Search results for: modified simplex algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5896

Search results for: modified simplex algorithm

2236 MXene Quantum Dots Decorated Double-Shelled Ceo₂ Hollow Spheres for Efficient Electrocatalytic Nitrogen Oxidation

Authors: Quan Li, Dongcai Shen, Zhengting Xiao, Xin Liu Mingrui Wu, Licheng Liu, Qin Li, Xianguo Li, Wentai Wang

Abstract:

Direct electrocatalytic nitrogen oxidation (NOR) provides a promising alternative strategy for synthesizing high-value-added nitric acid from widespread N₂, which overcomes the disadvantages of the Haber-Bosch-Ostwald process. However, the NOR process suffers from the limitation of high N≡N bonding energy (941 kJ mol− ¹), sluggish kinetics, low efficiency and yield. It is a prerequisite to develop more efficient electrocatalysts for NOR. Herein, we synthesized double-shelled CeO₂ hollow spheres (D-CeO₂) and further modified with Ti₃C₂ MXene quantum dots (MQDs) for electrocatalytic N₂ oxidation, which exhibited a NO₃− yield of 71.25 μg h− ¹ mgcat− ¹ and FE of 31.80% at 1.7 V. The unique quantum size effect and abundant edge active sites lead to a more effective capture of nitrogen. Moreover, the double-shelled hollow structure is favorable for N₂ fixation and gathers intermediate products in the interlayer of the core-shell. The in-situ infrared Fourier transform spectroscopy confirmed the formation of *NO and NO₃− species during the NOR reaction, and the kinetics and possible pathways of NOR were calculated by density functional theory (DFT). In addition, a Zn-N₂ reaction device was assembled with D-CeO₂/MQDs as anode and Zn plate as cathode, obtaining an extremely high NO₃− yield of 104.57 μg h− ¹ mgcat− ¹ at 1 mA cm− ².

Keywords: electrocatalytic N₂ oxidation, nitrate production, CeO₂, MXene quantum dots, double-shelled hollow spheres

Procedia PDF Downloads 73
2235 Case Study; Drilled Shafts Installation in Difficult Site Conditions; Loose Sand and High Water Table

Authors: Anthony El Hachem, Hosam Salman

Abstract:

Selecting the most effective construction method for drilled shafts under the high phreatic surface can be a challenging task that requires effective communication between the design and construction teams. Slurry placement, temporary casing, and permanent casing are the three most commonly used installation techniques to ensure the stability of the drilled hole before casting the concrete. Each one of these methods has its implications on the installation and performance of the drilled piers. Drilled shafts were designed to support a fire wall for an Energy project in Central Texas. The subsurface consisted of interlayers of sands and clays of varying shear strengths. The design recommended that the shafts be installed with temporary casing or slurry displacement due to the anticipated groundwater seepage through granular soils. During the foundation construction, it was very difficult to maintain the stability of the hole, and the contractor requested to install the shafts using permanent casings. Therefore, the foundation design was modified to ensure that the cased shafts achieve the required load capacity. Effective and continuous communications between the owner, contractor and design team during field shaft installations to mitigate the unforeseen challenges helped the team to successfully complete the project.

Keywords: construction challenges, deep foundations, drilled shafts, loose sands underwater table, permanent casing

Procedia PDF Downloads 197
2234 An Open Source Advertisement System

Authors: Pushkar Umaranikar, Chris Pollett

Abstract:

An online advertisement system and its implementation for the Yioop open source search engine are presented. This system supports both selling advertisements and displaying them within search results. The selling of advertisements is done using a system to auction off daily impressions for keyword searches. This is an open, ascending price auction system in which all accepted bids will receive a fraction of the auctioned day’s impressions. New bids in our system are required to be at least one half of the sum of all previous bids ensuring the number of accepted bids is logarithmic in the total ad spend on a keyword for a day. The mechanics of creating an advertisement, attaching keywords to it, and adding it to an advertisement inventory are described. The algorithm used to go from accepted bids for a keyword to which ads are displayed at search time is also presented. We discuss properties of our system and compare it to existing auction systems and systems for selling online advertisements.

Keywords: online markets, online ad system, online auctions, search engines

Procedia PDF Downloads 328
2233 E-Payments, COVID-19 Restrictions, and Currency in Circulation: Thailand and Turkey

Authors: Zeliha Sayar

Abstract:

Central banks all over the world appear to be focusing first and foremost on retail central bank digital currency CBDC), i.e., digital cash/money. This approach is predicated on the belief that the use of cash has decreased, owing primarily to technological advancements and pandemic restrictions, and that a suitable foundation for the transition to a cashless society has been revealed. This study aims to contribute to the debate over whether digital money/CBDC can be a substitute or supplement to physical cash by examining the potential effects on cash demand. For this reason, this paper compares two emerging countries, Turkey, and Thailand, to demystify the impact of e-payment and COVID-19 restrictions on cash demand by employing fully modified ordinary least squares (FMOLS), dynamic ordinary least squares (DOLS), and the canonical cointegrating regression (CCR). The currency in circulation in two emerging countries, Turkey and Thailand, was examined in order to estimate the elasticity of different types of retail payments. The results demonstrate that real internet and mobile, cart, contactless payment, and e-money are long-term determinants of real cash demand in these two developing countries. Furthermore, with the exception of contactless payments in Turkey, there is a positive relationship between the currency in circulation and the various types of retail payments. According to findings, COVID-19 restrictions encourage the demand for cash, resulting in cash hoarding.

Keywords: CCR, DOLS, e-money, FMOLS, real cash

Procedia PDF Downloads 110
2232 Multivariate Analysis of Spectroscopic Data for Agriculture Applications

Authors: Asmaa M. Hussein, Amr Wassal, Ahmed Farouk Al-Sadek, A. F. Abd El-Rahman

Abstract:

In this study, a multivariate analysis of potato spectroscopic data was presented to detect the presence of brown rot disease or not. Near-Infrared (NIR) spectroscopy (1,350-2,500 nm) combined with multivariate analysis was used as a rapid, non-destructive technique for the detection of brown rot disease in potatoes. Spectral measurements were performed in 565 samples, which were chosen randomly at the infection place in the potato slice. In this study, 254 infected and 311 uninfected (brown rot-free) samples were analyzed using different advanced statistical analysis techniques. The discrimination performance of different multivariate analysis techniques, including classification, pre-processing, and dimension reduction, were compared. Applying a random forest algorithm classifier with different pre-processing techniques to raw spectra had the best performance as the total classification accuracy of 98.7% was achieved in discriminating infected potatoes from control.

Keywords: Brown rot disease, NIR spectroscopy, potato, random forest

Procedia PDF Downloads 192
2231 Signal Amplification Using Graphene Oxide in Label Free Biosensor for Pathogen Detection

Authors: Agampodi Promoda Perera, Yong Shin, Mi Kyoung Park

Abstract:

The successful detection of pathogenic bacteria in blood provides important information for early detection, diagnosis and the prevention and treatment of infectious diseases. Silicon microring resonators are refractive-index-based optical biosensors that provide highly sensitive, label-free, real-time multiplexed detection of biomolecules. We demonstrate the technique of using GO (graphene oxide) to enhance the signal output of the silicon microring optical sensor. The activated carboxylic groups in GO molecules bind directly to single stranded DNA with an amino modified 5’ end. This conjugation amplifies the shift in resonant wavelength in a real-time manner. We designed a capture probe for strain Staphylococcus aureus of 21 bp and a longer complementary target sequence of 70 bp. The mismatched target sequence we used was of Streptococcus agalactiae of 70 bp. GO is added after the complementary binding of the probe and target. GO conjugates to the unbound single stranded segment of the target and increase the wavelength shift on the silicon microring resonator. Furthermore, our results show that GO could successfully differentiate between the mismatched DNA sequences from the complementary DNA sequence. Therefore, the proposed concept could effectively enhance sensitivity of pathogen detection sensors.

Keywords: label free biosensor, pathogenic bacteria, graphene oxide, diagnosis

Procedia PDF Downloads 471
2230 Swastika Shape Multiband Patch Antenna for Wireless Applications on Low Cost Substrate

Authors: Md. Samsuzzaman, M. T. Islam, J. S. Mandeep, N. Misran

Abstract:

In this article, a compact simple structure modified Swastika shape patch multiband antenna on a substrate of available low cost polymer resin composite material is designed for Wi-Fi and WiMAX applications. The substrate material consists of an epoxy matrix reinforced by woven glass. The designed micro-strip line fed compact antenna comprises of a planar wide square slot ground with four slits and Swastika shape radiation patch with a rectangular slot. The effect of the different substrate materials on the reflection coefficients of the proposed antennas was also analyzed. It can be clearly seen that the proposed antenna provides a wider bandwidth and acceptable return loss value compared to other reported materials. The simulation results exhibits that the antenna has an impedance bandwidth with -10 dB return loss at 3.01-3.89 GHz and 4.88-6.10 GHz which can cover both the WLAN, WiMAX and public safety WLAN bands. The proposed swastika shape antenna was designed and analyzed by using a finite element method based simulator HFSS and designed on a low cost FR4 (polymer resin composite material) printed circuit board. The electrical performances and superior frequency characteristics make the proposed material antenna desirable for wireless communications.

Keywords: epoxy resin polymer, multiband, swastika shaped, wide slot, WLAN/WiMAX

Procedia PDF Downloads 454
2229 Micro-Arc Oxidation Titanium and Post Treatment by Cold Plasma and Graft Polymerization of Acrylic Acid for Biomedical Application

Authors: Shu-Chuan Liao, Chia-Ti Chang, Ko-Shao Chen

Abstract:

Titanium and its alloy are widely used in many fields such as dentistry or orthopaedics. Due to their high strength low elastic modulus that chemical inertness and bio inert. The micro-arc oxidation used to formation a micro porous ceramic oxide layer film on Titanium surface and also to improve the resistance corrosion. For improving the biocompatibility, micro-arc oxidation surfaces bio-inert need to introduce reactive group. We introduced boundary layer by used plasma enhanced chemical vapor deposition of hexamethyldisilazane (HMDS) and organic active layer by UV light graft reactive monomer acrylic acid (AAc) therefore we can immobilize Chondroitin sulphate on surface easily by crosslinking EDC/NHS. The surface properties and composition of the modified layer were measured by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and water contact angle. Water contact angle of the plasma-treated Ti surface decreases from 60° to 38°, which is an indication of hydrophilicity. The results of electrochemical polarization analysis showed that the sample plasma treated at micro-arc oxidation after plasma treatment has the best corrosion resistance. The result showed that we can immobilize chondroitin sulfate successful by a series of modification and MTT assay indicated the biocompatibility has been improved in this study.

Keywords: MAO, plasma, graft polymerization, biomedical application

Procedia PDF Downloads 260
2228 Real-Time Adaptive Obstacle Avoidance with DS Method and the Influence of Dynamic Environments Change on Different DS

Authors: Saeed Mahjoub Moghadas, Farhad Asadi, Shahed Torkamandi, Hassan Moradi, Mahmood Purgamshidian

Abstract:

In this paper, we present real-time obstacle avoidance approach for both autonomous and non-autonomous DS-based controllers and also based on dynamical systems (DS) method. In this approach, we can modulate the original dynamics of the controller and it allows us to determine safety margin and different types of DS to increase the robot’s reactiveness in the face of uncertainty in the localization of the obstacle and especially when robot moves very fast in changeable complex environments. The method is validated in simulation and influence of different autonomous and non-autonomous DS such as limit cycles, and unstable DS on this algorithm and also the position of different obstacles in complex environment is explained. Finally, we describe how the avoidance trajectories can be verified through different parameters such as safety factor.

Keywords: limit cycles, nonlinear dynamical system, real time obstacle avoidance, DS-based controllers

Procedia PDF Downloads 391
2227 Auto Surgical-Emissive Hand

Authors: Abhit Kumar

Abstract:

The world is full of master slave Telemanipulator where the doctor’s masters the console and the surgical arm perform the operations, i.e. these robots are passive robots, what the world needs to focus is that in use of these passive robots we are acquiring doctors for operating these console hence the utilization of the concept of robotics is still not fully utilized ,hence the focus should be on active robots, Auto Surgical-Emissive Hand use the similar concept of active robotics where this anthropomorphic hand focuses on the autonomous surgical, emissive and scanning operation, enabled with the vision of 3 way emission of Laser Beam/-5°C < ICY Steam < 5°C/ TIC embedded in palm of the anthropomorphic hand and structured in a form of 3 way disc. Fingers of AS-EH (Auto Surgical-Emissive Hand) as called, will have tactile, force, pressure sensor rooted to it so that the mechanical mechanism of force, pressure and physical presence on the external subject can be maintained, conversely our main focus is on the concept of “emission” the question arises how all the 3 non related methods will work together that to merged in a single programmed hand, all the 3 methods will be utilized according to the need of the external subject, the laser if considered will be emitted via a pin sized outlet, this radiation is channelized via a thin channel which further connect to the palm of the surgical hand internally leading to the pin sized outlet, here the laser is used to emit radiation enough to cut open the skin for removal of metal scrap or any other foreign material while the patient is in under anesthesia, keeping the complexity of the operation very low, at the same time the TIC fitted with accurate temperature compensator will be providing us the real time feed of the surgery in the form of heat image, this gives us the chance to analyze the level, also ATC will help us to determine the elevated body temperature while the operation is being proceeded, the thermal imaging camera in rooted internally in the AS-EH while also being connected to the real time software externally to provide us live feedback. The ICY steam will provide the cooling effect before and after the operation, however for more utilization of this concept we can understand the working of simple procedure in which If a finger remain in icy water for a long time it freezes the blood flow stops and the portion become numb and isolated hence even if you try to pinch it will not provide any sensation as the nerve impulse did not coordinated with the brain hence sensory receptor did not got active which means no sense of touch was observed utilizing the same concept we can use the icy stem to be emitted via a pin sized hole on the area of concern ,temperature below 273K which will frost the area after which operation can be done, this steam can also be use to desensitized the pain while the operation in under process. The mathematical calculation, algorithm, programming of working and movement of this hand will be installed in the system prior to the procedure, since this AS-EH is a programmable hand it comes with the limitation hence this AS-EH robot will perform surgical process of low complexity only.

Keywords: active robots, algorithm, emission, icy steam, TIC, laser

Procedia PDF Downloads 359
2226 Environmental Exposure Assessment among Refuellers at Brussels South Charleroi Airport

Authors: Mostosi C., Stéphenne J., Kempeneers E.

Abstract:

Introduction: Refuellers from Brussels South Charleroi Airport (BSCA) expressed concerns about the risks involved in handling JET-A1 fuel. The HSE Manager of BSCA, in collaboration with the occupational physician and the industrial hygiene unit of the External Service of Occupational Medicine, decided to assess the toxicological exposure of these workers. Materials and methods: Two measurement methods were used. The first was to assay three types of metabolites in urine to highlight the exposure to xylenes, toluene, and benzene in aircraft fuels. Out of 32 refuellers in the department, 26 participated in the sampling, and 23 samples were exploited. The second method targeted the assessment of environmental exposure to certain potentially hazardous substances that refuellers are likely to breathe in work areas at the airport. It was decided to carry out two ambient air measurement campaigns, using static systems on the one hand and, on the other hand, using individual sensors worn by the refuellers at the level of the respiratory tract. Volatile organic compounds and diesel particles were analyzed. Results: Despite the fears that motivated these analyzes, the overall results showed low levels of exposure, far below the existing limit values, both in air quality and in urinary measurements. Conclusion: These results are comparable to a study carried out in several French airports. The staff could be reassured, and then the medical surveillance was modified by the occupational physician. With the aviation development at BSCA, equipment and methods are evolving. Their exposure will have to be reassessed.

Keywords: refuelling, airport, exposure, fuel, occupational health, air quality

Procedia PDF Downloads 87
2225 Smart Grid Simulator

Authors: Ursachi Andrei

Abstract:

The Smart Grid Simulator is a computer software based on advanced algorithms which has as the main purpose to lower the energy bill in the most optimized price efficient way as possible for private households, companies or energy providers. It combines the energy provided by a number of solar modules and wind turbines with the consumption of one household or a cluster of nearby households and information regarding weather conditions and energy prices in order to predict the amount of energy that can be produced by renewable energy sources and the amount of energy that will be bought from the distributor for the following day. The user of the system will not only be able to minimize his expenditures on energy fractures, but also he will be informed about his hourly consumption, electricity prices fluctuation and money spent for energy bought as well as how much money he saved each day and since he installed the system. The paper outlines the algorithm that supports the Smart Grid Simulator idea and presents preliminary test results that support the discussion and implementation of the system.

Keywords: smart grid, sustainable energy, applied science, renewable energy sources

Procedia PDF Downloads 350
2224 Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder

Authors: Akalu Banbeta, Emmanuel Lesaffre, Reynaldo Martina, Joost Van Rosmalen

Abstract:

Including data from previous studies (historical data) in the analysis of the current study may reduce the sample size requirement and/or increase the power of analysis. The most common example is incorporating historical control data in the analysis of a current clinical trial. However, this only applies when the historical control dataare similar enough to the current control data. Recently, several Bayesian approaches for incorporating historical data have been proposed, such as the meta-analytic-predictive (MAP) prior and the modified power prior (MPP) both for single control as well as for multiple historical control arms. Here, we examine the performance of the MAP and the MPP approaches for the analysis of (over-dispersed) count data. To this end, we propose a computational method for the MPP approach for the Poisson and the negative binomial models. We conducted an extensive simulation study to assess the performance of Bayesian approaches. Additionally, we illustrate our approaches on an overactive bladder data set. For similar data across the control arms, the MPP approach outperformed the MAP approach with respect to thestatistical power. When the means across the control arms are different, the MPP yielded a slightly inflated type I error (TIE) rate, whereas the MAP did not. In contrast, when the dispersion parameters are different, the MAP gave an inflated TIE rate, whereas the MPP did not.We conclude that the MPP approach is more promising than the MAP approach for incorporating historical count data.

Keywords: count data, meta-analytic prior, negative binomial, poisson

Procedia PDF Downloads 122
2223 Long Run Estimates of Population, Consumption and Economic Development of India: An ARDL Bounds Testing Approach of Cointegration

Authors: Sanjay Kumar, Arumugam Sankaran, Arjun K., Mousumi Das

Abstract:

The amount of domestic consumption and population growth is having a positive impact on economic growth and development as observed by the Harrod-Domar and endogenous growth models. The paper negates the Solow growth model which argues the population growth has a detrimental impact on per capita and steady-state growth. Unlike the Solow model, the paper observes, the per capita income growth never falls zero, and it sustains as positive. Hence, our goal here is to investigate the relationship among population, domestic consumption and economic growth of India. For this estimation, annual data from 1980-2016 has been collected from World Development Indicator and Reserve Bank of India. To know the long run as well as short-run dynamics among the variables, we have employed the ARDL bounds testing approach of cointegration followed by modified Wald causality test to know the direction of causality. The conclusion from cointegration and ARDL estimates reveal that there is a long run positive and statistically significant relationship among the variables under study. At the same time, the causality test shows that there is a causal relationship that exists among the variables. Hence, this calls for policies which have a long run perspective in strengthening the capabilities and entitlements of people and stabilizing domestic demand so as to serve long run and short run growth and stability of the economy.

Keywords: cointegration, consumption, economic development, population growth

Procedia PDF Downloads 162
2222 Between Reality and Fiction: Self-Representation as an Avatar and Its Effects on Self-Presence

Authors: Leonie Laskowitz

Abstract:

A self-confident appearance is a basic prerequisite for success in the world of work 4.0. Within a few seconds, people convey a first impression that usually lasts. Artificial intelligence is making it increasingly important how our virtual selves appear and communicate (nonverbally) in digital worlds such as the metaverse. In addition to the modified creation of an avatar, the field of photogrammetry is developing fast, creating exact likenesses of ourselves in virtual environments. Given the importance of self-representation in virtual space for future collaborations, it is important to investigate the impact of phenotype in virtual worlds and how an avatar type can profitably be used situationally. We analyzed the effect of self-similar versus desirable self-presentation as an avatar on one's self-awareness, considering various theoretical constructs in the area of self-awareness and stress stimuli. The avatars were arbitrarily created on the one hand and scanned on the other hand with the help of a lidar sensor, the state-of-the-art photogrammetry method. All subjects were exposed to the established Trier Social Stress Test. The results showed that especially insecure people prefer to create rather than be scanned when confronted with a stressful work situation. (1) If they are in a casual work environment and a relaxed situation, they prefer a 3D photorealistic avatar that reflects them in detail. (2) Confident people will give their avatar their true appearance in any situation, while insecure people would only do so for honesty and authenticity. (3) Thus, the choice of avatar type has considerable impact on self-confidence in different situations.

Keywords: avatar, virtual identity, self-presentation, metaverse, virtual reality, self-awareness

Procedia PDF Downloads 150
2221 Robust Model Predictive Controller for Uncertain Nonlinear Wheeled Inverted Pendulum Systems: A Tube-Based Approach

Authors: Tran Gia Khanh, Dao Phuong Nam, Do Trong Tan, Nguyen Van Huong, Mai Xuan Sinh

Abstract:

This work presents the problem of tube-based robust model predictive controller for a class of continuous-time systems in the presence of input disturbances. The main objective is to point out the state trajectory of closed system being maintained inside a sequence of tubes. An estimation of attraction region of the closed system is pointed out based on input state stability (ISS) theory and linearized model in each time interval. The theoretical analysis and simulation results demonstrate the performance of the proposed algorithm for a wheeled inverted pendulum system.

Keywords: input state stability (ISS), tube-based robust MPC, continuous-time nonlinear systems, wheeled inverted pendulum

Procedia PDF Downloads 221
2220 Global Direct Search Optimization of a Tuned Liquid Column Damper Subject to Stochastic Load

Authors: Mansour H. Alkmim, Adriano T. Fabro, Marcus V. G. De Morais

Abstract:

In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of an undamped primary system under white noise excitation. Finally, a numerical example considering a simplified wind turbine model is given to illustrate the efficacy of the TLCD. Results from the random vibration analysis are shown for four types of random excitation wind model where the response PSDs obtained showed good vibration attenuation.

Keywords: generalized pattern search, parameter optimization, random vibration analysis, vibration suppression

Procedia PDF Downloads 279
2219 Gradient Index Metalens for WLAN Applications

Authors: Akram Boubakri, Fethi Choubeni, Tan Hoa Vuong, Jacques David

Abstract:

The control of electromagnetic waves is a key aim of several researches over the past decade. In this regard, Metamaterials have shown a strong ability to manipulate the electromagnetic waves on a subwavelength scales thanks to its unconventional properties that are not available in natural materials such as negative refraction index, super imaging and invisibility cloaking. Metalenses were used to avoid some drawbacks presented by conventional lenses since focusing with conventional lenses suffered from the limited resolution because they were only able to focus the propagating wave component. Nevertheless, Metalenses were able to go beyond the diffraction limit and enhance the resolution not only by collecting the propagating waves but also by restoring the amplitude of evanescent waves that decay rapidly when going far from the source and that contains the finest details of the image. Metasurfaces have many mechanical advantages over three-dimensional metamaterial structures especially the ease of fabrication and a smaller required volume. Those structures have been widely used for antenna performance improvement and to build flat metalenses. In this work, we showed that a well-designed metasurface lens operating at the frequency of 5.9GHz, has efficiently enhanced the radiation characteristics of a patch antenna and can be used for WLAN applications (IEEE 802.11 a). The proposed metasurface lens is built with a geometrically modified unit cells which lead to a change in the response of the lens at different position and allow the control of the wavefront beam of the incident wave thanks to the gradient refractive index.

Keywords: focusing, gradient index, metasurface, metalens, WLAN Applications

Procedia PDF Downloads 256
2218 Effect of Modified Atmosphere Packaging and Storage Temperatures on Quality of Shelled Raw Walnuts

Authors: M. Javanmard

Abstract:

This study was aimed at analyzing the effects of packaging (MAP) and preservation conditions on the packaged fresh walnut kernel quality. The central composite plan was used for evaluating the effect of oxygen (0–10%), carbon dioxide (0-10%), and temperature (4-26 °C) on qualitative characteristics of walnut kernels. Also, the response level technique was used to find the optimal conditions for interactive effects of factors, as well as estimating the best conditions of process using least amount of testing. Measured qualitative parameters were: peroxide index, color, decreased weight, mould and yeast counting test, and sensory evaluation. The results showed that the defined model for peroxide index, color, weight loss, and sensory evaluation is significant (p < 0.001), so that increase of temperature causes the peroxide value, color variation, and weight loss to increase and it reduces the overall acceptability of walnut kernels. An increase in oxygen percentage caused the color variation level and peroxide value to increase and resulted in lower overall acceptability of the walnuts. An increase in CO2 percentage caused the peroxide value to decrease, but did not significantly affect other indices (p ≥ 0.05). Mould and yeast were not found in any samples. Optimal packaging conditions to achieve maximum quality of walnuts include: 1.46% oxygen, 10% carbon dioxide, and temperature of 4 °C.

Keywords: shelled walnut, MAP, quality, storage temperature

Procedia PDF Downloads 391
2217 Nanostructure of Gamma-Alumina Prepared by a Modified Sol-Gel Technique

Authors: Débora N. Zambrano, Marina O. Gosatti, Leandro M. Dufou, Daniel A. Serrano, M. Mónica Guraya, Soledad Perez-Catán

Abstract:

Nanoporous g-Al2O3 samples were synthesized via a sol-gel technique, introducing changes in the Yoldas´ method. The aim of the work was to achieve an effective control of the nanostructure properties and morphology of the final g-Al2O3. The influence of the reagent temperature during the hydrolysis was evaluated in case of water at 5 ºC and 98 ºC, and alkoxide at -18 ºC and room temperature. Sol-gel transitions were performed at 120 ºC and room temperature. All g-Al2O3 samples were characterized by X-ray diffraction, nitrogen adsorption and thermal analysis. Our results showed that temperature of both water and alkoxide has not much influence on the nanostructure of the final g-Al2O3, thus giving a structure very similar to that of samples obtained by the reference method as long as the reaction temperature above 75 ºC is reached soon enough. XRD characterization showed diffraction patterns corresponding to g-Al2O3 for all samples. Also BET specific area values (253-280 m2/g) were similar to those obtained by Yoldas’s original method. The temperature of the sol-gel transition does not affect the resulting sample structure, and crystalline boehmite particles were identified in all dried gels. We analyzed the reproducibility of the samples’ structure by preparing different samples under identical conditions; we found that performing the sol-gel transition at 120 ºC favors the production of more reproducible samples and also reduces significantly the time of the sol-gel reaction.

Keywords: nanostructure alumina, boehmite, sol-gel technique, N2 adsorption/desorption isotherm, pore size distribution, BET area.

Procedia PDF Downloads 325
2216 Impregnation Reduction Method for the Preparation of Platinum-Nickel/Carbon Black Alloy Nanoparticles as Faor Electrocatalyst

Authors: Maryam Kiani

Abstract:

In order to enhance the efficiency and stability of an electrocatalyst for formic acid electro-oxidation reaction (FAOR), we developed a method to create Pt/Ni nanoparticles with carbon black. These nanoparticles were prepared using a simple impregnation reduction technique. During the observation, it was found that the nanoparticles had a spherical shape. Additionally, the average particle size remained consistent, falling within the range of about 4 nm. This approach aimed to obtain a loaded Pt-based electrocatalyst that would exhibit improved performance and stability when used in FAOR applications. By utilizing the impregnation reduction method and incorporating Ni nanoparticles along with Pt, we sought to enhance the catalytic properties of the material. By incorporating Ni atoms into the Pt structure, the electronic properties of Pt are modified, resulting in a delay in the chemisorption of harmful CO intermediate species. This modification also promotes the dehydrogenation pathway of the formic acid oxidation reaction (FAOR). Through electrochemical analysis, it has been observed that the Pt3Ni-C catalyst exhibits enhanced performance in FAOR compared to traditional Pt catalysts. This means that the addition of Ni atoms improves the efficiency and effectiveness of the Pt3Ni-C catalyst in facilitating the FAOR process. Overall, the utilization of these alloy nanoparticles as electrocatalysts represents a significant advancement in fuel cell technology.

Keywords: electrocatalyst, impregnation reduction method, formic acid electro-oxidation reaction, fuel cells

Procedia PDF Downloads 133
2215 Investigation of Chlorophylls a and b Interaction with Inner and Outer Surfaces of Single-Walled Carbon Nanotube Using Molecular Dynamics Simulation

Authors: M. Dehestani, M. Ghasemi-Kooch

Abstract:

In this work, adsorption of chlorophylls a and b pigments in aqueous solution on the inner and outer surfaces of single-walled carbon nanotube (SWCNT) has been studied using molecular dynamics simulation. The linear interaction energy algorithm has been used to calculate the binding free energy. The results show that the adsorption of two pigments is fine on the both positions. Although there is the close similarity between these two pigments, their interaction with the nanotube is different. This result is useful to separate these pigments from one another. According to interaction energy between the pigments and carbon nanotube, interaction between these pigments-SWCNT on the inner surface is stronger than the outer surface. The interaction of SWCNT with chlorophylls phytol tail is stronger than the interaction of SWCNT with porphyrin ring of chlorophylls.

Keywords: adsorption, chlorophyll, interaction, molecular dynamics simulation, nanotube

Procedia PDF Downloads 236
2214 An in silico Approach for Exploring the Intercellular Communication in Cancer Cells

Authors: M. Cardenas-Garcia, P. P. Gonzalez-Perez

Abstract:

Intercellular communication is a necessary condition for cellular functions and it allows a group of cells to survive as a population. Throughout this interaction, the cells work in a coordinated and collaborative way which facilitates their survival. In the case of cancerous cells, these take advantage of intercellular communication to preserve their malignancy, since through these physical unions they can send signs of malignancy. The Wnt/β-catenin signaling pathway plays an important role in the formation of intercellular communications, being also involved in a large number of cellular processes such as proliferation, differentiation, adhesion, cell survival, and cell death. The modeling and simulation of cellular signaling systems have found valuable support in a wide range of modeling approaches, which cover a wide spectrum ranging from mathematical models; e.g., ordinary differential equations, statistical methods, and numerical methods– to computational models; e.g., process algebra for modeling behavior and variation in molecular systems. Based on these models, different simulation tools have been developed from mathematical ones to computational ones. Regarding cellular and molecular processes in cancer, its study has also found a valuable support in different simulation tools that, covering a spectrum as mentioned above, have allowed the in silico experimentation of this phenomenon at the cellular and molecular level. In this work, we simulate and explore the complex interaction patterns of intercellular communication in cancer cells using the Cellulat bioinformatics tool, a computational simulation tool developed by us and motivated by two key elements: 1) a biochemically inspired model of self-organizing coordination in tuple spaces, and 2) the Gillespie’s algorithm, a stochastic simulation algorithm typically used to mimic systems of chemical/biochemical reactions in an efficient and accurate way. The main idea behind the Cellulat simulation tool is to provide an in silico experimentation environment that complements and guides in vitro experimentation in intra and intercellular signaling networks. Unlike most of the cell signaling simulation tools, such as E-Cell, BetaWB and Cell Illustrator which provides abstractions to model only intracellular behavior, Cellulat is appropriate for modeling both intracellular signaling and intercellular communication, providing the abstractions required to model –and as a result, simulate– the interaction mechanisms that involve two or more cells, that is essential in the scenario discussed in this work. During the development of this work we made evident the application of our computational simulation tool (Cellulat) for the modeling and simulation of intercellular communication between normal and cancerous cells, and in this way, propose key molecules that may prevent the arrival of malignant signals to the cells that surround the tumor cells. In this manner, we could identify the significant role that has the Wnt/β-catenin signaling pathway in cellular communication, and therefore, in the dissemination of cancer cells. We verified, using in silico experiments, how the inhibition of this signaling pathway prevents that the cells that surround a cancerous cell are transformed.

Keywords: cancer cells, in silico approach, intercellular communication, key molecules, modeling and simulation

Procedia PDF Downloads 251
2213 Comprehensive Evaluation of Thermal Environment and Its Countermeasures: A Case Study of Beijing

Authors: Yike Lamu, Jieyu Tang, Jialin Wu, Jianyun Huang

Abstract:

With the development of economy and science and technology, the urban heat island effect becomes more and more serious. Taking Beijing city as an example, this paper divides the value of each influence index of heat island intensity and establishes a mathematical model – neural network system based on the fuzzy comprehensive evaluation index of heat island effect. After data preprocessing, the algorithm of weight of each factor affecting heat island effect is generated, and the data of sex indexes affecting heat island intensity of Shenyang City and Shanghai City, Beijing, and Hangzhou City are input, and the result is automatically output by the neural network system. It is of practical significance to show the intensity of heat island effect by visual method, which is simple, intuitive and can be dynamically monitored.

Keywords: heat island effect, neural network, comprehensive evaluation, visualization

Procedia PDF Downloads 135
2212 Function Approximation with Radial Basis Function Neural Networks via FIR Filter

Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended Kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore, the number of centers will be considered since it affects the performance of approximation.

Keywords: extended Kalman filter, classification problem, radial basis function networks (RBFN), finite impulse response (FIR) filter

Procedia PDF Downloads 458
2211 Enhancement of Hydrophobicity of Thermally Evaporated Bi Thin Films by Oblique Angle Deposition

Authors: Ravish K. Jain, Jatinder Kaur, Shaira Arora, Arun Kumar, Amit K. Chawla, Atul Khanna

Abstract:

Surface-dependent properties such as hydrophobicity can be modified significantly by oblique angle deposition technique. Bi thin films were studied for their hydrophobic nature. The effects of oblique angle deposition on structural, surface morphology, electrical and wettability properties of Bi thin films have been studied and a comparison of these physical properties of normally deposited and obliquely deposited Bi films has been carried out in this study. X-ray diffraction studies found that films have highly oriented hexagonal crystal structure and crystallite size is smaller for obliquely deposited (70 nm) film as compared to that of the normally deposited film (111 nm). Raman spectra of the films consist of peaks corresponding to E_g and A_1g first-order Raman modes of bismuth. The atomic force and scanning electron microscopy studies show that the surface roughness of obliquely deposited film is higher as compared to that of normally deposited film. Contact angle measurements revealed that both films are strongly hydrophobic in nature with the contact angles of 105ᵒ and 119ᵒ for normally and obliquely deposited films respectively. Oblique angle deposition enhances the hydrophobicity of the film. The electrical conductivity of the film is significantly reduced by oblique angle deposition. The activation energies for electrical conduction were determined by four-probe measurements and are 0.016 eV and 0.018 eV for normally and obliquely deposited films respectively.

Keywords: bi thin films, hydrophobicity, oblique angle deposition, surface morphology

Procedia PDF Downloads 262
2210 An Efficient Fundamental Matrix Estimation for Moving Object Detection

Authors: Yeongyu Choi, Ju H. Park, S. M. Lee, Ho-Youl Jung

Abstract:

In this paper, an improved method for estimating fundamental matrix is proposed. The method is applied effectively to monocular camera based moving object detection. The method consists of corner points detection, moving object’s motion estimation and fundamental matrix calculation. The corner points are obtained by using Harris corner detector, motions of moving objects is calculated from pyramidal Lucas-Kanade optical flow algorithm. Through epipolar geometry analysis using RANSAC, the fundamental matrix is calculated. In this method, we have improved the performances of moving object detection by using two threshold values that determine inlier or outlier. Through the simulations, we compare the performances with varying the two threshold values.

Keywords: corner detection, optical flow, epipolar geometry, RANSAC

Procedia PDF Downloads 410
2209 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features

Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh

Abstract:

In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.

Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve

Procedia PDF Downloads 264
2208 Gaussian Mixture Model Based Identification of Arterial Wall Movement for Computation of Distension Waveform

Authors: Ravindra B. Patil, P. Krishnamoorthy, Shriram Sethuraman

Abstract:

This work proposes a novel Gaussian Mixture Model (GMM) based approach for accurate tracking of the arterial wall and subsequent computation of the distension waveform using Radio Frequency (RF) ultrasound signal. The approach was evaluated on ultrasound RF data acquired using a prototype ultrasound system from an artery mimicking flow phantom. The effectiveness of the proposed algorithm is demonstrated by comparing with existing wall tracking algorithms. The experimental results show that the proposed method provides 20% reduction in the error margin compared to the existing approaches in tracking the arterial wall movement. This approach coupled with ultrasound system can be used to estimate the arterial compliance parameters required for screening of cardiovascular related disorders.

Keywords: distension waveform, Gaussian Mixture Model, RF ultrasound, arterial wall movement

Procedia PDF Downloads 508
2207 Policy and Practice of Later-Life Learning in China: A Critical Document Discourse Analysis

Authors: Xue Wu

Abstract:

Since the 1980s, a series of policies and practices have been implemented in China in response to the unprecedented rate of ageing population. The paper provides a detailed narrative of what later-life learning policy discourses have been advocated and gives a description on relevant practical issues during the past three decades. The research process based on the discourse approach with a systematic review of the government-issued documents. It finds that the main practices taken by central government at various levels were making University of the Aged (UA) available in all urban and rural regions to consolidate the newly student enrollments; focusing social-recreational, leisure and cultural activities on 55-75 age group; and utilizing various methods including voluntary works and tourism to improve older adults’ physical and mental wellness. Although there were greater achievements with 30 years of development, many problems still exist. Finding reveals that the curriculum should be modified to meet the needs of the local development, to promote older adults’ contact and contribution to the community, and to enhance technical competences of those in rural areas involving in agricultural production. Central government should also integrate resources from all sectors of the society for further developing later-life learning in China. The result of this paper highlights the value to promote community-based later-life learning for building a society for active ageing and ageing in place.

Keywords: ageing population, China, later-life learning, policy, University of the Aged

Procedia PDF Downloads 146