Search results for: cap and trade system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17982

Search results for: cap and trade system

14322 The Effect of Heat Stress on the Gastro-Intestinal Microbiota of Pigs

Authors: Yadnyavalkya Patil, Ravi Gooneratne, Xiang-Hong Ju

Abstract:

Heat stress (HS) negatively affects the physiology of pigs. In this study, 6 pigs will be subjected to temperatures of 35 ± 2℃ for 12 hrs/day for a duration of 21 days. The changes in the gastrointestinal tract (GIT) microbiota will be observed by analyzing the freshly collected faeces on days 1, 3, 7, 14 and 21. The changes will be compared to faeces from a set of 6 control pigs kept simultaneously at temperatures of 26 ± 2℃ for the same duration of 21 days. Different types of stresses such a weaning have a detrimental effect on GIT microflora. Similarly, HS is expected to have a harmful effect on the microbial diversity of the GIT. How these changes affect the immune system of the pigs will be studied and therapeutics to reduce the negative effects of HS will be developed.

Keywords: GIT microbiota, heat stress, immune system, therapeutics

Procedia PDF Downloads 188
14321 Women's Employment Issues in Georgia and Solutions Based on European Experience

Authors: N. Damenia, E. Kharaishvili, N. Sagareishvili, M. Saghareishvili

Abstract:

Women's Employment is one of the most important issues in the global economy. The article discusses the stated topic in Georgia, through historical content, Soviet experience, and modern perspectives. The paper discusses segmentation insa terms of employment and related problems. Based on statistical analysis, women's unemployment rate and its factors are analyzed. The level of employment of women in Transcaucasia (Georgia, Armenia, and Azerbaijan) is discussed and is compared with Baltic countries (Lithuania, Latvia, and Estonia). The study analyzes women’s level of development, according to the average age of marriage and migration level. The focus is on Georgia's Association Agreement with the EU in 2014, which includes economic, social, trade and political issues. One part of it is gender equality at workplaces. According to the research, the average monthly remuneration of women managers in the financial and insurance sector equaled to 1044.6 Georgian Lari, while in overall business sector average monthly remuneration equaled to 961.1 GEL. Average salaries are increasing; however, the employment rate remains problematic. For example, in 2017, 74.6% of men and 50.8% of women were employed from a total workforce. It is also interesting that the proportion of men and women at managerial positions is 29% (women) to 71% (men). Based on the results, the main recommendation for government and civil society is to consider women as a part of the country’s economic development. In this aspect, the experience of developed countries should be considered. It is important to create additional jobs in urban or rural areas and help migrant women return and use their working resources properly.

Keywords: employment of women, segregation in terms of employment, women's employment level in Transcaucasia, migration level

Procedia PDF Downloads 103
14320 SWOT Analysis of the Industrial Sector in Kuwait

Authors: Abdullah Al-Alaian, Ahmad Al-Enzi, Hasan Al-Herz, Ahmad Bakri, Shant Tatorian, Amr Nounou

Abstract:

Kuwait is a country that has an imbalanced economy since most of its national outcome comes from the oil trade. It is so risky for a country to be dependent on a single source for income, and this increases the need to diversify its economy. In addition, according to the Public Authority for Industry, the contribution of the industrial sector to the current Gross Domestic Product (GDP) of Kuwait is low which is about 4.33%. Therefore, the development of the industrial sector can be one of the means to diversify the economy and increase the industry's contribution to the national outcome. This is in accordance with Kuwait’s vision of 2035 which aims at increasing the contribution of the industrial sector to the GDP to 12%. In order to do so, this study aims at proposing a strategic plan that will accomplish certain objectives when implemented. It is based on analyzing the industrial sectors in Kuwait taking into consideration studying the strengths, weaknesses, opportunities, and threats facing them. At the same time, it tends to gain from the experience of leading models and neighboring countries regarding the development of the industrial sector. In this study, the SWOT analysis technique will be conducted on all industrial sectors based on evaluation criteria in which it is determined whether any of them has a potential for improvement or not. In other words, it is determined whether the sectors are able to compete locally, regionally, or globally. Based on the results of the SWOT analysis, certain sectors will be chosen, assessed based on an assessment scheme, and their potentials for improvement will be aligned with the overall objectives. To ensure the achievement of the study’s objectives, an action plan will be proposed regarding recommendations for the related authorities, and for entrepreneurs. In addition, monitoring tools are going to be provided for the purpose of periodically checking the progress made in the implementation of the plan.

Keywords: industrial sector, SWOT analysis, productivity, competitiveness, GDP, Kuwait, economy

Procedia PDF Downloads 461
14319 Integration of Hydropower and Solar Photovoltaic Generation into Distribution System: Case of South Sudan

Authors: Ater Amogpai

Abstract:

Hydropower and solar photovoltaic (PV) generation are crucial in sustainability and transitioning from fossil fuel to clean energy. Integrating renewable energy sources such as hydropower and solar photovoltaic (PV) into the distributed networks contributes to achieving energy balance, pollution mitigation, and cost reduction. Frequent power outages and a lack of load reliability characterize the current South Sudan electricity distribution system. The country’s electricity demand is 300MW; however, the installed capacity is around 212.4M. Insufficient funds to build new electricity facilities and expand generation are the reasons for the gap in installed capacity. The South Sudan Ministry of Energy and Dams gave a contract to an Egyptian Elsewedy Electric Company that completed the construction of a solar PV plant in 2023. The plant has a 35 MWh battery storage and 20 MW solar PV system capacity. The construction of Juba Solar PV Park started in 2022 to increase the current installed capacity in Juba City to 53 MW. The plant will begin serving 59000 residents in Juba and save 10,886.2t of carbon dioxide (CO2) annually.

Keywords: renewable energy, hydropower, solar energy, photovoltaic, South Sudan

Procedia PDF Downloads 89
14318 Nonlinear Control of Mobile Inverted Pendulum: Theory and Experiment

Authors: V. Sankaranarayanan, V. Amrita Sundari, Sunit P. Gopal

Abstract:

This paper presents the design and implementation of a nonlinear controller for the point to point control of a mobile inverted pendulum (MIP). The controller is designed based on the kinematic model of the MIP to stabilize all the four coordinates. The stability of the closed-loop system is proved using Lyapunov stability theory. The proposed controller is validated through numerical simulations and also implemented in a laboratory prototype. The results are presented to evaluate the performance of the proposed closed loop system.

Keywords: mobile inverted pendulum, switched control, nonlinear systems, lyapunov stability

Procedia PDF Downloads 313
14317 Studies on the Prevalence and Determination of Associated Risk Factors of Babesia in Goats of District Toba Tek Singh, Punjab, Pakistan

Authors: Tauseef-ur-Rehman, Rao Zahid Abbas, Wasim Babar, Arbab Sikandar

Abstract:

Babesiosis is an infection due to the multiplication of tick borne parasite, Babesia sp., in erythrocytes of host (variety of vertebrates) including small ruminants and is responsible for decreased livestock output and hence economic losses. A cross-sectional study was designed in order to evaluate the prevalence of Babesia and its relation with various associated factors in district Toba Tek Singh, Central Punjab, Pakistan in 2009-2010. A total 10.84% (50/461) out of 461 examined cases for Babesia were found positive for Babesia infection. Month-wise peak prevalence was observed in July (17.95%), while no positive case was recorded in Dec-2009 and Jan-2010. The prevalence of infection in different goat breeds was found as non-significant (P < 0.05) for Babesia infection. The prevalence of Babesia was found significantly (P < 0.05) dependent to the goat age and sex. The feeding system, housing system, floor type and herd size revealed strong correlation with Babesia prevalence, while watering system and body conditions were found to be non-significant (P < 0.05), and hence it is suggested that with the improvement of management precautions Babesiosis can be avoided.

Keywords: Babesia, goat, prevalence, Pakistan, risk factors

Procedia PDF Downloads 501
14316 Adsorptive Waste Heat Based Air-Conditioning Control Strategy for Automotives

Authors: Indrasen Raghupatruni, Michael Glora, Ralf Diekmann, Thomas Demmer

Abstract:

As the trend in automotive technology is fast moving towards hybridization and electrification to curb emissions as well as to improve the fuel efficiency, air-conditioning systems in passenger cars have not caught up with this trend and still remain as the major energy consumers amongst others. Adsorption based air-conditioning systems, e.g. with silica-gel water pair, which are already in use for residential and commercial applications, are now being considered as a technology leap once proven feasible for the passenger cars. In this paper we discuss a methodology, challenges and feasibility of implementing an adsorption based air-conditioning system in a passenger car utilizing the exhaust waste heat. We also propose an optimized control strategy with interfaces to the engine control unit of the vehicle for operating this system with reasonable efficiency supported by our simulation and validation results in a prototype vehicle, additionally comparing to existing implementations, simulation based as well as experimental. Finally we discuss the influence of start-stop and hybrid systems on the operation strategy of the adsorption air-conditioning system.

Keywords: adsorption air-conditioning, feasibility study, optimized control strategy, prototype vehicle

Procedia PDF Downloads 417
14315 Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water

Authors: Ahmed A. Alghamdi

Abstract:

Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome.

Keywords: single-walled carbon nanotubes, thin film composite, axially aligned swcnt, temperature induced phase separation technique, reverse osmosis

Procedia PDF Downloads 39
14314 Trade Openness, Productivity Growth And Economic Growth: Nigeria’s Experience

Authors: S. O. Okoro

Abstract:

Some words become the catch phrase of a particular decade. Globalization, Openness, and Privatization are certainly among the most frequently encapsulation of 1990’s; the market is ‘in’, ‘the state is out’. In the 1970’s, there were many political economists who spoke of autarky as one possible response to global economic forces. Be self-contained, go it alone, put up barriers to trans-nationalities, put in place import-substitution industrialization policy and grow domestic industries. In 1990’s, the emasculation of the state is by no means complete, but there is an acceptance that the state’s power is circumscribed by forces beyond its control and potential leverage. Autarky is no longer as a policy option. Nigeria, since its emergence as an independent nation, has evolved two macroeconomic management regimes of the interventionist and market friendly styles. This paper investigates Nigeria’s growth performance over the periods incorporating these two regimes and finds that there is no structural break in Total Factor Productivity, (TFP) growth and besides, the TFP growth over the entire period of study 1970-2012 is very negligible and hence growth can only be achieved by the unsustainable factor accumulation. Another important finding of this work is that the openness-human capital interaction term has a significant impact on the TFP growth, but the sign of the estimated coefficient does not meet it a theoretical expectation. This is because the negative coefficient on the human capital outweighs the positive openness effect. The poor quality of human capital is considered to have given rise to this. Given these results a massive investment in the education sector is required. The investment should be targeted at reforms that go beyond mere structural reforms to a reform agenda that will improve the quality of human capital in Nigeria.

Keywords: globalization, emasculation, openness and privatization, total factor productivity

Procedia PDF Downloads 234
14313 Radio-Frequency Technologies for Sensing and Imaging

Authors: Cam Nguyen

Abstract:

Rapid, accurate, and safe sensing and imaging of physical quantities or structures finds many applications and is of significant interest to society. Sensing and imaging using radio-frequency (RF) techniques, particularly, has gone through significant development and subsequently established itself as a unique territory in the sensing world. RF sensing and imaging has played a critical role in providing us many sensing and imaging abilities beyond our human capabilities, benefiting both civilian and military applications - for example, from sensing abnormal conditions underneath some structures’ surfaces to detection and classification of concealed items, hidden activities, and buried objects. We present the developments of several sensing and imaging systems implementing RF technologies like ultra-wide band (UWB), synthetic-pulse, and interferometry. These systems are fabricated completely using RF integrated circuits. The UWB impulse system operates over multiple pulse durations from 450 to 1170 ps with 5.5-GHz RF bandwidth. It performs well through tests of various samples, demonstrating its usefulness for subsurface sensing. The synthetic-pulse system operating from 0.6 to 5.6 GHz can assess accurately subsurface structures. The synthetic-pulse system operating from 29.72-37.7 GHz demonstrates abilities for various surface and near-surface sensing such as profile mapping, liquid-level monitoring, and anti-personnel mine locating. The interferometric system operating at 35.6 GHz demonstrates its multi-functional capability for measurement of displacements and slow velocities. These RF sensors are attractive and useful for various surface and subsurface sensing applications. This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: RF sensors, radars, surface sensing, subsurface sensing

Procedia PDF Downloads 299
14312 Hydrogen Storage Systems for Enhanced Grid Balancing Services in Wind Energy Conversion Systems

Authors: Nezmin Kayedpour, Arash E. Samani, Siavash Asiaban, Jeroen M. De Kooning, Lieven Vandevelde, Guillaume Crevecoeur

Abstract:

The growing adoption of renewable energy sources, such as wind power, in electricity generation is a significant step towards a sustainable and decarbonized future. However, the inherent intermittency and uncertainty of wind resources pose challenges to the reliable and stable operation of power grids. To address this, hydrogen storage systems have emerged as a promising and versatile technology to support grid balancing services in wind energy conversion systems. In this study, we propose a supplementary control design that enhances the performance of the hydrogen storage system by integrating wind turbine (WT) pitch and torque control systems. These control strategies aim to optimize the hydrogen production process, ensuring efficient utilization of wind energy while complying with grid requirements. The wind turbine pitch control system plays a crucial role in managing the turbine's aerodynamic performance. By adjusting the blade pitch angle, the turbine's rotational speed and power output can be regulated. Our proposed control design dynamically coordinates the pitch angle to match the wind turbine's power output with the optimal hydrogen production rate. This ensures that the electrolyzer receives a steady and optimal power supply, avoiding unnecessary strain on the system during high wind speeds and maximizing hydrogen production during low wind speeds. Moreover, the wind turbine torque control system is incorporated to facilitate efficient operation at varying wind speeds. The torque control system optimizes the energy capture from the wind while limiting mechanical stress on the turbine components. By harmonizing the torque control with hydrogen production requirements, the system maintains stable wind turbine operation, thereby enhancing the overall energy-to-hydrogen conversion efficiency. To enable grid-friendly operation, we introduce a cascaded controller that regulates the electrolyzer's electrical power-current in accordance with grid requirements. This controller ensures that the hydrogen production rate can be dynamically adjusted based on real-time grid demands, supporting grid balancing services effectively. By maintaining a close relationship between the wind turbine's power output and the electrolyzer's current, the hydrogen storage system can respond rapidly to grid fluctuations and contribute to enhanced grid stability. In this paper, we present a comprehensive analysis of the proposed supplementary control design's impact on the overall performance of the hydrogen storage system in wind energy conversion systems. Through detailed simulations and case studies, we assess the system's ability to provide grid balancing services, maximize wind energy utilization, and reduce greenhouse gas emissions.

Keywords: active power control, electrolyzer, grid balancing services, wind energy conversion systems

Procedia PDF Downloads 70
14311 Experimental Analysis of the Plate-on-Tube Evaporator on a Domestic Refrigerator’s Performance

Authors: Mert Tosun, Tuğba Tosun

Abstract:

The evaporator is the utmost important component in the refrigeration system, since it enables the refrigerant to draw heat from the desired environment, i.e. the refrigerated space. Studies are being conducted on this component which generally affects the performance of the system, where energy efficient products are important. This study was designed to enhance the effectiveness of the evaporator in the refrigeration cycle of a domestic refrigerator by adjusting the capillary tube length, refrigerant amount, and the evaporator pipe diameter to reduce energy consumption. The experiments were conducted under identical thermal and ambient conditions. Experiment data were analysed using the Design of Experiment (DOE) technique which is a six-sigma method to determine effects of parameters. As a result, it has been determined that the most important parameters affecting the evaporator performance among the selected parameters are found to be the refrigerant amount and pipe diameter. It has been determined that the minimum energy consumption is 6-mm pipe diameter and 16-g refrigerant. It has also been noted that the overall consumption of the experiment sample decreased by 16.6% with respect to the reference system, which has 7-mm pipe diameter and 18-g refrigerant.

Keywords: heat exchanger, refrigerator, design of experiment, energy consumption

Procedia PDF Downloads 136
14310 Development of an Atmospheric Radioxenon Detection System for Nuclear Explosion Monitoring

Authors: V. Thomas, O. Delaune, W. Hennig, S. Hoover

Abstract:

Measurement of radioactive isotopes of atmospheric xenon is used to detect, locate and identify any confined nuclear tests as part of the Comprehensive Nuclear Test-Ban Treaty (CTBT). In this context, the Alternative Energies and French Atomic Energy Commission (CEA) has developed a fixed device to continuously measure the concentration of these fission products, the SPALAX process. During its atmospheric transport, the radioactive xenon will undergo a significant dilution between the source point and the measurement station. Regarding the distance between fixed stations located all over the globe, the typical volume activities measured are near 1 mBq m⁻³. To avoid the constraints induced by atmospheric dilution, the development of a mobile detection system is in progress; this system will allow on-site measurements in order to confirm or infringe a suspicious measurement detected by a fixed station. Furthermore, this system will use beta/gamma coincidence measurement technique in order to drastically reduce environmental background (which masks such activities). The detector prototype consists of a gas cell surrounded by two large silicon wafers, coupled with two square NaI(Tl) detectors. The gas cell has a sample volume of 30 cm³ and the silicon wafers are 500 µm thick with an active surface area of 3600 mm². In order to minimize leakage current, each wafer has been segmented into four independent silicon pixels. This cell is sandwiched between two low background NaI(Tl) detectors (70x70x40 mm³ crystal). The expected Minimal Detectable Concentration (MDC) for each radio-xenon is in the order of 1-10 mBq m⁻³. Three 4-channels digital acquisition modules (Pixie-NET) are used to process all the signals. Time synchronization is ensured by a dedicated PTP-network, using the IEEE 1588 Precision Time Protocol. We would like to present this system from its simulation to the laboratory tests.

Keywords: beta/gamma coincidence technique, low level measurement, radioxenon, silicon pixels

Procedia PDF Downloads 115
14309 Hydraulic Performance of Urban Drainage System Using SWMM: A Case Study of Siti Khadijah Retention Pond in Palembang City

Authors: Muhammad B. Al Amin, Nyimas S. Rika, Dwi F. Yanto, Marcelina

Abstract:

Siti Khadijah retention pond is located beside of Siti Khadijah Islamic Hospital on Demang Lebar Daun Street in Palembang City. This retention pond is functioned as storage for runoff from drainage channels in the surrounding area before entering Sekanak River, which is one of Musi River tributaries. However, in recent years, the developments in the surrounding area into paved area trigger to increase runoff discharge that causes the pond can no longer store it adequately. This study aimed to investigate the hydraulic performance of drainage system in the area around Siti Khadijah retention pond. A SWMM model was used to simulate runoff discharge into the pond and out from the pond, so the water level fluctuation within the pond and its capacity could be determined. Besides that, the water depth within drainage channels was simulated as well. The results showed that capacity of retention pond and some drainage channels already inadequate, so the area around it potentially to be flooded. Thus, it is necessary to increase the capacity of the retention pond and drainage channels.

Keywords: flood, retention pond, SWMM, urban drainage system

Procedia PDF Downloads 433
14308 Research on the Evaluation and Delineation of Value Units of New Industrial Parks Based on Implementation-Orientation

Authors: Chengfang Wang, Zichao Wu, Jianying Zhou

Abstract:

At present, much attention is paid to the development of new industrial parks in the era of inventory planning. Generally speaking, there are two types of development models: incremental development models and stock development models. The former relies on key projects to build a value innovation park, and the latter relies on the iterative update of the park to build a value innovation park. Take the Baiyun Western Digital Park as an example, considering the growth model of value units, determine the evaluation target. Based on a GIS platform, comprehensive land-use status, regulatory detailed planning, land use planning, blue-green ecological base, rail transit system, road network system, industrial park distribution, public service facilities, and other factors are used to carry out the land use within the planning multi-factor superimposed comprehensive evaluation, constructing a value unit evaluation system, and delineating value units based on implementation orientation and combining two different development models. The research hopes to provide a reference for the planning and construction of new domestic industrial parks.

Keywords: value units, GIS, multi-factor evaluation, implementation orientation

Procedia PDF Downloads 171
14307 Implementation of Social Network Analysis to Analyze the Dependency between Construction Bid Packages

Authors: Kawalpreet Kaur, Panagiotis Mitropoulos

Abstract:

The division of the project scope into work packages is the most important step in the preconstruction phase of construction projects. The work division determines the scope and complexity of each bid package, resulting in dependencies between project participants performing these work packages. The coordination between project participants is necessary because of these dependencies. Excessive dependencies between the bid packages create coordination difficulties, leading to delays, added costs, and contractual friction among project participants. However, the literature on construction provides limited knowledge regarding work structuring approaches, issues, and challenges. Manufacturing industry literature provides a systematic approach to defining the project scope into work packages, and the implementation of social network analysis (SNA) in manufacturing is an effective approach to defining and analyzing the divided scope of work at the dependencies level. This paper presents a case study of implementing a similar approach using SNA in construction bid packages. The study uses SNA to analyze the scope of bid packages and determine the dependency between scope elements. The method successfully identifies the bid package with the maximum interaction with other trade contractors and the scope elements that are crucial for project performance. The analysis provided graphical and quantitative information on bid package dependencies. The study can be helpful in performing an analysis to determine the dependencies between bid packages and their scope elements and how these scope elements are critical for project performance. The study illustrates the potential use of SNA as a systematic approach to analyzing bid package dependencies in construction projects, which can guide the division of crucial scope elements to minimize negative impacts on project performance.

Keywords: work structuring, bid packages, work breakdown, project participants

Procedia PDF Downloads 71
14306 Optimum Design of Tall Tube-Type Building: An Approach to Structural Height Premium

Authors: Ali Kheyroddin, Niloufar Mashhadiali, Frazaneh Kheyroddin

Abstract:

In last decades, tubular systems employed for tall buildings were efficient structural systems. However, increasing the height of a building leads to an increase in structural material corresponding to the loads imposed by lateral loads. Based on this approach, new structural systems are emerging to provide strength and stiffness with the minimum premium for height. In this research, selected tube-type structural systems such as framed tubes, braced tubes, diagrids and hexagrid systems were applied as a single tube, tubular structures combined with braced core and outrigger trusses on a set of 48, 72, and 96-story, respectively, to improve integrated structural systems. This paper investigated structural material consumption by model structures focusing on the premium for height. Compared analytical results indicated that as the height of the building increased, combination of the structural systems caused the framed tube, hexagrid and braced tube system to pay fewer premiums to material tonnage while in diagrid system, combining the structural system reduced insignificantly the steel material consumption.

Keywords: braced tube, diagrid, framed tube, hexagrid

Procedia PDF Downloads 274
14305 Design of a Portable Shielding System for a Newly Installed NaI(Tl) Detector

Authors: Mayesha Tahsin, A.S. Mollah

Abstract:

Recently, a 1.5x1.5 inch NaI(Tl) detector based gamma-ray spectroscopy system has been installed in the laboratory of the Nuclear Science and Engineering Department of the Military Institute of Science and Technology for radioactivity detection purposes. The newly installed NaI(Tl) detector has a circular lead shield of 22 mm width. An important consideration of any gamma-ray spectroscopy is the minimization of natural background radiation not originating from the radioactive sample that is being measured. Natural background gamma-ray radiation comes from naturally occurring or man-made radionuclides in the environment or from cosmic sources. Moreover, the main problem with this system is that it is not suitable for measurements of radioactivity with a large sample container like Petridish or Marinelli beaker geometry. When any laboratory installs a new detector or/and new shield, it “must” first carry out quality and performance tests for the detector and shield. This paper describes a new portable shielding system with lead that can reduce the background radiation. Intensity of gamma radiation after passing the shielding will be calculated using shielding equation I=Ioe-µx where Io is initial intensity of the gamma source, I is intensity after passing through the shield, µ is linear attenuation coefficient of the shielding material, and x is the thickness of the shielding material. The height and width of the shielding will be selected in order to accommodate the large sample container. The detector will be surrounded by a 4π-geometry low activity lead shield. An additional 1.5 mm thick shield of tin and 1 mm thick shield of copper covering the inner part of the lead shielding will be added in order to remove the presence of characteristic X-rays from the lead shield.

Keywords: shield, NaI (Tl) detector, gamma radiation, intensity, linear attenuation coefficient

Procedia PDF Downloads 139
14304 Labor Productivity and Organization Performance in Specialty Trade Construction: The Moderating Effect of Safety

Authors: Shalini Priyadarshini

Abstract:

The notion of performance measurement has held great appeal for the industry and research communities alike. This idea is also true for the construction sector, and some propose that performance measurement and productivity analysis are two separate management functions, where productivity is a subset of performance, the latter requiring comprehensive analysis of comparable factors. Labor productivity is considered one of the best indicators of production efficiency. The construction industry continues to account for a disproportionate share of injuries and illnesses despite adopting several technological and organizational interventions that promote worker safety. Specialty trades contractors typically complete a large fraction of work on any construction project, but insufficient body of work exists that address subcontractor safety and productivity issues. Literature review has revealed the possibility of a relation between productivity, safety and other factors and their links to project, organizational, task and industry performance. This research posits that there is an association between productivity and performance at project as well as organizational levels in the construction industry. Moreover, prior exploration of the importance of safety within the performance-productivity framework has been anecdotal at best. Using structured questionnaire survey and organization- and project level data, this study, which is a combination of cross-sectional and longitudinal research designs, addresses the identified research gap and models the relationship between productivity, safety, and performance with a focus on specialty trades in the construction sector. Statistical analysis is used to establish a correlation between the variables of interest. This research identifies the need for developing and maintaining productivity and safety logs for smaller businesses. Future studies can design and develop research to establish causal relationships between these variables.

Keywords: construction, safety, productivity, performance, specialty trades

Procedia PDF Downloads 263
14303 Analyzing the Support to Fisheries in the European Union: Modelling Budgetary Transfers in Wild Fisheries

Authors: Laura Angulo, Petra Salamon, Martin Banse, Frederic Storkamp

Abstract:

Fisheries subsidies are focus on reduce management costs or deliver income benefits to fishers. In 2015, total fishery budgetary transfers in 31 OECD countries represented 35% of their total landing value. However, subsidies to fishing have adverse effects on trade and it has been claimed that they may contribute directly to overfishing. Therefore, this paper analyses to what extend fisheries subsidies may 1) influence capture production facing quotas and 2) affect price dynamics. The study uses the fish module in AGMEMOD (Agriculture Member States Modelling, details see Chantreuil et al. (2012)) which covers eight fish categories (cephalopods; crustaceans; demersal marine fish; pelagic marine fish; molluscs excl. cephalopods; other marine finfish species; freshwater and diadromous fish) for EU member states and other selected countries developed under the SUCCESS project. This model incorporates transfer payments directly linked to fisheries operational costs. As aquaculture and wild fishery are not included within the WTO Agreement on Agriculture, data on fisheries subsidies is obtained from the OECD Fisheries Support Estimates (FSE) database, which provides statistics on budgetary transfers to the fisheries sector. Since support has been moving from budgetary transfers to General Service Support Estimate the last years, subsidies in capture production may not present substantial effects. Nevertheless, they would still show the impact across countries and fish categories within the European Union.

Keywords: AGMEMOD, budgetary transfers, EU Member States, fish model, fisheries support estimate

Procedia PDF Downloads 235
14302 An Intelligent Traffic Management System Based on the WiFi and Bluetooth Sensing

Authors: Hamed Hossein Afshari, Shahrzad Jalali, Amir Hossein Ghods, Bijan Raahemi

Abstract:

This paper introduces an automated clustering solution that applies to WiFi/Bluetooth sensing data and is later used for traffic management applications. The paper initially summarizes a number of clustering approaches and thereafter shows their performance for noise removal. In this context, clustering is used to recognize WiFi and Bluetooth MAC addresses that belong to passengers traveling by a public urban transit bus. The main objective is to build an intelligent system that automatically filters out MAC addresses that belong to persons located outside the bus for different routes in the city of Ottawa. The proposed intelligent system alleviates the need for defining restrictive thresholds that however reduces the accuracy as well as the range of applicability of the solution for different routes. This paper moreover discusses the performance benefits of the presented clustering approaches in terms of the accuracy, time and space complexity, and the ease of use. Note that results of clustering can further be used for the purpose of the origin-destination estimation of individual passengers, predicting the traffic load, and intelligent management of urban bus schedules.

Keywords: WiFi-Bluetooth sensing, cluster analysis, artificial intelligence, traffic management

Procedia PDF Downloads 227
14301 Contaminated Sites Prioritization Process Promoting and Redevelopment Planning

Authors: Che-An Lin, Wan-Ying Tsai, Ying-Shin Chen, Yu-Jen Chung

Abstract:

With the number and area of contaminated sites continued to increase in Taiwan, the Government have to make a priority list of screening contaminated sites under the limited funds and information. This study investigated the announcement of Taiwan EPA land 261 contaminated sites (except the agricultural lands), after preliminary screening 211 valid data to propose a screening system, removed contaminated sites were used to check the accuracy. This system including two dimensions which can create the sequence and use the XY axis to construct four quadrants. One dimension included environmental and social priority and the other related economic. All of the evaluated items included population density, land values, traffic hub, pollutant compound, pollutant concentrations, pollutant transport pathways, land usage sites, site areas, and water conductivity. The classification results of this screening are 1. Prioritization promoting sites (10%). 2. Environmental and social priority of the sites (17%), 3. Economic priority of the sites (30%), 4. Non-priority sites (43 %). Finally, this study used three of the removed contaminated sites to check screening system verification. As the surmise each of them are in line with the priority site and Economic priority of the site.

Keywords: contaminated sites, redevelopment, environmental, economics

Procedia PDF Downloads 462
14300 Performance Evaluation of Vermiculite as Adsorbent Material for Solar-Assisted Air-Conditioning in Tropical Climate

Authors: Norhayati Mat Wajid, Abdul Murad Zainal Abidin, Hasila Jarimi, Kamaruzaman Sopian, Adnan Ibrahim, Ahmad Fazlizan, Afif Safwan

Abstract:

Solar-adsorption air-conditioning system (SADCS) is an alternative to the conventional vapor compression system (VCS). SADCS have advantages over VCS system, such as 1) a green cooling technology which utilizes solar energy to drive the adsorption/desorption cycle, 2) can be operated using green refrigerant HFC free pure water, 3) mechanically simpler, and 4) lower operating noise level since it has no moving parts other than the magnetic valves. Several advancements have been achieved in these fields in the last decade, but further research is still needed to escalate this technology to a practical level. Hence, this paper presents a literature survey and a review that add insights into the current state-of-the-art of SADCS technologies with emphasis on the practical researches that were conducted at the laboratory scale and commercial level. In this paper, the performance evaluation of vermiculite as adsorbent material for SADCS in tropical climate discussed in comparison to other adsorbent material such as silica gel.

Keywords: adsorption cooling, solar-assisted cooling, HVAC, tropical climate, solar thermal

Procedia PDF Downloads 139
14299 Multi-Criteria Selection and Improvement of Effective Design for Generating Power from Sea Waves

Authors: Khaled M. Khader, Mamdouh I. Elimy, Omayma A. Nada

Abstract:

Sustainable development is the nominal goal of most countries at present. In general, fossil fuels are the development mainstay of most world countries. Regrettably, the fossil fuel consumption rate is very high, and the world is facing the problem of conventional fuels depletion soon. In addition, there are many problems of environmental pollution resulting from the emission of harmful gases and vapors during fuel burning. Thus, clean, renewable energy became the main concern of most countries for filling the gap between available energy resources and their growing needs. There are many renewable energy sources such as wind, solar and wave energy. Energy can be obtained from the motion of sea waves almost all the time. However, power generation from solar or wind energy is highly restricted to sunny periods or the availability of suitable wind speeds. Moreover, energy produced from sea wave motion is one of the cheapest types of clean energy. In addition, renewable energy usage of sea waves guarantees safe environmental conditions. Cheap electricity can be generated from wave energy using different systems such as oscillating bodies' system, pendulum gate system, ocean wave dragon system and oscillating water column device. In this paper, a multi-criteria model has been developed using Analytic Hierarchy Process (AHP) to support the decision of selecting the most effective system for generating power from sea waves. This paper provides a widespread overview of the different design alternatives for sea wave energy converter systems. The considered design alternatives have been evaluated using the developed AHP model. The multi-criteria assessment reveals that the off-shore Oscillating Water Column (OWC) system is the most appropriate system for generating power from sea waves. The OWC system consists of a suitable hollow chamber at the shore which is completely closed except at its base which has an open area for gathering moving sea waves. Sea wave's motion pushes the air up and down passing through a suitable well turbine for generating power. Improving the power generation capability of the OWC system is one of the main objectives of this research. After investigating the effect of some design modifications, it has been concluded that selecting the appropriate settings of some effective design parameters such as the number of layers of Wells turbine fans and the intermediate distance between the fans can result in significant improvements. Moreover, simple dynamic analysis of the Wells turbine is introduced. Furthermore, this paper strives for comparing the theoretical and experimental results of the built experimental prototype.

Keywords: renewable energy, oscillating water column, multi-criteria selection, Wells turbine

Procedia PDF Downloads 149
14298 Optimum Performance of the Gas Turbine Power Plant Using Adaptive Neuro-Fuzzy Inference System and Statistical Analysis

Authors: Thamir K. Ibrahim, M. M. Rahman, Marwah Noori Mohammed

Abstract:

This study deals with modeling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of the green environment. These requirements have given way the long-time governing authority of steam turbine (ST) in the world power generation, and the gas turbine (GT) will replace it. Therefore, it is necessary to predict the characteristics of the GT system and optimize its operating strategy by developing a simulation system. The integrated model and simulation code for exploiting the performance of gas turbine power plant are developed utilizing MATLAB code. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. A new technology of correlation was considered for all types of simulation data; whose coefficient of determination (R2) was calculated as 0.9825. Some of the latest launched correlations were checked on the Baiji GT plant and apply error analysis. The GT performance was judged by particular parameters opted from the simulation model and also utilized Adaptive Neuro-Fuzzy System (ANFIS) an advanced new optimization technology. The best thermal efficiency and power output attained were about 56% and 345MW respectively. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the GT plants.

Keywords: gas turbine, optimization, ANFIS, performance, operating conditions

Procedia PDF Downloads 411
14297 Retrospective Study of Positive Blood Cultures Carried out in the Microbiology Department of General Hospital of Ioannina in 2017

Authors: M. Gerasimou, S. Mantzoukis, P. Christodoulou, N. Varsamis, G. Kolliopoulou, N. Zotos

Abstract:

Purpose: Microbial infection of the blood is a serious condition where bacteria invade the bloodstream and cause systemic disease. In such cases, blood cultures are performed. Blood cultures are a key diagnostic test for intensive care unit (ICU) patients. Material and method: The BacT/Alert system, which measures the production of carbon dioxide with metabolic organisms, is used. The positive result in the BacT/Alert system is followed by culture in the following selective media: Blood, Mac Conkey No 2, Chocolate, Mueller Hinton, Chapman and Sabaureaud agar. Gram staining method was used to differentiate bacterial species. The microorganisms were identified by biochemical techniques in the automated Microscan (Siemens) system and followed by a sensitivity test on the same system using the minimum inhibitory concentration MIC technique. The sensitivity test is verified by a Kirby Bauer-based test. Results: In 2017 the Laboratory of Microbiology received 3347 blood cultures. Of these, 170 came from the ICU. 116 found positive. Of these S. epidermidis was identified in 42, A. baumannii in 27, K. pneumoniae in 12 (4 of these KPC ‘Klebsiella pneumoniae carbapenemase’), S. hominis in 8, E. faecium in 7, E. faecalis in 5, P. aeruginosa in 3, C. albicans in 3, S. capitis in 2, K. oxytoca in 2, P. mirabilis in 2, E. coli in 1, S. intermidius in 1 and S. lugdunensis in 1. Conclusions: The study of epidemiological data and microbial resistance phenotypes is essential for the choice of therapeutic regimen for the early treatment and limitation of multivalent strains, while it is a crucial factor to solve diagnostic problems.

Keywords: blood culture, bloodstream, infection, intensive care unit

Procedia PDF Downloads 135
14296 Publish/Subscribe Scientific Workflow Interoperability Framework (PS-SWIF) Architecture and Design

Authors: Ahmed Alqaoud

Abstract:

This paper describes Publish/Subscribe Scientific Workflow Interoperability Framework (PS-SWIF) architecture and its components that collectively provide interoperability between heterogeneous scientific workflow systems. Requirements to achieve interoperability are identified. This paper also provides a detailed investigation and design of models and solutions for system requirements, and considers how workflow interoperability models provided by Workflow Management Coalition (WfMC) can be achieved using the PS-SWIF system.

Keywords: publish/subscribe, scientific workflow, web services, workflow interoperability

Procedia PDF Downloads 292
14295 AgriInnoConnect Pro System Using Iot and Firebase Console

Authors: Amit Barde, Dipali Khatave, Vaishali Savale, Atharva Chavan, Sapna Wagaj, Aditya Jilla

Abstract:

AgriInnoConnect Pro is an advanced agricultural automation system designed to enhance irrigation efficiency and overall farm management through IoT technology. Using MIT App Inventor, Telegram, Arduino IDE, and Firebase Console, it provides a user-friendly interface for farmers. Key hardware includes soil moisture sensors, DHT11 sensors, a 12V motor, a solenoid valve, a stepdown transformer, Smart Fencing, and AC switches. The system operates in automatic and manual modes. In automatic mode, the ESP32 microcontroller monitors soil moisture and autonomously controls irrigation to optimize water usage. In manual mode, users can control the irrigation motor via a mobile app. Telegram bots enable remote operation of the solenoid valve and electric fencing, enhancing farm security. Additionally, the system upgrades conventional devices to smart ones using AC switches, broadening automation capabilities. AgriInnoConnect Pro aims to improve farm productivity and resource management, addressing the critical need for sustainable water conservation and providing a comprehensive solution for modern farm management. The integration of smart technologies in AgriInnoConnect Pro ensures precision farming practices, promoting efficient resource allocation and sustainable agricultural development.

Keywords: agricultural automation, IoT, soil moisture sensor, ESP32, MIT app inventor, telegram bot, smart farming, remote control, firebase console

Procedia PDF Downloads 14
14294 Effects of Initial State on Opinion Formation in Complex Social Networks with Noises

Authors: Yi Yu, Vu Xuan Nguyen, Gaoxi Xiao

Abstract:

Opinion formation in complex social networks may exhibit complex system dynamics even when based on some simplest system evolution models. An interesting and important issue is the effects of the initial state on the final steady-state opinion distribution. By carrying out extensive simulations and providing necessary discussions, we show that, while different initial opinion distributions certainly make differences to opinion evolution in social systems without noises, in systems with noises, given enough time, different initial states basically do not contribute to making any significant differences in the final steady state. Instead, it is the basal distribution of the preferred opinions that contributes to deciding the final state of the systems. We briefly explain the reasons leading to the observed conclusions. Such an observation contradicts with a long-term belief on the roles of system initial state in opinion formation, demonstrating the dominating role that opinion mutation can play in opinion formation given enough time. The observation may help to better understand certain observations of opinion evolution dynamics in real-life social networks.

Keywords: opinion formation, Deffuant model, opinion mutation, consensus making

Procedia PDF Downloads 161
14293 Investigation of the Growth Kinetics of Phases in Ni–Sn System

Authors: Varun A Baheti, Sanjay Kashyap, Kamanio Chattopadhyay, Praveen Kumar, Aloke Paul

Abstract:

Ni–Sn system finds applications in the microelectronics industry, especially with respect to flip–chip or direct chip, attach technology. Here the region of interest is under bump metallization (UBM), and solder bump (Sn) interface due to the formation of brittle intermetallic phases there. Understanding the growth of these phases at UBM/Sn interface is important, as in many cases it controls the electro–mechanical properties of the product. Cu and Ni are the commonly used UBM materials. Cu is used for good bonding because of fast reaction with solder and Ni often acts as a diffusion barrier layer due to its inherently slower reaction kinetics with Sn–based solders. Investigation on the growth kinetics of phases in Ni–Sn system is reported in this study. Just for simplicity, Sn being major solder constituent is chosen. Ni–Sn electroplated diffusion couples are prepared by electroplating pure Sn on Ni substrate. Bulk diffusion couples prepared by the conventional method are also studied along with Ni–Sn electroplated diffusion couples. Diffusion couples are annealed for 25–1000 h at 50–215°C to study the phase evolutions and growth kinetics of various phases. The interdiffusion zone was analysed using field emission gun equipped scanning electron microscope (FE–SEM) for imaging. Indexing of selected area diffraction (SAD) patterns obtained from transmission electron microscope (TEM) and composition measurements done in electron probe micro−analyser (FE–EPMA) confirms the presence of various product phases grown across the interdiffusion zone. Time-dependent experiments indicate diffusion controlled growth of the product phase. The estimated activation energy in the temperature range 125–215°C for parabolic growth constants (and hence integrated interdiffusion coefficients) of the Ni₃Sn₄ phase shed light on the growth mechanism of the phase; whether its grain boundary controlled or lattice controlled diffusion. The location of the Kirkendall marker plane indicates that the Ni₃Sn₄ phase grows mainly by diffusion of Sn in the binary Ni–Sn system.

Keywords: diffusion, equilibrium phase, metastable phase, the Ni-Sn system

Procedia PDF Downloads 293