

Authors: Shenghong Huang, Weirong Wang, Xisheng Luo, Xinzhu Li, Xinwen Zhao

Abstract:

Understanding of material mixing induced by Richtmyer-Meshkov instability (RMI) at extreme shock compressing conditions (high energy density environment: P >> 100GPa, T >> 10000k) is of great significance in engineering and science, such as inertial confinement fusion(ICF), supersonic combustion, etc. Turbulent mixing induced by RMI is a kind of complex fluid dynamics, which is closely related with hydrodynamic conditions, thermodynamic states, material physical properties such as compressibility, strength, surface tension and viscosity, etc. as well as initial perturbation on interface. For phenomena in ordinary thermodynamic conditions (low energy density environment), many investigations have been conducted and many progresses have been reported, while for mixing in extreme thermodynamic conditions, the evolution may be very different due to ionization as well as large difference of material physical properties, which is full of scientific problems and academic interests. In this investigation, the first principle based molecular dynamic method is applied to study metal Lithium and gas Hydrogen (Li-H2) interface mixing in micro/meso scale regime at different shock compressing loading speed ranging from 3 km/s to 30 km/s. It's found that, 1) Different from low-speed shock compressing cases, in high-speed shock compresing (>9km/s) cases, a strong acceleration of metal/gas interface after strong shock compression is observed numerically, leading to a strong phase inverse and spike growing with a relative larger linear rate. And more specially, the spike growing rate is observed to be increased with shock loading speed, presenting large discrepancy with available empirical RMI models; 2) Ionization is happened in shock font zone at high-speed loading cases(>9km/s). An additional local electric field induced by the inhomogeneous diffusion of electrons and nuclei after shock font is observed to occur near the metal/gas interface, leading to a large acceleration of nuclei in this zone; 3) In conclusion, the work of additional electric field contributes to a mechanism of RMI in micro/meso scale regime at extreme shock compressing conditions, i.e., a Rayleigh-Taylor instability(RTI) is induced by additional electric field during RMI mixing process and thus a larger linear growing rate of interface spike.

Keywords: ionization, micro/meso scale, material mixing, shock

Procedia PDF Downloads 227
4855 Application of the Extended Kantorovich Method to Size-Dependent Vibrational Analysis of Fully Clamped Rectangular Micro-Plates

Authors: Amir R. Askari, Masoud Tahani

Abstract:

The objective of the present paper is to investigate the effect of size on the vibrational behavior of fully clamped rectangular micro-plates based on the modified couple stress theory (MCST). To this end, a size-dependent Kirchhoff plate model is considered and the equation of motion which accounts for the effect of residual and couple stress components is derived using the Hamilton's principle. The eigenvalue problem associated with the free vibrations of fully clamped micro-plates is extracted and solved analytically using the extended Kantorovich method (EKM). The present findings are compared and validated by available results in the literature and an excellent agreement between them is observed. A parametric study is also conducted to show the significant effects of couple stress components on natural frequencies of fully clamped micro-plates. It is found that the ratio of MCST natural frequencies to those obtained by the classical theory (CT) only depends on the Poisson's ratio of the plate and is totally independent of plate's aspect ratio for cases with no residual stresses.

Keywords: vibrational analysis, modified couple stress theory, fully clamped rectangular micro-plates, extended Kantorovich method.

Procedia PDF Downloads 387
4854 Tool for Analysing the Sensitivity and Tolerance of Mechatronic Systems in Matlab GUI

Authors: Bohuslava Juhasova, Martin Juhas, Renata Masarova, Zuzana Sutova

Abstract:

The article deals with the tool in Matlab GUI form that is designed to analyse a mechatronic system sensitivity and tolerance. In the analysed mechatronic system, a torque is transferred from the drive to the load through a coupling containing flexible elements. Different methods of control system design are used. The classic form of the feedback control is proposed using Naslin method, modulus optimum criterion and inverse dynamics method. The cascade form of the control is proposed based on combination of modulus optimum criterion and symmetric optimum criterion. The sensitivity is analysed on the basis of absolute and relative sensitivity of system function to the change of chosen parameter value of the mechatronic system, as well as the control subsystem. The tolerance is analysed in the form of determining the range of allowed relative changes of selected system parameters in the field of system stability. The tool allows to analyse an influence of torsion stiffness, torsion damping, inertia moments of the motor and the load and controller(s) parameters. The sensitivity and tolerance are monitored in terms of the impact of parameter change on the response in the form of system step response and system frequency-response logarithmic characteristics. The Symbolic Math Toolbox for expression of the final shape of analysed system functions was used. The sensitivity and tolerance are graphically represented as 2D graph of sensitivity or tolerance of the system function and 3D/2D static/interactive graph of step/frequency response.

Keywords: mechatronic systems, Matlab GUI, sensitivity, tolerance

Procedia PDF Downloads 433
4853 Work Happiness for Personnel of Suan Sunandha Rajabhat University

Authors: Adisai Thovicha

Abstract:

This study is the survey research, designed to study the work happiness level of personnel at Suan Sunandha Rajabhat University. The sample group consisted of 329 personnel. The results were collected by stratified sampling, using work positions for each stage. The results were analyzed and calculated by computer program. Statistics used during analyzing were percentage, mean, and standard deviation. From the study, the work happiness level of personnel were in very high score range in both overall and specific category. The top category which received the most score was positive attitude, work satisfaction, life satisfaction, and negative attitude.

Keywords: work happiness, Suan Sunandha Rajabhat University, personnel, positive attitude

Procedia PDF Downloads 375
4852 Effect of Infill’s in Influencing the Dynamic Responses of Multistoried Structures

Authors: Rahmathulla Noufal E.

Abstract:

Investigating the dynamic responses of high rise structures under the effect of siesmic ground motion is extremely important for the proper analysis and design of multitoried structures. Since the presence of infilled walls strongly influences the behaviour of frame systems in multistoried buildings, there is an increased need for developing guidelines for the analysis and design of infilled frames under the effect of dynamic loads for safe and proper design of buildings. In this manuscript, we evaluate the natural frequencies and natural periods of single bay single storey frames considering the effect of infill walls by using the Eigen value analysis and validating with SAP 2000 (free vibration analysis). Various parameters obtained from the diagonal strut model followed for the free vibration analysis is then compared with the Finite Element model, where infill is modeled as shell elements (four noded). We also evaluated the effect of various parameters on the natural periods of vibration obtained by free vibration analysis in SAP 2000 comparing them with those obtained by the empirical expressions presented in I.S. 1893(Part I)-2002.

Keywords: infilled frame, eigen value analysis, free vibration analysis, diagonal strut model, finite element model, SAP 2000, natural period

Procedia PDF Downloads 330
4851 Eliciting and Confirming Data, Information, Knowledge and Wisdom in a Specialist Health Care Setting - The Wicked Method

Authors: Sinead Impey, Damon Berry, Selma Furtado, Miriam Galvin, Loretto Grogan, Orla Hardiman, Lucy Hederman, Mark Heverin, Vincent Wade, Linda Douris, Declan O'Sullivan, Gaye Stephens

Abstract:

Healthcare is a knowledge-rich environment. This knowledge, while valuable, is not always accessible outside the borders of individual clinics. This research aims to address part of this problem (at a study site) by constructing a maximal data set (knowledge artefact) for motor neurone disease (MND). This data set is proposed as an initial knowledge base for a concurrent project to develop an MND patient data platform. It represents the domain knowledge at the study site for the duration of the research (12 months). A knowledge elicitation method was also developed from the lessons learned during this process - the WICKED method. WICKED is an anagram of the words: eliciting and confirming data, information, knowledge, wisdom. But it is also a reference to the concept of wicked problems, which are complex and challenging, as is eliciting expert knowledge. The method was evaluated at a second site, and benefits and limitations were noted. Benefits include that the method provided a systematic way to manage data, information, knowledge and wisdom (DIKW) from various sources, including healthcare specialists and existing data sets. Limitations surrounded the time required and how the data set produced only represents DIKW known during the research period. Future work is underway to address these limitations.

Keywords: healthcare, knowledge acquisition, maximal data sets, action design science

Procedia PDF Downloads 359
4850 Optimal Capacitor Placement in Distribution Systems

Authors: Sana Ansari, Sirus Mohammadi

Abstract:

In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. General Algebraic Modeling System (GAMS) has been used to solve the maximization modules using the MINOS optimization software with Linear Programming (LP). The proposed method is tested on 33 node distribution system and the results show that the algorithm suitable for practical implementation on real systems with any size.

Keywords: power losses, voltage stability, radial distribution systems, capacitor

Procedia PDF Downloads 647
4849 The Perception and Integration of Lexical Tone and Vowel in Mandarin-speaking Children with Autism: An Event-Related Potential Study

Authors: Rui Wang, Luodi Yu, Dan Huang, Hsuan-Chih Chen, Yang Zhang, Suiping Wang

Abstract:

Enhanced discrimination of pure tones but diminished discrimination of speech pitch (i.e., lexical tone) were found in children with autism who speak a tonal language (Mandarin), suggesting a speech-specific impairment of pitch perception in these children. However, in tonal languages, both lexical tone and vowel are phonemic cues and integrally dependent on each other. Therefore, it is unclear whether the presence of phonemic vowel dimension contributes to the observed lexical tone deficits in Mandarin-speaking children with autism. The current study employed a multi-feature oddball paradigm to examine how vowel and tone dimensions contribute to the neural responses for syllable change detection and involuntary attentional orienting in school-age Mandarin-speaking children with autism. In the oddball sequence, syllable /da1/ served as the standard stimulus. There were three deviant stimulus conditions, representing tone-only change (TO, /da4/), vowel-only change (VO, /du1/), and change of tone and vowel simultaneously (TV, /du4/). EEG data were collected from 25 children with autism and 20 age-matched normal controls during passive listening to the stimulation. For each deviant condition, difference waveform measuring mismatch negativity (MMN) was derived from subtracting the ERP waveform to the standard sound from that to the deviant sound for each participant. Additionally, the linear summation of TO and VO difference waveforms was compared to the TV difference waveform, to examine whether neural sensitivity for TV change detection reflects simple summation or nonlinear integration of the two individual dimensions. The MMN results showed that the autism group had smaller amplitude compared with the control group in the TO and VO conditions, suggesting impaired discriminative sensitivity for both dimensions. In the control group, amplitude of the TV difference waveform approximated the linear summation of the TO and VO waveforms only in the early time window but not in the late window, suggesting a time course from dimensional summation to nonlinear integration. In the autism group, however, the nonlinear TV integration was already present in the early window. These findings suggest that speech perception atypicality in children with autism rests not only in the processing of single phonemic dimensions, but also in the dimensional integration process.

Keywords: autism, event-related potentials , mismatch negativity, speech perception

Procedia PDF Downloads 218
4848 Creating Renewable Energy Investment Portfolio in Turkey between 2018-2023: An Approach on Multi-Objective Linear Programming Method

Authors: Berker Bayazit, Gulgun Kayakutlu

Abstract:

The World Energy Outlook shows that energy markets will substantially change within a few forthcoming decades. First, determined action plans according to COP21 and aim of CO₂ emission reduction have already impact on policies of countries. Secondly, swiftly changed technological developments in the field of renewable energy will be influential upon medium and long-term energy generation and consumption behaviors of countries. Furthermore, share of electricity on global energy consumption is to be expected as high as 40 percent in 2040. Electrical vehicles, heat pumps, new electronical devices and digital improvements will be outstanding technologies and innovations will be the testimony of the market modifications. In order to meet highly increasing electricity demand caused by technologies, countries have to make new investments in the field of electricity production, transmission and distribution. Specifically, electricity generation mix becomes vital for both prevention of CO₂ emission and reduction of power prices. Majority of the research and development investments are made in the field of electricity generation. Hence, the prime source diversity and source planning of electricity generation are crucial for improving the wealth of citizen life. Approaches considering the CO₂ emission and total cost of generation, are necessary but not sufficient to evaluate and construct the product mix. On the other hand, employment and positive contribution to macroeconomic values are important factors that have to be taken into consideration. This study aims to constitute new investments in renewable energies (solar, wind, geothermal, biogas and hydropower) between 2018-2023 under 4 different goals. Therefore, a multi-objective programming model is proposed to optimize the goals of minimizing the CO₂ emission, investment amount and electricity sales price while maximizing the total employment and positive contribution to current deficit. In order to avoid the user preference among the goals, Dinkelbach’s algorithm and Guzel’s approach have been combined. The achievements are discussed with comparison to the current policies. Our study shows that new policies like huge capacity allotment might be discussible although obligation for local production is positive. The improvements in grid infrastructure and re-design support for the biogas and geothermal can be recommended.

Keywords: energy generation policies, multi-objective linear programming, portfolio planning, renewable energy

Procedia PDF Downloads 244
4847 Designing of Multi-Epitope Peptide Vaccines for Fasciolosis (Fasciola gigantica) using Immune Epitope and Analysis Resource (IEDB) Server

Authors: Supanan Chansap, Werachon Cheukamud, Pornanan Kueakhai, Narin Changklungmoa

Abstract:

Fasciola species (Fasciola spp.) is caused fasciolosis in ruminants such as cattle, sheep, and buffalo. Fasciola gigantica (F.gigantica) commonly infects tropical regions. Fasciola hepatica (F.hepatica) in temperate regions. Liver fluke infection affects livestock economically, for example, reduced milk and meat production, weight loss, sterile animals. Currently, Triclabendazole is used to treat liver flukes. However, liver flukes have also been found to be resistant to drugs in countries. Therefore, vaccination is an attractive alternative to prevent liver fluke infection. Peptide vaccines are new vaccine technologies that mimic epitope antigens that trigger an immune response. An interesting antigen used in vaccine production is catepsin L, a family of proteins that play an important role in the life of the parasite in the host. This study aims to identify immunogenic regions of protein and construct a multi-epidetope vaccine using an immunoinformatic tool. Fasciola gigantica Cathepsin L1 (FgCatL1), Fasciola gigantica Cathepsin L1G (FgCatL1G), and Fasciola gigantica Cathepsin L1H (FgCatL1H) were predicted B-cell and Helper T lymphocytes (HTL) by Immune Epitope and Analysis Resource (IEDB) servers. Both B-cell and HTL epitopes aligned with cathepsin L of the host and Fasciola hepatica (F. hepatica). Epitope groups were selected from non-conserved regions and overlapping sequences with F. hepatica. All overlapping epitopes were linked with the GPGPG and KK linker. GPGPG linker was linked between B-cell epitope. KK linker was linked between HTL epitope and B-cell and HTL epitope. The antigenic scores of multi-epitope peptide vaccine was 0.7824. multi-epitope peptide vaccine was non-allergen, non-toxic, and good soluble. Multi-epitope peptide vaccine was predicted tertiary structure and refinement model by I-Tasser and GalaxyRefine server, respectively. The result of refine structure model was good quality that was generated by Ramachandran plot analysis. Discontinuous and linear B-cell epitopes were predicted by ElliPro server. Multi-epitope peptide vaccine model was two and seven of discontinuous and linear B-cell epitopes, respectively. Furthermore, multi-epitope peptide vaccine was docked with Toll-like receptor 2 (TLR-2). The lowest energy ranged from -901.3 kJ/mol. In summary, multi-epitope peptide vaccine was antigenicity and probably immune response. Therefore, multi-epitope peptide vaccine could be used to prevent F. gigantica infections in the future.

Keywords: fasciola gigantica, Immunoinformatic tools, multi-epitope, Vaccine

Procedia PDF Downloads 78
4846 A Machine Learning Pipeline for Real-Time Activity Detection on Low Computational Power Devices for Metaverse Applications

Authors: Amit Kumar, Amanpreet Chander, Ashish Sahani

Abstract:

This paper presents our recent work on real-time human activity detection based on the media pipe pipeline and machine learning algorithms. The proposed system can detect human activities, including running, jumping, squatting, bending to the left or right, and standing still. This is a robust solution for developing a yoga, dance, metaverse, and fitness application that checks for the correction of the pose without having any additional monitor like a personal trainer. MediaPipe solution offers an open-source cross-platform which utilizes a two-step detector-tracker ML pipeline for live detection of key landmarks on our body which can be used for motion data collection. The prediction of real-time poses uses a variety of machine learning techniques and different types of analysis. Without primarily relying on powerful desktop environments for inference, our method achieves real-time performance on the majority of contemporary mobile phones, desktops/laptops, Python, or even the web. Experimental results show that our method outperforms the existing method in terms of accuracy and real-time capability, achieving an accuracy of 99.92% on testing datasets.

Keywords: human activity detection, media pipe, machine learning, metaverse applications

Procedia PDF Downloads 179
4845 Physical Activity in Pacific Adolescent Girls with a Physical Disability

Authors: Caroline Dickson

Abstract:

While adolescence can be a challenging time, it may also be a time of opportunity. Whereas adolescents with a physical disability negotiate the adolescent developmental stage with similar issues to able-bodied adolescents, they additionally may encounter developmental problems which may impede their adulthood. In part due to the restricted opportunities disabled adolescents experience, they may experience difficulty with mastering this developmental stage. As is well documented, health and wellbeing are positively associated with participating in physical activity. However, the little research available suggested that Pacific adolescents generally are participating in less physical activity than adolescents of other ethnic groups. Objective/Study: The main aim of the study (from a larger mixed method study), was to explore physical activity participation in Pacific adolescent girls with a physical disability in relation to their physiological and psychological wellbeing. The qualitative descriptive study comprised of seven interviews with Pacific adolescent girls and their mothers in a family setting and also included the providers of services to Pacific girls with a physical disability. Including the providers of disability services allowed the researchers to identity a further understanding into challenges of participation for the Pacific adolescent girls and their families while the girls were attempting to participate in physical activity. The purpose of the talanoa (face-to-face interviews that were deemed informal) was to identify partaking and factors influencing participation in physical activity, whilst listening to the voices of the participants. The stories revealed the multitude of factors that influenced physical activity for the Pacific girls with a physical disability. Results: Findings from the qualitative descriptive study found that through physical activity, the Pacific adolescent girls with a physical disability experienced benefits from participation. The findings suggested that these girls wanted to participate in physical activity and clearly indicated the physical activities they preferred. Amongst the physiological and psychological benefits of the Pacific adolescents engaging in physical activity, the adolescents were able to develop positive social relationships, experience autonomy, and generally, their self-worth improved while building confidence. Nevertheless, the adolescents experienced a multitude of factors impeding their engagement in physical activity including cultural stigmas. Their participation was influenced by the interplay of a range of gender, cultural, age-related (adolescence) and socio-economic factors alongside policy and structurally related constraints. Conclusion: Physical activity has the potential to improve the general physiological and psychological health of all adolescents. It should be prioritised particularly in vulnerable populations where they may have limited access. As the Pacific adolescents with a physical activity are dependent on their families for physical activity participation, it is imperative the family be included and consulted. To increase participation, and reduce sedentary behaviours, factors influencing both participation and non-participation need to be considered.

Keywords: Pacific adolescent girls, physical activity, physical disability, qualitative descriptive study

Procedia PDF Downloads 160